sched: remove duplicate code from sched_fair.c
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73
74 /*
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
83
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
100
101 #else /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104 {
105 return container_of(cfs_rq, struct rq, cfs);
106 }
107
108 #define entity_is_task(se) 1
109
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
111
112 static inline struct task_struct *task_of(struct sched_entity *se)
113 {
114 return container_of(se, struct task_struct, se);
115 }
116
117
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 {
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138 }
139
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 {
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost)
179 cfs_rq->rb_leftmost = &se->run_node;
180
181 rb_link_node(&se->run_node, parent, link);
182 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
183 }
184
185 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 {
187 if (cfs_rq->rb_leftmost == &se->run_node)
188 cfs_rq->rb_leftmost = rb_next(&se->run_node);
189
190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 }
192
193 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194 {
195 return cfs_rq->rb_leftmost;
196 }
197
198 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199 {
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 }
202
203 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204 {
205 struct rb_node *last;
206 struct sched_entity *se;
207
208 last = rb_last(&cfs_rq->tasks_timeline);
209 if (!last)
210 return NULL;
211 se = rb_entry(last, struct sched_entity, run_node);
212 return se;
213 }
214
215 /**************************************************************
216 * Scheduling class statistics methods:
217 */
218
219 #ifdef CONFIG_SCHED_DEBUG
220 int sched_nr_latency_handler(struct ctl_table *table, int write,
221 struct file *filp, void __user *buffer, size_t *lenp,
222 loff_t *ppos)
223 {
224 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
225
226 if (ret || !write)
227 return ret;
228
229 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
230 sysctl_sched_min_granularity);
231
232 return 0;
233 }
234 #endif
235
236 /*
237 * The idea is to set a period in which each task runs once.
238 *
239 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
240 * this period because otherwise the slices get too small.
241 *
242 * p = (nr <= nl) ? l : l*nr/nl
243 */
244 static u64 __sched_period(unsigned long nr_running)
245 {
246 u64 period = sysctl_sched_latency;
247 unsigned long nr_latency = sched_nr_latency;
248
249 if (unlikely(nr_running > nr_latency)) {
250 period = sysctl_sched_min_granularity;
251 period *= nr_running;
252 }
253
254 return period;
255 }
256
257 /*
258 * We calculate the wall-time slice from the period by taking a part
259 * proportional to the weight.
260 *
261 * s = p*w/rw
262 */
263 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
264 {
265 u64 slice = __sched_period(cfs_rq->nr_running);
266
267 slice *= se->load.weight;
268 do_div(slice, cfs_rq->load.weight);
269
270 return slice;
271 }
272
273 /*
274 * We calculate the vruntime slice.
275 *
276 * vs = s/w = p/rw
277 */
278 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
279 {
280 u64 vslice = __sched_period(nr_running);
281
282 vslice *= NICE_0_LOAD;
283 do_div(vslice, rq_weight);
284
285 return vslice;
286 }
287
288 static u64 sched_vslice(struct cfs_rq *cfs_rq)
289 {
290 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
291 }
292
293 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
294 {
295 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
296 cfs_rq->nr_running + 1);
297 }
298
299 /*
300 * Update the current task's runtime statistics. Skip current tasks that
301 * are not in our scheduling class.
302 */
303 static inline void
304 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
305 unsigned long delta_exec)
306 {
307 unsigned long delta_exec_weighted;
308 u64 vruntime;
309
310 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
311
312 curr->sum_exec_runtime += delta_exec;
313 schedstat_add(cfs_rq, exec_clock, delta_exec);
314 delta_exec_weighted = delta_exec;
315 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
316 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
317 &curr->load);
318 }
319 curr->vruntime += delta_exec_weighted;
320
321 /*
322 * maintain cfs_rq->min_vruntime to be a monotonic increasing
323 * value tracking the leftmost vruntime in the tree.
324 */
325 if (first_fair(cfs_rq)) {
326 vruntime = min_vruntime(curr->vruntime,
327 __pick_next_entity(cfs_rq)->vruntime);
328 } else
329 vruntime = curr->vruntime;
330
331 cfs_rq->min_vruntime =
332 max_vruntime(cfs_rq->min_vruntime, vruntime);
333 }
334
335 static void update_curr(struct cfs_rq *cfs_rq)
336 {
337 struct sched_entity *curr = cfs_rq->curr;
338 u64 now = rq_of(cfs_rq)->clock;
339 unsigned long delta_exec;
340
341 if (unlikely(!curr))
342 return;
343
344 /*
345 * Get the amount of time the current task was running
346 * since the last time we changed load (this cannot
347 * overflow on 32 bits):
348 */
349 delta_exec = (unsigned long)(now - curr->exec_start);
350
351 __update_curr(cfs_rq, curr, delta_exec);
352 curr->exec_start = now;
353
354 if (entity_is_task(curr)) {
355 struct task_struct *curtask = task_of(curr);
356
357 cpuacct_charge(curtask, delta_exec);
358 }
359 }
360
361 static inline void
362 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
363 {
364 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
365 }
366
367 /*
368 * Task is being enqueued - update stats:
369 */
370 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
371 {
372 /*
373 * Are we enqueueing a waiting task? (for current tasks
374 * a dequeue/enqueue event is a NOP)
375 */
376 if (se != cfs_rq->curr)
377 update_stats_wait_start(cfs_rq, se);
378 }
379
380 static void
381 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
382 {
383 schedstat_set(se->wait_max, max(se->wait_max,
384 rq_of(cfs_rq)->clock - se->wait_start));
385 schedstat_set(se->wait_count, se->wait_count + 1);
386 schedstat_set(se->wait_sum, se->wait_sum +
387 rq_of(cfs_rq)->clock - se->wait_start);
388 schedstat_set(se->wait_start, 0);
389 }
390
391 static inline void
392 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 {
394 /*
395 * Mark the end of the wait period if dequeueing a
396 * waiting task:
397 */
398 if (se != cfs_rq->curr)
399 update_stats_wait_end(cfs_rq, se);
400 }
401
402 /*
403 * We are picking a new current task - update its stats:
404 */
405 static inline void
406 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 {
408 /*
409 * We are starting a new run period:
410 */
411 se->exec_start = rq_of(cfs_rq)->clock;
412 }
413
414 /**************************************************
415 * Scheduling class queueing methods:
416 */
417
418 static void
419 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
420 {
421 update_load_add(&cfs_rq->load, se->load.weight);
422 cfs_rq->nr_running++;
423 se->on_rq = 1;
424 }
425
426 static void
427 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
428 {
429 update_load_sub(&cfs_rq->load, se->load.weight);
430 cfs_rq->nr_running--;
431 se->on_rq = 0;
432 }
433
434 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
435 {
436 #ifdef CONFIG_SCHEDSTATS
437 if (se->sleep_start) {
438 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
439 struct task_struct *tsk = task_of(se);
440
441 if ((s64)delta < 0)
442 delta = 0;
443
444 if (unlikely(delta > se->sleep_max))
445 se->sleep_max = delta;
446
447 se->sleep_start = 0;
448 se->sum_sleep_runtime += delta;
449
450 account_scheduler_latency(tsk, delta >> 10, 1);
451 }
452 if (se->block_start) {
453 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
454 struct task_struct *tsk = task_of(se);
455
456 if ((s64)delta < 0)
457 delta = 0;
458
459 if (unlikely(delta > se->block_max))
460 se->block_max = delta;
461
462 se->block_start = 0;
463 se->sum_sleep_runtime += delta;
464
465 /*
466 * Blocking time is in units of nanosecs, so shift by 20 to
467 * get a milliseconds-range estimation of the amount of
468 * time that the task spent sleeping:
469 */
470 if (unlikely(prof_on == SLEEP_PROFILING)) {
471
472 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
473 delta >> 20);
474 }
475 account_scheduler_latency(tsk, delta >> 10, 0);
476 }
477 #endif
478 }
479
480 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
481 {
482 #ifdef CONFIG_SCHED_DEBUG
483 s64 d = se->vruntime - cfs_rq->min_vruntime;
484
485 if (d < 0)
486 d = -d;
487
488 if (d > 3*sysctl_sched_latency)
489 schedstat_inc(cfs_rq, nr_spread_over);
490 #endif
491 }
492
493 static void
494 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
495 {
496 u64 vruntime;
497
498 vruntime = cfs_rq->min_vruntime;
499
500 if (sched_feat(TREE_AVG)) {
501 struct sched_entity *last = __pick_last_entity(cfs_rq);
502 if (last) {
503 vruntime += last->vruntime;
504 vruntime >>= 1;
505 }
506 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
507 vruntime += sched_vslice(cfs_rq)/2;
508
509 /*
510 * The 'current' period is already promised to the current tasks,
511 * however the extra weight of the new task will slow them down a
512 * little, place the new task so that it fits in the slot that
513 * stays open at the end.
514 */
515 if (initial && sched_feat(START_DEBIT))
516 vruntime += sched_vslice_add(cfs_rq, se);
517
518 if (!initial) {
519 /* sleeps upto a single latency don't count. */
520 if (sched_feat(NEW_FAIR_SLEEPERS))
521 vruntime -= sysctl_sched_latency;
522
523 /* ensure we never gain time by being placed backwards. */
524 vruntime = max_vruntime(se->vruntime, vruntime);
525 }
526
527 se->vruntime = vruntime;
528 }
529
530 static void
531 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
532 {
533 /*
534 * Update run-time statistics of the 'current'.
535 */
536 update_curr(cfs_rq);
537
538 if (wakeup) {
539 place_entity(cfs_rq, se, 0);
540 enqueue_sleeper(cfs_rq, se);
541 }
542
543 update_stats_enqueue(cfs_rq, se);
544 check_spread(cfs_rq, se);
545 if (se != cfs_rq->curr)
546 __enqueue_entity(cfs_rq, se);
547 account_entity_enqueue(cfs_rq, se);
548 }
549
550 static void
551 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
552 {
553 /*
554 * Update run-time statistics of the 'current'.
555 */
556 update_curr(cfs_rq);
557
558 update_stats_dequeue(cfs_rq, se);
559 if (sleep) {
560 #ifdef CONFIG_SCHEDSTATS
561 if (entity_is_task(se)) {
562 struct task_struct *tsk = task_of(se);
563
564 if (tsk->state & TASK_INTERRUPTIBLE)
565 se->sleep_start = rq_of(cfs_rq)->clock;
566 if (tsk->state & TASK_UNINTERRUPTIBLE)
567 se->block_start = rq_of(cfs_rq)->clock;
568 }
569 #endif
570 }
571
572 if (se != cfs_rq->curr)
573 __dequeue_entity(cfs_rq, se);
574 account_entity_dequeue(cfs_rq, se);
575 }
576
577 /*
578 * Preempt the current task with a newly woken task if needed:
579 */
580 static void
581 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
582 {
583 unsigned long ideal_runtime, delta_exec;
584
585 ideal_runtime = sched_slice(cfs_rq, curr);
586 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
587 if (delta_exec > ideal_runtime)
588 resched_task(rq_of(cfs_rq)->curr);
589 }
590
591 static void
592 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 /* 'current' is not kept within the tree. */
595 if (se->on_rq) {
596 /*
597 * Any task has to be enqueued before it get to execute on
598 * a CPU. So account for the time it spent waiting on the
599 * runqueue.
600 */
601 update_stats_wait_end(cfs_rq, se);
602 __dequeue_entity(cfs_rq, se);
603 }
604
605 update_stats_curr_start(cfs_rq, se);
606 cfs_rq->curr = se;
607 #ifdef CONFIG_SCHEDSTATS
608 /*
609 * Track our maximum slice length, if the CPU's load is at
610 * least twice that of our own weight (i.e. dont track it
611 * when there are only lesser-weight tasks around):
612 */
613 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
614 se->slice_max = max(se->slice_max,
615 se->sum_exec_runtime - se->prev_sum_exec_runtime);
616 }
617 #endif
618 se->prev_sum_exec_runtime = se->sum_exec_runtime;
619 }
620
621 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
622 {
623 struct sched_entity *se = NULL;
624
625 if (first_fair(cfs_rq)) {
626 se = __pick_next_entity(cfs_rq);
627 set_next_entity(cfs_rq, se);
628 }
629
630 return se;
631 }
632
633 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
634 {
635 /*
636 * If still on the runqueue then deactivate_task()
637 * was not called and update_curr() has to be done:
638 */
639 if (prev->on_rq)
640 update_curr(cfs_rq);
641
642 check_spread(cfs_rq, prev);
643 if (prev->on_rq) {
644 update_stats_wait_start(cfs_rq, prev);
645 /* Put 'current' back into the tree. */
646 __enqueue_entity(cfs_rq, prev);
647 }
648 cfs_rq->curr = NULL;
649 }
650
651 static void
652 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
653 {
654 /*
655 * Update run-time statistics of the 'current'.
656 */
657 update_curr(cfs_rq);
658
659 #ifdef CONFIG_SCHED_HRTICK
660 /*
661 * queued ticks are scheduled to match the slice, so don't bother
662 * validating it and just reschedule.
663 */
664 if (queued)
665 return resched_task(rq_of(cfs_rq)->curr);
666 /*
667 * don't let the period tick interfere with the hrtick preemption
668 */
669 if (!sched_feat(DOUBLE_TICK) &&
670 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
671 return;
672 #endif
673
674 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
675 check_preempt_tick(cfs_rq, curr);
676 }
677
678 /**************************************************
679 * CFS operations on tasks:
680 */
681
682 #ifdef CONFIG_FAIR_GROUP_SCHED
683
684 /* Walk up scheduling entities hierarchy */
685 #define for_each_sched_entity(se) \
686 for (; se; se = se->parent)
687
688 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
689 {
690 return p->se.cfs_rq;
691 }
692
693 /* runqueue on which this entity is (to be) queued */
694 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
695 {
696 return se->cfs_rq;
697 }
698
699 /* runqueue "owned" by this group */
700 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
701 {
702 return grp->my_q;
703 }
704
705 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
706 * another cpu ('this_cpu')
707 */
708 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
709 {
710 return cfs_rq->tg->cfs_rq[this_cpu];
711 }
712
713 /* Iterate thr' all leaf cfs_rq's on a runqueue */
714 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
715 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
716
717 /* Do the two (enqueued) entities belong to the same group ? */
718 static inline int
719 is_same_group(struct sched_entity *se, struct sched_entity *pse)
720 {
721 if (se->cfs_rq == pse->cfs_rq)
722 return 1;
723
724 return 0;
725 }
726
727 static inline struct sched_entity *parent_entity(struct sched_entity *se)
728 {
729 return se->parent;
730 }
731
732 #define GROUP_IMBALANCE_PCT 20
733
734 #else /* CONFIG_FAIR_GROUP_SCHED */
735
736 #define for_each_sched_entity(se) \
737 for (; se; se = NULL)
738
739 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
740 {
741 return &task_rq(p)->cfs;
742 }
743
744 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
745 {
746 struct task_struct *p = task_of(se);
747 struct rq *rq = task_rq(p);
748
749 return &rq->cfs;
750 }
751
752 /* runqueue "owned" by this group */
753 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
754 {
755 return NULL;
756 }
757
758 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
759 {
760 return &cpu_rq(this_cpu)->cfs;
761 }
762
763 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
764 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
765
766 static inline int
767 is_same_group(struct sched_entity *se, struct sched_entity *pse)
768 {
769 return 1;
770 }
771
772 static inline struct sched_entity *parent_entity(struct sched_entity *se)
773 {
774 return NULL;
775 }
776
777 #endif /* CONFIG_FAIR_GROUP_SCHED */
778
779 #ifdef CONFIG_SCHED_HRTICK
780 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
781 {
782 int requeue = rq->curr == p;
783 struct sched_entity *se = &p->se;
784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
785
786 WARN_ON(task_rq(p) != rq);
787
788 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
789 u64 slice = sched_slice(cfs_rq, se);
790 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
791 s64 delta = slice - ran;
792
793 if (delta < 0) {
794 if (rq->curr == p)
795 resched_task(p);
796 return;
797 }
798
799 /*
800 * Don't schedule slices shorter than 10000ns, that just
801 * doesn't make sense. Rely on vruntime for fairness.
802 */
803 if (!requeue)
804 delta = max(10000LL, delta);
805
806 hrtick_start(rq, delta, requeue);
807 }
808 }
809 #else
810 static inline void
811 hrtick_start_fair(struct rq *rq, struct task_struct *p)
812 {
813 }
814 #endif
815
816 /*
817 * The enqueue_task method is called before nr_running is
818 * increased. Here we update the fair scheduling stats and
819 * then put the task into the rbtree:
820 */
821 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
822 {
823 struct cfs_rq *cfs_rq;
824 struct sched_entity *se = &p->se,
825 *topse = NULL; /* Highest schedulable entity */
826 int incload = 1;
827
828 for_each_sched_entity(se) {
829 topse = se;
830 if (se->on_rq) {
831 incload = 0;
832 break;
833 }
834 cfs_rq = cfs_rq_of(se);
835 enqueue_entity(cfs_rq, se, wakeup);
836 wakeup = 1;
837 }
838 /* Increment cpu load if we just enqueued the first task of a group on
839 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
840 * at the highest grouping level.
841 */
842 if (incload)
843 inc_cpu_load(rq, topse->load.weight);
844
845 hrtick_start_fair(rq, rq->curr);
846 }
847
848 /*
849 * The dequeue_task method is called before nr_running is
850 * decreased. We remove the task from the rbtree and
851 * update the fair scheduling stats:
852 */
853 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
854 {
855 struct cfs_rq *cfs_rq;
856 struct sched_entity *se = &p->se,
857 *topse = NULL; /* Highest schedulable entity */
858 int decload = 1;
859
860 for_each_sched_entity(se) {
861 topse = se;
862 cfs_rq = cfs_rq_of(se);
863 dequeue_entity(cfs_rq, se, sleep);
864 /* Don't dequeue parent if it has other entities besides us */
865 if (cfs_rq->load.weight) {
866 if (parent_entity(se))
867 decload = 0;
868 break;
869 }
870 sleep = 1;
871 }
872 /* Decrement cpu load if we just dequeued the last task of a group on
873 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
874 * at the highest grouping level.
875 */
876 if (decload)
877 dec_cpu_load(rq, topse->load.weight);
878
879 hrtick_start_fair(rq, rq->curr);
880 }
881
882 /*
883 * sched_yield() support is very simple - we dequeue and enqueue.
884 *
885 * If compat_yield is turned on then we requeue to the end of the tree.
886 */
887 static void yield_task_fair(struct rq *rq)
888 {
889 struct task_struct *curr = rq->curr;
890 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
891 struct sched_entity *rightmost, *se = &curr->se;
892
893 /*
894 * Are we the only task in the tree?
895 */
896 if (unlikely(cfs_rq->nr_running == 1))
897 return;
898
899 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
900 __update_rq_clock(rq);
901 /*
902 * Update run-time statistics of the 'current'.
903 */
904 update_curr(cfs_rq);
905
906 return;
907 }
908 /*
909 * Find the rightmost entry in the rbtree:
910 */
911 rightmost = __pick_last_entity(cfs_rq);
912 /*
913 * Already in the rightmost position?
914 */
915 if (unlikely(rightmost->vruntime < se->vruntime))
916 return;
917
918 /*
919 * Minimally necessary key value to be last in the tree:
920 * Upon rescheduling, sched_class::put_prev_task() will place
921 * 'current' within the tree based on its new key value.
922 */
923 se->vruntime = rightmost->vruntime + 1;
924 }
925
926 /*
927 * wake_idle() will wake a task on an idle cpu if task->cpu is
928 * not idle and an idle cpu is available. The span of cpus to
929 * search starts with cpus closest then further out as needed,
930 * so we always favor a closer, idle cpu.
931 *
932 * Returns the CPU we should wake onto.
933 */
934 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
935 static int wake_idle(int cpu, struct task_struct *p)
936 {
937 cpumask_t tmp;
938 struct sched_domain *sd;
939 int i;
940
941 /*
942 * If it is idle, then it is the best cpu to run this task.
943 *
944 * This cpu is also the best, if it has more than one task already.
945 * Siblings must be also busy(in most cases) as they didn't already
946 * pickup the extra load from this cpu and hence we need not check
947 * sibling runqueue info. This will avoid the checks and cache miss
948 * penalities associated with that.
949 */
950 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
951 return cpu;
952
953 for_each_domain(cpu, sd) {
954 if (sd->flags & SD_WAKE_IDLE) {
955 cpus_and(tmp, sd->span, p->cpus_allowed);
956 for_each_cpu_mask(i, tmp) {
957 if (idle_cpu(i)) {
958 if (i != task_cpu(p)) {
959 schedstat_inc(p,
960 se.nr_wakeups_idle);
961 }
962 return i;
963 }
964 }
965 } else {
966 break;
967 }
968 }
969 return cpu;
970 }
971 #else
972 static inline int wake_idle(int cpu, struct task_struct *p)
973 {
974 return cpu;
975 }
976 #endif
977
978 #ifdef CONFIG_SMP
979 static int select_task_rq_fair(struct task_struct *p, int sync)
980 {
981 int cpu, this_cpu;
982 struct rq *rq;
983 struct sched_domain *sd, *this_sd = NULL;
984 int new_cpu;
985
986 cpu = task_cpu(p);
987 rq = task_rq(p);
988 this_cpu = smp_processor_id();
989 new_cpu = cpu;
990
991 if (cpu == this_cpu)
992 goto out_set_cpu;
993
994 for_each_domain(this_cpu, sd) {
995 if (cpu_isset(cpu, sd->span)) {
996 this_sd = sd;
997 break;
998 }
999 }
1000
1001 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1002 goto out_set_cpu;
1003
1004 /*
1005 * Check for affine wakeup and passive balancing possibilities.
1006 */
1007 if (this_sd) {
1008 int idx = this_sd->wake_idx;
1009 unsigned int imbalance;
1010 unsigned long load, this_load;
1011
1012 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1013
1014 load = source_load(cpu, idx);
1015 this_load = target_load(this_cpu, idx);
1016
1017 new_cpu = this_cpu; /* Wake to this CPU if we can */
1018
1019 if (this_sd->flags & SD_WAKE_AFFINE) {
1020 unsigned long tl = this_load;
1021 unsigned long tl_per_task;
1022
1023 /*
1024 * Attract cache-cold tasks on sync wakeups:
1025 */
1026 if (sync && !task_hot(p, rq->clock, this_sd))
1027 goto out_set_cpu;
1028
1029 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1030 tl_per_task = cpu_avg_load_per_task(this_cpu);
1031
1032 /*
1033 * If sync wakeup then subtract the (maximum possible)
1034 * effect of the currently running task from the load
1035 * of the current CPU:
1036 */
1037 if (sync)
1038 tl -= current->se.load.weight;
1039
1040 if ((tl <= load &&
1041 tl + target_load(cpu, idx) <= tl_per_task) ||
1042 100*(tl + p->se.load.weight) <= imbalance*load) {
1043 /*
1044 * This domain has SD_WAKE_AFFINE and
1045 * p is cache cold in this domain, and
1046 * there is no bad imbalance.
1047 */
1048 schedstat_inc(this_sd, ttwu_move_affine);
1049 schedstat_inc(p, se.nr_wakeups_affine);
1050 goto out_set_cpu;
1051 }
1052 }
1053
1054 /*
1055 * Start passive balancing when half the imbalance_pct
1056 * limit is reached.
1057 */
1058 if (this_sd->flags & SD_WAKE_BALANCE) {
1059 if (imbalance*this_load <= 100*load) {
1060 schedstat_inc(this_sd, ttwu_move_balance);
1061 schedstat_inc(p, se.nr_wakeups_passive);
1062 goto out_set_cpu;
1063 }
1064 }
1065 }
1066
1067 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1068 out_set_cpu:
1069 return wake_idle(new_cpu, p);
1070 }
1071 #endif /* CONFIG_SMP */
1072
1073
1074 /*
1075 * Preempt the current task with a newly woken task if needed:
1076 */
1077 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1078 {
1079 struct task_struct *curr = rq->curr;
1080 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1081 struct sched_entity *se = &curr->se, *pse = &p->se;
1082 unsigned long gran;
1083
1084 if (unlikely(rt_prio(p->prio))) {
1085 update_rq_clock(rq);
1086 update_curr(cfs_rq);
1087 resched_task(curr);
1088 return;
1089 }
1090 /*
1091 * Batch tasks do not preempt (their preemption is driven by
1092 * the tick):
1093 */
1094 if (unlikely(p->policy == SCHED_BATCH))
1095 return;
1096
1097 if (!sched_feat(WAKEUP_PREEMPT))
1098 return;
1099
1100 while (!is_same_group(se, pse)) {
1101 se = parent_entity(se);
1102 pse = parent_entity(pse);
1103 }
1104
1105 gran = sysctl_sched_wakeup_granularity;
1106 /*
1107 * More easily preempt - nice tasks, while not making
1108 * it harder for + nice tasks.
1109 */
1110 if (unlikely(se->load.weight > NICE_0_LOAD))
1111 gran = calc_delta_fair(gran, &se->load);
1112
1113 if (pse->vruntime + gran < se->vruntime)
1114 resched_task(curr);
1115 }
1116
1117 static struct task_struct *pick_next_task_fair(struct rq *rq)
1118 {
1119 struct task_struct *p;
1120 struct cfs_rq *cfs_rq = &rq->cfs;
1121 struct sched_entity *se;
1122
1123 if (unlikely(!cfs_rq->nr_running))
1124 return NULL;
1125
1126 do {
1127 se = pick_next_entity(cfs_rq);
1128 cfs_rq = group_cfs_rq(se);
1129 } while (cfs_rq);
1130
1131 p = task_of(se);
1132 hrtick_start_fair(rq, p);
1133
1134 return p;
1135 }
1136
1137 /*
1138 * Account for a descheduled task:
1139 */
1140 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1141 {
1142 struct sched_entity *se = &prev->se;
1143 struct cfs_rq *cfs_rq;
1144
1145 for_each_sched_entity(se) {
1146 cfs_rq = cfs_rq_of(se);
1147 put_prev_entity(cfs_rq, se);
1148 }
1149 }
1150
1151 #ifdef CONFIG_SMP
1152 /**************************************************
1153 * Fair scheduling class load-balancing methods:
1154 */
1155
1156 /*
1157 * Load-balancing iterator. Note: while the runqueue stays locked
1158 * during the whole iteration, the current task might be
1159 * dequeued so the iterator has to be dequeue-safe. Here we
1160 * achieve that by always pre-iterating before returning
1161 * the current task:
1162 */
1163 static struct task_struct *
1164 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1165 {
1166 struct task_struct *p;
1167
1168 if (!curr)
1169 return NULL;
1170
1171 p = rb_entry(curr, struct task_struct, se.run_node);
1172 cfs_rq->rb_load_balance_curr = rb_next(curr);
1173
1174 return p;
1175 }
1176
1177 static struct task_struct *load_balance_start_fair(void *arg)
1178 {
1179 struct cfs_rq *cfs_rq = arg;
1180
1181 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1182 }
1183
1184 static struct task_struct *load_balance_next_fair(void *arg)
1185 {
1186 struct cfs_rq *cfs_rq = arg;
1187
1188 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1189 }
1190
1191 static unsigned long
1192 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1193 unsigned long max_load_move,
1194 struct sched_domain *sd, enum cpu_idle_type idle,
1195 int *all_pinned, int *this_best_prio)
1196 {
1197 struct cfs_rq *busy_cfs_rq;
1198 long rem_load_move = max_load_move;
1199 struct rq_iterator cfs_rq_iterator;
1200 unsigned long load_moved;
1201
1202 cfs_rq_iterator.start = load_balance_start_fair;
1203 cfs_rq_iterator.next = load_balance_next_fair;
1204
1205 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1206 #ifdef CONFIG_FAIR_GROUP_SCHED
1207 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1208 unsigned long maxload, task_load, group_weight;
1209 unsigned long thisload, per_task_load;
1210 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1211
1212 task_load = busy_cfs_rq->load.weight;
1213 group_weight = se->load.weight;
1214
1215 /*
1216 * 'group_weight' is contributed by tasks of total weight
1217 * 'task_load'. To move 'rem_load_move' worth of weight only,
1218 * we need to move a maximum task load of:
1219 *
1220 * maxload = (remload / group_weight) * task_load;
1221 */
1222 maxload = (rem_load_move * task_load) / group_weight;
1223
1224 if (!maxload || !task_load)
1225 continue;
1226
1227 per_task_load = task_load / busy_cfs_rq->nr_running;
1228 /*
1229 * balance_tasks will try to forcibly move atleast one task if
1230 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1231 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1232 */
1233 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1234 continue;
1235
1236 /* Disable priority-based load balance */
1237 *this_best_prio = 0;
1238 thisload = this_cfs_rq->load.weight;
1239 #else
1240 # define maxload rem_load_move
1241 #endif
1242 /*
1243 * pass busy_cfs_rq argument into
1244 * load_balance_[start|next]_fair iterators
1245 */
1246 cfs_rq_iterator.arg = busy_cfs_rq;
1247 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1248 maxload, sd, idle, all_pinned,
1249 this_best_prio,
1250 &cfs_rq_iterator);
1251
1252 #ifdef CONFIG_FAIR_GROUP_SCHED
1253 /*
1254 * load_moved holds the task load that was moved. The
1255 * effective (group) weight moved would be:
1256 * load_moved_eff = load_moved/task_load * group_weight;
1257 */
1258 load_moved = (group_weight * load_moved) / task_load;
1259
1260 /* Adjust shares on both cpus to reflect load_moved */
1261 group_weight -= load_moved;
1262 set_se_shares(se, group_weight);
1263
1264 se = busy_cfs_rq->tg->se[this_cpu];
1265 if (!thisload)
1266 group_weight = load_moved;
1267 else
1268 group_weight = se->load.weight + load_moved;
1269 set_se_shares(se, group_weight);
1270 #endif
1271
1272 rem_load_move -= load_moved;
1273
1274 if (rem_load_move <= 0)
1275 break;
1276 }
1277
1278 return max_load_move - rem_load_move;
1279 }
1280
1281 static int
1282 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1283 struct sched_domain *sd, enum cpu_idle_type idle)
1284 {
1285 struct cfs_rq *busy_cfs_rq;
1286 struct rq_iterator cfs_rq_iterator;
1287
1288 cfs_rq_iterator.start = load_balance_start_fair;
1289 cfs_rq_iterator.next = load_balance_next_fair;
1290
1291 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1292 /*
1293 * pass busy_cfs_rq argument into
1294 * load_balance_[start|next]_fair iterators
1295 */
1296 cfs_rq_iterator.arg = busy_cfs_rq;
1297 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1298 &cfs_rq_iterator))
1299 return 1;
1300 }
1301
1302 return 0;
1303 }
1304 #endif
1305
1306 /*
1307 * scheduler tick hitting a task of our scheduling class:
1308 */
1309 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1310 {
1311 struct cfs_rq *cfs_rq;
1312 struct sched_entity *se = &curr->se;
1313
1314 for_each_sched_entity(se) {
1315 cfs_rq = cfs_rq_of(se);
1316 entity_tick(cfs_rq, se, queued);
1317 }
1318 }
1319
1320 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1321
1322 /*
1323 * Share the fairness runtime between parent and child, thus the
1324 * total amount of pressure for CPU stays equal - new tasks
1325 * get a chance to run but frequent forkers are not allowed to
1326 * monopolize the CPU. Note: the parent runqueue is locked,
1327 * the child is not running yet.
1328 */
1329 static void task_new_fair(struct rq *rq, struct task_struct *p)
1330 {
1331 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1332 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1333 int this_cpu = smp_processor_id();
1334
1335 sched_info_queued(p);
1336
1337 update_curr(cfs_rq);
1338 place_entity(cfs_rq, se, 1);
1339
1340 /* 'curr' will be NULL if the child belongs to a different group */
1341 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1342 curr && curr->vruntime < se->vruntime) {
1343 /*
1344 * Upon rescheduling, sched_class::put_prev_task() will place
1345 * 'current' within the tree based on its new key value.
1346 */
1347 swap(curr->vruntime, se->vruntime);
1348 }
1349
1350 enqueue_task_fair(rq, p, 0);
1351 resched_task(rq->curr);
1352 }
1353
1354 /*
1355 * Priority of the task has changed. Check to see if we preempt
1356 * the current task.
1357 */
1358 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1359 int oldprio, int running)
1360 {
1361 /*
1362 * Reschedule if we are currently running on this runqueue and
1363 * our priority decreased, or if we are not currently running on
1364 * this runqueue and our priority is higher than the current's
1365 */
1366 if (running) {
1367 if (p->prio > oldprio)
1368 resched_task(rq->curr);
1369 } else
1370 check_preempt_curr(rq, p);
1371 }
1372
1373 /*
1374 * We switched to the sched_fair class.
1375 */
1376 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1377 int running)
1378 {
1379 /*
1380 * We were most likely switched from sched_rt, so
1381 * kick off the schedule if running, otherwise just see
1382 * if we can still preempt the current task.
1383 */
1384 if (running)
1385 resched_task(rq->curr);
1386 else
1387 check_preempt_curr(rq, p);
1388 }
1389
1390 /* Account for a task changing its policy or group.
1391 *
1392 * This routine is mostly called to set cfs_rq->curr field when a task
1393 * migrates between groups/classes.
1394 */
1395 static void set_curr_task_fair(struct rq *rq)
1396 {
1397 struct sched_entity *se = &rq->curr->se;
1398
1399 for_each_sched_entity(se)
1400 set_next_entity(cfs_rq_of(se), se);
1401 }
1402
1403 /*
1404 * All the scheduling class methods:
1405 */
1406 static const struct sched_class fair_sched_class = {
1407 .next = &idle_sched_class,
1408 .enqueue_task = enqueue_task_fair,
1409 .dequeue_task = dequeue_task_fair,
1410 .yield_task = yield_task_fair,
1411 #ifdef CONFIG_SMP
1412 .select_task_rq = select_task_rq_fair,
1413 #endif /* CONFIG_SMP */
1414
1415 .check_preempt_curr = check_preempt_wakeup,
1416
1417 .pick_next_task = pick_next_task_fair,
1418 .put_prev_task = put_prev_task_fair,
1419
1420 #ifdef CONFIG_SMP
1421 .load_balance = load_balance_fair,
1422 .move_one_task = move_one_task_fair,
1423 #endif
1424
1425 .set_curr_task = set_curr_task_fair,
1426 .task_tick = task_tick_fair,
1427 .task_new = task_new_fair,
1428
1429 .prio_changed = prio_changed_fair,
1430 .switched_to = switched_to_fair,
1431 };
1432
1433 #ifdef CONFIG_SCHED_DEBUG
1434 static void print_cfs_stats(struct seq_file *m, int cpu)
1435 {
1436 struct cfs_rq *cfs_rq;
1437
1438 #ifdef CONFIG_FAIR_GROUP_SCHED
1439 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1440 #endif
1441 rcu_read_lock();
1442 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1443 print_cfs_rq(m, cpu, cfs_rq);
1444 rcu_read_unlock();
1445 }
1446 #endif
This page took 0.058375 seconds and 6 git commands to generate.