sched: SCHED_OTHER vs SCHED_IDLE isolation
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 return se->vruntime - cfs_rq->min_vruntime;
272 }
273
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294
295 /*
296 * Enqueue an entity into the rb-tree:
297 */
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
342 }
343
344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
345 }
346
347 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348 {
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
355 }
356
357 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358 {
359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360
361 if (!last)
362 return NULL;
363
364 return rb_entry(last, struct sched_entity, run_node);
365 }
366
367 /**************************************************************
368 * Scheduling class statistics methods:
369 */
370
371 #ifdef CONFIG_SCHED_DEBUG
372 int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375 {
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385 }
386 #endif
387
388 /*
389 * delta /= w
390 */
391 static inline unsigned long
392 calc_delta_fair(unsigned long delta, struct sched_entity *se)
393 {
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396
397 return delta;
398 }
399
400 /*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
408 static u64 __sched_period(unsigned long nr_running)
409 {
410 u64 period = sysctl_sched_latency;
411 unsigned long nr_latency = sched_nr_latency;
412
413 if (unlikely(nr_running > nr_latency)) {
414 period = sysctl_sched_min_granularity;
415 period *= nr_running;
416 }
417
418 return period;
419 }
420
421 /*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
425 * s = p*P[w/rw]
426 */
427 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428 {
429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430
431 for_each_sched_entity(se) {
432 struct load_weight *load = &cfs_rq->load;
433
434 if (unlikely(!se->on_rq)) {
435 struct load_weight lw = cfs_rq->load;
436
437 update_load_add(&lw, se->load.weight);
438 load = &lw;
439 }
440 slice = calc_delta_mine(slice, se->load.weight, load);
441 }
442 return slice;
443 }
444
445 /*
446 * We calculate the vruntime slice of a to be inserted task
447 *
448 * vs = s/w
449 */
450 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
451 {
452 return calc_delta_fair(sched_slice(cfs_rq, se), se);
453 }
454
455 /*
456 * Update the current task's runtime statistics. Skip current tasks that
457 * are not in our scheduling class.
458 */
459 static inline void
460 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
461 unsigned long delta_exec)
462 {
463 unsigned long delta_exec_weighted;
464
465 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
466
467 curr->sum_exec_runtime += delta_exec;
468 schedstat_add(cfs_rq, exec_clock, delta_exec);
469 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
470 curr->vruntime += delta_exec_weighted;
471 update_min_vruntime(cfs_rq);
472 }
473
474 static void update_curr(struct cfs_rq *cfs_rq)
475 {
476 struct sched_entity *curr = cfs_rq->curr;
477 u64 now = rq_of(cfs_rq)->clock;
478 unsigned long delta_exec;
479
480 if (unlikely(!curr))
481 return;
482
483 /*
484 * Get the amount of time the current task was running
485 * since the last time we changed load (this cannot
486 * overflow on 32 bits):
487 */
488 delta_exec = (unsigned long)(now - curr->exec_start);
489 if (!delta_exec)
490 return;
491
492 __update_curr(cfs_rq, curr, delta_exec);
493 curr->exec_start = now;
494
495 if (entity_is_task(curr)) {
496 struct task_struct *curtask = task_of(curr);
497
498 cpuacct_charge(curtask, delta_exec);
499 account_group_exec_runtime(curtask, delta_exec);
500 }
501 }
502
503 static inline void
504 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
505 {
506 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
507 }
508
509 /*
510 * Task is being enqueued - update stats:
511 */
512 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
513 {
514 /*
515 * Are we enqueueing a waiting task? (for current tasks
516 * a dequeue/enqueue event is a NOP)
517 */
518 if (se != cfs_rq->curr)
519 update_stats_wait_start(cfs_rq, se);
520 }
521
522 static void
523 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 schedstat_set(se->wait_max, max(se->wait_max,
526 rq_of(cfs_rq)->clock - se->wait_start));
527 schedstat_set(se->wait_count, se->wait_count + 1);
528 schedstat_set(se->wait_sum, se->wait_sum +
529 rq_of(cfs_rq)->clock - se->wait_start);
530 schedstat_set(se->wait_start, 0);
531 }
532
533 static inline void
534 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 {
536 /*
537 * Mark the end of the wait period if dequeueing a
538 * waiting task:
539 */
540 if (se != cfs_rq->curr)
541 update_stats_wait_end(cfs_rq, se);
542 }
543
544 /*
545 * We are picking a new current task - update its stats:
546 */
547 static inline void
548 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 /*
551 * We are starting a new run period:
552 */
553 se->exec_start = rq_of(cfs_rq)->clock;
554 }
555
556 /**************************************************
557 * Scheduling class queueing methods:
558 */
559
560 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
561 static void
562 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
563 {
564 cfs_rq->task_weight += weight;
565 }
566 #else
567 static inline void
568 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
569 {
570 }
571 #endif
572
573 static void
574 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
575 {
576 update_load_add(&cfs_rq->load, se->load.weight);
577 if (!parent_entity(se))
578 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
579 if (entity_is_task(se)) {
580 add_cfs_task_weight(cfs_rq, se->load.weight);
581 list_add(&se->group_node, &cfs_rq->tasks);
582 }
583 cfs_rq->nr_running++;
584 se->on_rq = 1;
585 }
586
587 static void
588 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 {
590 update_load_sub(&cfs_rq->load, se->load.weight);
591 if (!parent_entity(se))
592 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
593 if (entity_is_task(se)) {
594 add_cfs_task_weight(cfs_rq, -se->load.weight);
595 list_del_init(&se->group_node);
596 }
597 cfs_rq->nr_running--;
598 se->on_rq = 0;
599 }
600
601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 {
603 #ifdef CONFIG_SCHEDSTATS
604 if (se->sleep_start) {
605 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
606 struct task_struct *tsk = task_of(se);
607
608 if ((s64)delta < 0)
609 delta = 0;
610
611 if (unlikely(delta > se->sleep_max))
612 se->sleep_max = delta;
613
614 se->sleep_start = 0;
615 se->sum_sleep_runtime += delta;
616
617 account_scheduler_latency(tsk, delta >> 10, 1);
618 }
619 if (se->block_start) {
620 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
621 struct task_struct *tsk = task_of(se);
622
623 if ((s64)delta < 0)
624 delta = 0;
625
626 if (unlikely(delta > se->block_max))
627 se->block_max = delta;
628
629 se->block_start = 0;
630 se->sum_sleep_runtime += delta;
631
632 /*
633 * Blocking time is in units of nanosecs, so shift by 20 to
634 * get a milliseconds-range estimation of the amount of
635 * time that the task spent sleeping:
636 */
637 if (unlikely(prof_on == SLEEP_PROFILING)) {
638
639 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
640 delta >> 20);
641 }
642 account_scheduler_latency(tsk, delta >> 10, 0);
643 }
644 #endif
645 }
646
647 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
648 {
649 #ifdef CONFIG_SCHED_DEBUG
650 s64 d = se->vruntime - cfs_rq->min_vruntime;
651
652 if (d < 0)
653 d = -d;
654
655 if (d > 3*sysctl_sched_latency)
656 schedstat_inc(cfs_rq, nr_spread_over);
657 #endif
658 }
659
660 static void
661 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
662 {
663 u64 vruntime = cfs_rq->min_vruntime;
664
665 /*
666 * The 'current' period is already promised to the current tasks,
667 * however the extra weight of the new task will slow them down a
668 * little, place the new task so that it fits in the slot that
669 * stays open at the end.
670 */
671 if (initial && sched_feat(START_DEBIT))
672 vruntime += sched_vslice(cfs_rq, se);
673
674 if (!initial) {
675 /* sleeps upto a single latency don't count. */
676 if (sched_feat(NEW_FAIR_SLEEPERS)) {
677 unsigned long thresh = sysctl_sched_latency;
678
679 /*
680 * Convert the sleeper threshold into virtual time.
681 * SCHED_IDLE is a special sub-class. We care about
682 * fairness only relative to other SCHED_IDLE tasks,
683 * all of which have the same weight.
684 */
685 if (sched_feat(NORMALIZED_SLEEPER) &&
686 task_of(se)->policy != SCHED_IDLE)
687 thresh = calc_delta_fair(thresh, se);
688
689 vruntime -= thresh;
690 }
691
692 /* ensure we never gain time by being placed backwards. */
693 vruntime = max_vruntime(se->vruntime, vruntime);
694 }
695
696 se->vruntime = vruntime;
697 }
698
699 static void
700 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
701 {
702 /*
703 * Update run-time statistics of the 'current'.
704 */
705 update_curr(cfs_rq);
706 account_entity_enqueue(cfs_rq, se);
707
708 if (wakeup) {
709 place_entity(cfs_rq, se, 0);
710 enqueue_sleeper(cfs_rq, se);
711 }
712
713 update_stats_enqueue(cfs_rq, se);
714 check_spread(cfs_rq, se);
715 if (se != cfs_rq->curr)
716 __enqueue_entity(cfs_rq, se);
717 }
718
719 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 if (cfs_rq->last == se)
722 cfs_rq->last = NULL;
723
724 if (cfs_rq->next == se)
725 cfs_rq->next = NULL;
726 }
727
728 static void
729 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
730 {
731 /*
732 * Update run-time statistics of the 'current'.
733 */
734 update_curr(cfs_rq);
735
736 update_stats_dequeue(cfs_rq, se);
737 if (sleep) {
738 #ifdef CONFIG_SCHEDSTATS
739 if (entity_is_task(se)) {
740 struct task_struct *tsk = task_of(se);
741
742 if (tsk->state & TASK_INTERRUPTIBLE)
743 se->sleep_start = rq_of(cfs_rq)->clock;
744 if (tsk->state & TASK_UNINTERRUPTIBLE)
745 se->block_start = rq_of(cfs_rq)->clock;
746 }
747 #endif
748 }
749
750 clear_buddies(cfs_rq, se);
751
752 if (se != cfs_rq->curr)
753 __dequeue_entity(cfs_rq, se);
754 account_entity_dequeue(cfs_rq, se);
755 update_min_vruntime(cfs_rq);
756 }
757
758 /*
759 * Preempt the current task with a newly woken task if needed:
760 */
761 static void
762 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
763 {
764 unsigned long ideal_runtime, delta_exec;
765
766 ideal_runtime = sched_slice(cfs_rq, curr);
767 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
768 if (delta_exec > ideal_runtime)
769 resched_task(rq_of(cfs_rq)->curr);
770 }
771
772 static void
773 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
774 {
775 /* 'current' is not kept within the tree. */
776 if (se->on_rq) {
777 /*
778 * Any task has to be enqueued before it get to execute on
779 * a CPU. So account for the time it spent waiting on the
780 * runqueue.
781 */
782 update_stats_wait_end(cfs_rq, se);
783 __dequeue_entity(cfs_rq, se);
784 }
785
786 update_stats_curr_start(cfs_rq, se);
787 cfs_rq->curr = se;
788 #ifdef CONFIG_SCHEDSTATS
789 /*
790 * Track our maximum slice length, if the CPU's load is at
791 * least twice that of our own weight (i.e. dont track it
792 * when there are only lesser-weight tasks around):
793 */
794 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
795 se->slice_max = max(se->slice_max,
796 se->sum_exec_runtime - se->prev_sum_exec_runtime);
797 }
798 #endif
799 se->prev_sum_exec_runtime = se->sum_exec_runtime;
800 }
801
802 static int
803 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
804
805 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
806 {
807 struct sched_entity *se = __pick_next_entity(cfs_rq);
808
809 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
810 return cfs_rq->next;
811
812 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
813 return cfs_rq->last;
814
815 return se;
816 }
817
818 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
819 {
820 /*
821 * If still on the runqueue then deactivate_task()
822 * was not called and update_curr() has to be done:
823 */
824 if (prev->on_rq)
825 update_curr(cfs_rq);
826
827 check_spread(cfs_rq, prev);
828 if (prev->on_rq) {
829 update_stats_wait_start(cfs_rq, prev);
830 /* Put 'current' back into the tree. */
831 __enqueue_entity(cfs_rq, prev);
832 }
833 cfs_rq->curr = NULL;
834 }
835
836 static void
837 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
838 {
839 /*
840 * Update run-time statistics of the 'current'.
841 */
842 update_curr(cfs_rq);
843
844 #ifdef CONFIG_SCHED_HRTICK
845 /*
846 * queued ticks are scheduled to match the slice, so don't bother
847 * validating it and just reschedule.
848 */
849 if (queued) {
850 resched_task(rq_of(cfs_rq)->curr);
851 return;
852 }
853 /*
854 * don't let the period tick interfere with the hrtick preemption
855 */
856 if (!sched_feat(DOUBLE_TICK) &&
857 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
858 return;
859 #endif
860
861 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
862 check_preempt_tick(cfs_rq, curr);
863 }
864
865 /**************************************************
866 * CFS operations on tasks:
867 */
868
869 #ifdef CONFIG_SCHED_HRTICK
870 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
871 {
872 struct sched_entity *se = &p->se;
873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
874
875 WARN_ON(task_rq(p) != rq);
876
877 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
878 u64 slice = sched_slice(cfs_rq, se);
879 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
880 s64 delta = slice - ran;
881
882 if (delta < 0) {
883 if (rq->curr == p)
884 resched_task(p);
885 return;
886 }
887
888 /*
889 * Don't schedule slices shorter than 10000ns, that just
890 * doesn't make sense. Rely on vruntime for fairness.
891 */
892 if (rq->curr != p)
893 delta = max_t(s64, 10000LL, delta);
894
895 hrtick_start(rq, delta);
896 }
897 }
898
899 /*
900 * called from enqueue/dequeue and updates the hrtick when the
901 * current task is from our class and nr_running is low enough
902 * to matter.
903 */
904 static void hrtick_update(struct rq *rq)
905 {
906 struct task_struct *curr = rq->curr;
907
908 if (curr->sched_class != &fair_sched_class)
909 return;
910
911 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
912 hrtick_start_fair(rq, curr);
913 }
914 #else /* !CONFIG_SCHED_HRTICK */
915 static inline void
916 hrtick_start_fair(struct rq *rq, struct task_struct *p)
917 {
918 }
919
920 static inline void hrtick_update(struct rq *rq)
921 {
922 }
923 #endif
924
925 /*
926 * The enqueue_task method is called before nr_running is
927 * increased. Here we update the fair scheduling stats and
928 * then put the task into the rbtree:
929 */
930 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
931 {
932 struct cfs_rq *cfs_rq;
933 struct sched_entity *se = &p->se;
934
935 for_each_sched_entity(se) {
936 if (se->on_rq)
937 break;
938 cfs_rq = cfs_rq_of(se);
939 enqueue_entity(cfs_rq, se, wakeup);
940 wakeup = 1;
941 }
942
943 hrtick_update(rq);
944 }
945
946 /*
947 * The dequeue_task method is called before nr_running is
948 * decreased. We remove the task from the rbtree and
949 * update the fair scheduling stats:
950 */
951 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
952 {
953 struct cfs_rq *cfs_rq;
954 struct sched_entity *se = &p->se;
955
956 for_each_sched_entity(se) {
957 cfs_rq = cfs_rq_of(se);
958 dequeue_entity(cfs_rq, se, sleep);
959 /* Don't dequeue parent if it has other entities besides us */
960 if (cfs_rq->load.weight)
961 break;
962 sleep = 1;
963 }
964
965 hrtick_update(rq);
966 }
967
968 /*
969 * sched_yield() support is very simple - we dequeue and enqueue.
970 *
971 * If compat_yield is turned on then we requeue to the end of the tree.
972 */
973 static void yield_task_fair(struct rq *rq)
974 {
975 struct task_struct *curr = rq->curr;
976 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
977 struct sched_entity *rightmost, *se = &curr->se;
978
979 /*
980 * Are we the only task in the tree?
981 */
982 if (unlikely(cfs_rq->nr_running == 1))
983 return;
984
985 clear_buddies(cfs_rq, se);
986
987 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
988 update_rq_clock(rq);
989 /*
990 * Update run-time statistics of the 'current'.
991 */
992 update_curr(cfs_rq);
993
994 return;
995 }
996 /*
997 * Find the rightmost entry in the rbtree:
998 */
999 rightmost = __pick_last_entity(cfs_rq);
1000 /*
1001 * Already in the rightmost position?
1002 */
1003 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1004 return;
1005
1006 /*
1007 * Minimally necessary key value to be last in the tree:
1008 * Upon rescheduling, sched_class::put_prev_task() will place
1009 * 'current' within the tree based on its new key value.
1010 */
1011 se->vruntime = rightmost->vruntime + 1;
1012 }
1013
1014 /*
1015 * wake_idle() will wake a task on an idle cpu if task->cpu is
1016 * not idle and an idle cpu is available. The span of cpus to
1017 * search starts with cpus closest then further out as needed,
1018 * so we always favor a closer, idle cpu.
1019 * Domains may include CPUs that are not usable for migration,
1020 * hence we need to mask them out (cpu_active_mask)
1021 *
1022 * Returns the CPU we should wake onto.
1023 */
1024 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1025 static int wake_idle(int cpu, struct task_struct *p)
1026 {
1027 struct sched_domain *sd;
1028 int i;
1029 unsigned int chosen_wakeup_cpu;
1030 int this_cpu;
1031
1032 /*
1033 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1034 * are idle and this is not a kernel thread and this task's affinity
1035 * allows it to be moved to preferred cpu, then just move!
1036 */
1037
1038 this_cpu = smp_processor_id();
1039 chosen_wakeup_cpu =
1040 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1041
1042 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1043 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1044 p->mm && !(p->flags & PF_KTHREAD) &&
1045 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1046 return chosen_wakeup_cpu;
1047
1048 /*
1049 * If it is idle, then it is the best cpu to run this task.
1050 *
1051 * This cpu is also the best, if it has more than one task already.
1052 * Siblings must be also busy(in most cases) as they didn't already
1053 * pickup the extra load from this cpu and hence we need not check
1054 * sibling runqueue info. This will avoid the checks and cache miss
1055 * penalities associated with that.
1056 */
1057 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1058 return cpu;
1059
1060 for_each_domain(cpu, sd) {
1061 if ((sd->flags & SD_WAKE_IDLE)
1062 || ((sd->flags & SD_WAKE_IDLE_FAR)
1063 && !task_hot(p, task_rq(p)->clock, sd))) {
1064 for_each_cpu_and(i, sched_domain_span(sd),
1065 &p->cpus_allowed) {
1066 if (cpu_active(i) && idle_cpu(i)) {
1067 if (i != task_cpu(p)) {
1068 schedstat_inc(p,
1069 se.nr_wakeups_idle);
1070 }
1071 return i;
1072 }
1073 }
1074 } else {
1075 break;
1076 }
1077 }
1078 return cpu;
1079 }
1080 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1081 static inline int wake_idle(int cpu, struct task_struct *p)
1082 {
1083 return cpu;
1084 }
1085 #endif
1086
1087 #ifdef CONFIG_SMP
1088
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 /*
1091 * effective_load() calculates the load change as seen from the root_task_group
1092 *
1093 * Adding load to a group doesn't make a group heavier, but can cause movement
1094 * of group shares between cpus. Assuming the shares were perfectly aligned one
1095 * can calculate the shift in shares.
1096 *
1097 * The problem is that perfectly aligning the shares is rather expensive, hence
1098 * we try to avoid doing that too often - see update_shares(), which ratelimits
1099 * this change.
1100 *
1101 * We compensate this by not only taking the current delta into account, but
1102 * also considering the delta between when the shares were last adjusted and
1103 * now.
1104 *
1105 * We still saw a performance dip, some tracing learned us that between
1106 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1107 * significantly. Therefore try to bias the error in direction of failing
1108 * the affine wakeup.
1109 *
1110 */
1111 static long effective_load(struct task_group *tg, int cpu,
1112 long wl, long wg)
1113 {
1114 struct sched_entity *se = tg->se[cpu];
1115
1116 if (!tg->parent)
1117 return wl;
1118
1119 /*
1120 * By not taking the decrease of shares on the other cpu into
1121 * account our error leans towards reducing the affine wakeups.
1122 */
1123 if (!wl && sched_feat(ASYM_EFF_LOAD))
1124 return wl;
1125
1126 for_each_sched_entity(se) {
1127 long S, rw, s, a, b;
1128 long more_w;
1129
1130 /*
1131 * Instead of using this increment, also add the difference
1132 * between when the shares were last updated and now.
1133 */
1134 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1135 wl += more_w;
1136 wg += more_w;
1137
1138 S = se->my_q->tg->shares;
1139 s = se->my_q->shares;
1140 rw = se->my_q->rq_weight;
1141
1142 a = S*(rw + wl);
1143 b = S*rw + s*wg;
1144
1145 wl = s*(a-b);
1146
1147 if (likely(b))
1148 wl /= b;
1149
1150 /*
1151 * Assume the group is already running and will
1152 * thus already be accounted for in the weight.
1153 *
1154 * That is, moving shares between CPUs, does not
1155 * alter the group weight.
1156 */
1157 wg = 0;
1158 }
1159
1160 return wl;
1161 }
1162
1163 #else
1164
1165 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1166 unsigned long wl, unsigned long wg)
1167 {
1168 return wl;
1169 }
1170
1171 #endif
1172
1173 static int
1174 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1175 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1176 int idx, unsigned long load, unsigned long this_load,
1177 unsigned int imbalance)
1178 {
1179 struct task_struct *curr = this_rq->curr;
1180 struct task_group *tg;
1181 unsigned long tl = this_load;
1182 unsigned long tl_per_task;
1183 unsigned long weight;
1184 int balanced;
1185
1186 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1187 return 0;
1188
1189 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1190 p->se.avg_overlap > sysctl_sched_migration_cost))
1191 sync = 0;
1192
1193 /*
1194 * If sync wakeup then subtract the (maximum possible)
1195 * effect of the currently running task from the load
1196 * of the current CPU:
1197 */
1198 if (sync) {
1199 tg = task_group(current);
1200 weight = current->se.load.weight;
1201
1202 tl += effective_load(tg, this_cpu, -weight, -weight);
1203 load += effective_load(tg, prev_cpu, 0, -weight);
1204 }
1205
1206 tg = task_group(p);
1207 weight = p->se.load.weight;
1208
1209 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1210 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1211
1212 /*
1213 * If the currently running task will sleep within
1214 * a reasonable amount of time then attract this newly
1215 * woken task:
1216 */
1217 if (sync && balanced)
1218 return 1;
1219
1220 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1221 tl_per_task = cpu_avg_load_per_task(this_cpu);
1222
1223 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1224 tl_per_task)) {
1225 /*
1226 * This domain has SD_WAKE_AFFINE and
1227 * p is cache cold in this domain, and
1228 * there is no bad imbalance.
1229 */
1230 schedstat_inc(this_sd, ttwu_move_affine);
1231 schedstat_inc(p, se.nr_wakeups_affine);
1232
1233 return 1;
1234 }
1235 return 0;
1236 }
1237
1238 static int select_task_rq_fair(struct task_struct *p, int sync)
1239 {
1240 struct sched_domain *sd, *this_sd = NULL;
1241 int prev_cpu, this_cpu, new_cpu;
1242 unsigned long load, this_load;
1243 struct rq *this_rq;
1244 unsigned int imbalance;
1245 int idx;
1246
1247 prev_cpu = task_cpu(p);
1248 this_cpu = smp_processor_id();
1249 this_rq = cpu_rq(this_cpu);
1250 new_cpu = prev_cpu;
1251
1252 if (prev_cpu == this_cpu)
1253 goto out;
1254 /*
1255 * 'this_sd' is the first domain that both
1256 * this_cpu and prev_cpu are present in:
1257 */
1258 for_each_domain(this_cpu, sd) {
1259 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1260 this_sd = sd;
1261 break;
1262 }
1263 }
1264
1265 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1266 goto out;
1267
1268 /*
1269 * Check for affine wakeup and passive balancing possibilities.
1270 */
1271 if (!this_sd)
1272 goto out;
1273
1274 idx = this_sd->wake_idx;
1275
1276 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1277
1278 load = source_load(prev_cpu, idx);
1279 this_load = target_load(this_cpu, idx);
1280
1281 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1282 load, this_load, imbalance))
1283 return this_cpu;
1284
1285 /*
1286 * Start passive balancing when half the imbalance_pct
1287 * limit is reached.
1288 */
1289 if (this_sd->flags & SD_WAKE_BALANCE) {
1290 if (imbalance*this_load <= 100*load) {
1291 schedstat_inc(this_sd, ttwu_move_balance);
1292 schedstat_inc(p, se.nr_wakeups_passive);
1293 return this_cpu;
1294 }
1295 }
1296
1297 out:
1298 return wake_idle(new_cpu, p);
1299 }
1300 #endif /* CONFIG_SMP */
1301
1302 static unsigned long wakeup_gran(struct sched_entity *se)
1303 {
1304 unsigned long gran = sysctl_sched_wakeup_granularity;
1305
1306 /*
1307 * More easily preempt - nice tasks, while not making it harder for
1308 * + nice tasks.
1309 */
1310 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1311 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1312
1313 return gran;
1314 }
1315
1316 /*
1317 * Should 'se' preempt 'curr'.
1318 *
1319 * |s1
1320 * |s2
1321 * |s3
1322 * g
1323 * |<--->|c
1324 *
1325 * w(c, s1) = -1
1326 * w(c, s2) = 0
1327 * w(c, s3) = 1
1328 *
1329 */
1330 static int
1331 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1332 {
1333 s64 gran, vdiff = curr->vruntime - se->vruntime;
1334
1335 if (vdiff <= 0)
1336 return -1;
1337
1338 gran = wakeup_gran(curr);
1339 if (vdiff > gran)
1340 return 1;
1341
1342 return 0;
1343 }
1344
1345 static void set_last_buddy(struct sched_entity *se)
1346 {
1347 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1348 for_each_sched_entity(se)
1349 cfs_rq_of(se)->last = se;
1350 }
1351 }
1352
1353 static void set_next_buddy(struct sched_entity *se)
1354 {
1355 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1356 for_each_sched_entity(se)
1357 cfs_rq_of(se)->next = se;
1358 }
1359 }
1360
1361 /*
1362 * Preempt the current task with a newly woken task if needed:
1363 */
1364 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1365 {
1366 struct task_struct *curr = rq->curr;
1367 struct sched_entity *se = &curr->se, *pse = &p->se;
1368 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1369
1370 update_curr(cfs_rq);
1371
1372 if (unlikely(rt_prio(p->prio))) {
1373 resched_task(curr);
1374 return;
1375 }
1376
1377 if (unlikely(p->sched_class != &fair_sched_class))
1378 return;
1379
1380 if (unlikely(se == pse))
1381 return;
1382
1383 /*
1384 * Only set the backward buddy when the current task is still on the
1385 * rq. This can happen when a wakeup gets interleaved with schedule on
1386 * the ->pre_schedule() or idle_balance() point, either of which can
1387 * drop the rq lock.
1388 *
1389 * Also, during early boot the idle thread is in the fair class, for
1390 * obvious reasons its a bad idea to schedule back to the idle thread.
1391 */
1392 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1393 set_last_buddy(se);
1394 set_next_buddy(pse);
1395
1396 /*
1397 * We can come here with TIF_NEED_RESCHED already set from new task
1398 * wake up path.
1399 */
1400 if (test_tsk_need_resched(curr))
1401 return;
1402
1403 /*
1404 * Batch and idle tasks do not preempt (their preemption is driven by
1405 * the tick):
1406 */
1407 if (unlikely(p->policy != SCHED_NORMAL))
1408 return;
1409
1410 /* Idle tasks are by definition preempted by everybody. */
1411 if (unlikely(curr->policy == SCHED_IDLE)) {
1412 resched_task(curr);
1413 return;
1414 }
1415
1416 if (!sched_feat(WAKEUP_PREEMPT))
1417 return;
1418
1419 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1420 (se->avg_overlap < sysctl_sched_migration_cost &&
1421 pse->avg_overlap < sysctl_sched_migration_cost))) {
1422 resched_task(curr);
1423 return;
1424 }
1425
1426 find_matching_se(&se, &pse);
1427
1428 while (se) {
1429 BUG_ON(!pse);
1430
1431 if (wakeup_preempt_entity(se, pse) == 1) {
1432 resched_task(curr);
1433 break;
1434 }
1435
1436 se = parent_entity(se);
1437 pse = parent_entity(pse);
1438 }
1439 }
1440
1441 static struct task_struct *pick_next_task_fair(struct rq *rq)
1442 {
1443 struct task_struct *p;
1444 struct cfs_rq *cfs_rq = &rq->cfs;
1445 struct sched_entity *se;
1446
1447 if (unlikely(!cfs_rq->nr_running))
1448 return NULL;
1449
1450 do {
1451 se = pick_next_entity(cfs_rq);
1452 set_next_entity(cfs_rq, se);
1453 cfs_rq = group_cfs_rq(se);
1454 } while (cfs_rq);
1455
1456 p = task_of(se);
1457 hrtick_start_fair(rq, p);
1458
1459 return p;
1460 }
1461
1462 /*
1463 * Account for a descheduled task:
1464 */
1465 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1466 {
1467 struct sched_entity *se = &prev->se;
1468 struct cfs_rq *cfs_rq;
1469
1470 for_each_sched_entity(se) {
1471 cfs_rq = cfs_rq_of(se);
1472 put_prev_entity(cfs_rq, se);
1473 }
1474 }
1475
1476 #ifdef CONFIG_SMP
1477 /**************************************************
1478 * Fair scheduling class load-balancing methods:
1479 */
1480
1481 /*
1482 * Load-balancing iterator. Note: while the runqueue stays locked
1483 * during the whole iteration, the current task might be
1484 * dequeued so the iterator has to be dequeue-safe. Here we
1485 * achieve that by always pre-iterating before returning
1486 * the current task:
1487 */
1488 static struct task_struct *
1489 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1490 {
1491 struct task_struct *p = NULL;
1492 struct sched_entity *se;
1493
1494 if (next == &cfs_rq->tasks)
1495 return NULL;
1496
1497 se = list_entry(next, struct sched_entity, group_node);
1498 p = task_of(se);
1499 cfs_rq->balance_iterator = next->next;
1500
1501 return p;
1502 }
1503
1504 static struct task_struct *load_balance_start_fair(void *arg)
1505 {
1506 struct cfs_rq *cfs_rq = arg;
1507
1508 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1509 }
1510
1511 static struct task_struct *load_balance_next_fair(void *arg)
1512 {
1513 struct cfs_rq *cfs_rq = arg;
1514
1515 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1516 }
1517
1518 static unsigned long
1519 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1520 unsigned long max_load_move, struct sched_domain *sd,
1521 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1522 struct cfs_rq *cfs_rq)
1523 {
1524 struct rq_iterator cfs_rq_iterator;
1525
1526 cfs_rq_iterator.start = load_balance_start_fair;
1527 cfs_rq_iterator.next = load_balance_next_fair;
1528 cfs_rq_iterator.arg = cfs_rq;
1529
1530 return balance_tasks(this_rq, this_cpu, busiest,
1531 max_load_move, sd, idle, all_pinned,
1532 this_best_prio, &cfs_rq_iterator);
1533 }
1534
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536 static unsigned long
1537 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1538 unsigned long max_load_move,
1539 struct sched_domain *sd, enum cpu_idle_type idle,
1540 int *all_pinned, int *this_best_prio)
1541 {
1542 long rem_load_move = max_load_move;
1543 int busiest_cpu = cpu_of(busiest);
1544 struct task_group *tg;
1545
1546 rcu_read_lock();
1547 update_h_load(busiest_cpu);
1548
1549 list_for_each_entry_rcu(tg, &task_groups, list) {
1550 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1551 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1552 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1553 u64 rem_load, moved_load;
1554
1555 /*
1556 * empty group
1557 */
1558 if (!busiest_cfs_rq->task_weight)
1559 continue;
1560
1561 rem_load = (u64)rem_load_move * busiest_weight;
1562 rem_load = div_u64(rem_load, busiest_h_load + 1);
1563
1564 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1565 rem_load, sd, idle, all_pinned, this_best_prio,
1566 tg->cfs_rq[busiest_cpu]);
1567
1568 if (!moved_load)
1569 continue;
1570
1571 moved_load *= busiest_h_load;
1572 moved_load = div_u64(moved_load, busiest_weight + 1);
1573
1574 rem_load_move -= moved_load;
1575 if (rem_load_move < 0)
1576 break;
1577 }
1578 rcu_read_unlock();
1579
1580 return max_load_move - rem_load_move;
1581 }
1582 #else
1583 static unsigned long
1584 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1585 unsigned long max_load_move,
1586 struct sched_domain *sd, enum cpu_idle_type idle,
1587 int *all_pinned, int *this_best_prio)
1588 {
1589 return __load_balance_fair(this_rq, this_cpu, busiest,
1590 max_load_move, sd, idle, all_pinned,
1591 this_best_prio, &busiest->cfs);
1592 }
1593 #endif
1594
1595 static int
1596 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1597 struct sched_domain *sd, enum cpu_idle_type idle)
1598 {
1599 struct cfs_rq *busy_cfs_rq;
1600 struct rq_iterator cfs_rq_iterator;
1601
1602 cfs_rq_iterator.start = load_balance_start_fair;
1603 cfs_rq_iterator.next = load_balance_next_fair;
1604
1605 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1606 /*
1607 * pass busy_cfs_rq argument into
1608 * load_balance_[start|next]_fair iterators
1609 */
1610 cfs_rq_iterator.arg = busy_cfs_rq;
1611 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1612 &cfs_rq_iterator))
1613 return 1;
1614 }
1615
1616 return 0;
1617 }
1618 #endif /* CONFIG_SMP */
1619
1620 /*
1621 * scheduler tick hitting a task of our scheduling class:
1622 */
1623 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1624 {
1625 struct cfs_rq *cfs_rq;
1626 struct sched_entity *se = &curr->se;
1627
1628 for_each_sched_entity(se) {
1629 cfs_rq = cfs_rq_of(se);
1630 entity_tick(cfs_rq, se, queued);
1631 }
1632 }
1633
1634 /*
1635 * Share the fairness runtime between parent and child, thus the
1636 * total amount of pressure for CPU stays equal - new tasks
1637 * get a chance to run but frequent forkers are not allowed to
1638 * monopolize the CPU. Note: the parent runqueue is locked,
1639 * the child is not running yet.
1640 */
1641 static void task_new_fair(struct rq *rq, struct task_struct *p)
1642 {
1643 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1644 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1645 int this_cpu = smp_processor_id();
1646
1647 sched_info_queued(p);
1648
1649 update_curr(cfs_rq);
1650 place_entity(cfs_rq, se, 1);
1651
1652 /* 'curr' will be NULL if the child belongs to a different group */
1653 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1654 curr && curr->vruntime < se->vruntime) {
1655 /*
1656 * Upon rescheduling, sched_class::put_prev_task() will place
1657 * 'current' within the tree based on its new key value.
1658 */
1659 swap(curr->vruntime, se->vruntime);
1660 resched_task(rq->curr);
1661 }
1662
1663 enqueue_task_fair(rq, p, 0);
1664 }
1665
1666 /*
1667 * Priority of the task has changed. Check to see if we preempt
1668 * the current task.
1669 */
1670 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1671 int oldprio, int running)
1672 {
1673 /*
1674 * Reschedule if we are currently running on this runqueue and
1675 * our priority decreased, or if we are not currently running on
1676 * this runqueue and our priority is higher than the current's
1677 */
1678 if (running) {
1679 if (p->prio > oldprio)
1680 resched_task(rq->curr);
1681 } else
1682 check_preempt_curr(rq, p, 0);
1683 }
1684
1685 /*
1686 * We switched to the sched_fair class.
1687 */
1688 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1689 int running)
1690 {
1691 /*
1692 * We were most likely switched from sched_rt, so
1693 * kick off the schedule if running, otherwise just see
1694 * if we can still preempt the current task.
1695 */
1696 if (running)
1697 resched_task(rq->curr);
1698 else
1699 check_preempt_curr(rq, p, 0);
1700 }
1701
1702 /* Account for a task changing its policy or group.
1703 *
1704 * This routine is mostly called to set cfs_rq->curr field when a task
1705 * migrates between groups/classes.
1706 */
1707 static void set_curr_task_fair(struct rq *rq)
1708 {
1709 struct sched_entity *se = &rq->curr->se;
1710
1711 for_each_sched_entity(se)
1712 set_next_entity(cfs_rq_of(se), se);
1713 }
1714
1715 #ifdef CONFIG_FAIR_GROUP_SCHED
1716 static void moved_group_fair(struct task_struct *p)
1717 {
1718 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1719
1720 update_curr(cfs_rq);
1721 place_entity(cfs_rq, &p->se, 1);
1722 }
1723 #endif
1724
1725 /*
1726 * All the scheduling class methods:
1727 */
1728 static const struct sched_class fair_sched_class = {
1729 .next = &idle_sched_class,
1730 .enqueue_task = enqueue_task_fair,
1731 .dequeue_task = dequeue_task_fair,
1732 .yield_task = yield_task_fair,
1733
1734 .check_preempt_curr = check_preempt_wakeup,
1735
1736 .pick_next_task = pick_next_task_fair,
1737 .put_prev_task = put_prev_task_fair,
1738
1739 #ifdef CONFIG_SMP
1740 .select_task_rq = select_task_rq_fair,
1741
1742 .load_balance = load_balance_fair,
1743 .move_one_task = move_one_task_fair,
1744 #endif
1745
1746 .set_curr_task = set_curr_task_fair,
1747 .task_tick = task_tick_fair,
1748 .task_new = task_new_fair,
1749
1750 .prio_changed = prio_changed_fair,
1751 .switched_to = switched_to_fair,
1752
1753 #ifdef CONFIG_FAIR_GROUP_SCHED
1754 .moved_group = moved_group_fair,
1755 #endif
1756 };
1757
1758 #ifdef CONFIG_SCHED_DEBUG
1759 static void print_cfs_stats(struct seq_file *m, int cpu)
1760 {
1761 struct cfs_rq *cfs_rq;
1762
1763 rcu_read_lock();
1764 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1765 print_cfs_rq(m, cpu, cfs_rq);
1766 rcu_read_unlock();
1767 }
1768 #endif
This page took 0.172229 seconds and 6 git commands to generate.