sched: high-res preemption tick
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
31 *
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
34 */
35 unsigned int sysctl_sched_latency = 20000000ULL;
36
37 /*
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
40 */
41 unsigned int sysctl_sched_min_granularity = 4000000ULL;
42
43 /*
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
45 */
46 static unsigned int sched_nr_latency = 5;
47
48 /*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52 const_debug unsigned int sysctl_sched_child_runs_first = 1;
53
54 /*
55 * sys_sched_yield() compat mode
56 *
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
59 */
60 unsigned int __read_mostly sysctl_sched_compat_yield;
61
62 /*
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 *
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
69 */
70 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
71
72 /*
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
80 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
81
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
86 */
87
88 #ifdef CONFIG_FAIR_GROUP_SCHED
89
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 {
93 return cfs_rq->rq;
94 }
95
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
98
99 #else /* CONFIG_FAIR_GROUP_SCHED */
100
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return container_of(cfs_rq, struct rq, cfs);
104 }
105
106 #define entity_is_task(se) 1
107
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
109
110 static inline struct task_struct *task_of(struct sched_entity *se)
111 {
112 return container_of(se, struct task_struct, se);
113 }
114
115
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
118 */
119
120 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
130 {
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
134
135 return min_vruntime;
136 }
137
138 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 {
140 return se->vruntime - cfs_rq->min_vruntime;
141 }
142
143 /*
144 * Enqueue an entity into the rb-tree:
145 */
146 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 {
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
151 s64 key = entity_key(cfs_rq, se);
152 int leftmost = 1;
153
154 /*
155 * Find the right place in the rbtree:
156 */
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
160 /*
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
163 */
164 if (key < entity_key(cfs_rq, entry)) {
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
169 }
170 }
171
172 /*
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
175 */
176 if (leftmost)
177 cfs_rq->rb_leftmost = &se->run_node;
178
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
181 }
182
183 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 {
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
187
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
189 }
190
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192 {
193 return cfs_rq->rb_leftmost;
194 }
195
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197 {
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199 }
200
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202 {
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214 }
215
216 /**************************************************************
217 * Scheduling class statistics methods:
218 */
219
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
224 {
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
226
227 if (ret || !write)
228 return ret;
229
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
232
233 return 0;
234 }
235 #endif
236
237 /*
238 * The idea is to set a period in which each task runs once.
239 *
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
242 *
243 * p = (nr <= nl) ? l : l*nr/nl
244 */
245 static u64 __sched_period(unsigned long nr_running)
246 {
247 u64 period = sysctl_sched_latency;
248 unsigned long nr_latency = sched_nr_latency;
249
250 if (unlikely(nr_running > nr_latency)) {
251 period = sysctl_sched_min_granularity;
252 period *= nr_running;
253 }
254
255 return period;
256 }
257
258 /*
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
261 *
262 * s = p*w/rw
263 */
264 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
265 {
266 u64 slice = __sched_period(cfs_rq->nr_running);
267
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
270
271 return slice;
272 }
273
274 /*
275 * We calculate the vruntime slice.
276 *
277 * vs = s/w = p/rw
278 */
279 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
280 {
281 u64 vslice = __sched_period(nr_running);
282
283 vslice *= NICE_0_LOAD;
284 do_div(vslice, rq_weight);
285
286 return vslice;
287 }
288
289 static u64 sched_vslice(struct cfs_rq *cfs_rq)
290 {
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
292 }
293
294 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
295 {
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
298 }
299
300 /*
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
303 */
304 static inline void
305 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
307 {
308 unsigned long delta_exec_weighted;
309 u64 vruntime;
310
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
321
322 /*
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
325 */
326 if (first_fair(cfs_rq)) {
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
329 } else
330 vruntime = curr->vruntime;
331
332 cfs_rq->min_vruntime =
333 max_vruntime(cfs_rq->min_vruntime, vruntime);
334 }
335
336 static void update_curr(struct cfs_rq *cfs_rq)
337 {
338 struct sched_entity *curr = cfs_rq->curr;
339 u64 now = rq_of(cfs_rq)->clock;
340 unsigned long delta_exec;
341
342 if (unlikely(!curr))
343 return;
344
345 /*
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
349 */
350 delta_exec = (unsigned long)(now - curr->exec_start);
351
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
354
355 if (entity_is_task(curr)) {
356 struct task_struct *curtask = task_of(curr);
357
358 cpuacct_charge(curtask, delta_exec);
359 }
360 }
361
362 static inline void
363 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
364 {
365 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
366 }
367
368 /*
369 * Task is being enqueued - update stats:
370 */
371 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 {
373 /*
374 * Are we enqueueing a waiting task? (for current tasks
375 * a dequeue/enqueue event is a NOP)
376 */
377 if (se != cfs_rq->curr)
378 update_stats_wait_start(cfs_rq, se);
379 }
380
381 static void
382 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
383 {
384 schedstat_set(se->wait_max, max(se->wait_max,
385 rq_of(cfs_rq)->clock - se->wait_start));
386 schedstat_set(se->wait_start, 0);
387 }
388
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391 {
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
398 }
399
400 /*
401 * We are picking a new current task - update its stats:
402 */
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 {
406 /*
407 * We are starting a new run period:
408 */
409 se->exec_start = rq_of(cfs_rq)->clock;
410 }
411
412 /**************************************************
413 * Scheduling class queueing methods:
414 */
415
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418 {
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422 }
423
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426 {
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430 }
431
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
433 {
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437
438 if ((s64)delta < 0)
439 delta = 0;
440
441 if (unlikely(delta > se->sleep_max))
442 se->sleep_max = delta;
443
444 se->sleep_start = 0;
445 se->sum_sleep_runtime += delta;
446 }
447 if (se->block_start) {
448 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
449
450 if ((s64)delta < 0)
451 delta = 0;
452
453 if (unlikely(delta > se->block_max))
454 se->block_max = delta;
455
456 se->block_start = 0;
457 se->sum_sleep_runtime += delta;
458
459 /*
460 * Blocking time is in units of nanosecs, so shift by 20 to
461 * get a milliseconds-range estimation of the amount of
462 * time that the task spent sleeping:
463 */
464 if (unlikely(prof_on == SLEEP_PROFILING)) {
465 struct task_struct *tsk = task_of(se);
466
467 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
468 delta >> 20);
469 }
470 }
471 #endif
472 }
473
474 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
475 {
476 #ifdef CONFIG_SCHED_DEBUG
477 s64 d = se->vruntime - cfs_rq->min_vruntime;
478
479 if (d < 0)
480 d = -d;
481
482 if (d > 3*sysctl_sched_latency)
483 schedstat_inc(cfs_rq, nr_spread_over);
484 #endif
485 }
486
487 static void
488 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
489 {
490 u64 vruntime;
491
492 vruntime = cfs_rq->min_vruntime;
493
494 if (sched_feat(TREE_AVG)) {
495 struct sched_entity *last = __pick_last_entity(cfs_rq);
496 if (last) {
497 vruntime += last->vruntime;
498 vruntime >>= 1;
499 }
500 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
501 vruntime += sched_vslice(cfs_rq)/2;
502
503 /*
504 * The 'current' period is already promised to the current tasks,
505 * however the extra weight of the new task will slow them down a
506 * little, place the new task so that it fits in the slot that
507 * stays open at the end.
508 */
509 if (initial && sched_feat(START_DEBIT))
510 vruntime += sched_vslice_add(cfs_rq, se);
511
512 if (!initial) {
513 /* sleeps upto a single latency don't count. */
514 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
515 vruntime -= sysctl_sched_latency;
516
517 /* ensure we never gain time by being placed backwards. */
518 vruntime = max_vruntime(se->vruntime, vruntime);
519 }
520
521 se->vruntime = vruntime;
522 }
523
524 static void
525 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
526 {
527 /*
528 * Update run-time statistics of the 'current'.
529 */
530 update_curr(cfs_rq);
531
532 if (wakeup) {
533 place_entity(cfs_rq, se, 0);
534 enqueue_sleeper(cfs_rq, se);
535 }
536
537 update_stats_enqueue(cfs_rq, se);
538 check_spread(cfs_rq, se);
539 if (se != cfs_rq->curr)
540 __enqueue_entity(cfs_rq, se);
541 account_entity_enqueue(cfs_rq, se);
542 }
543
544 static void
545 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
546 {
547 /*
548 * Update run-time statistics of the 'current'.
549 */
550 update_curr(cfs_rq);
551
552 update_stats_dequeue(cfs_rq, se);
553 if (sleep) {
554 #ifdef CONFIG_SCHEDSTATS
555 if (entity_is_task(se)) {
556 struct task_struct *tsk = task_of(se);
557
558 if (tsk->state & TASK_INTERRUPTIBLE)
559 se->sleep_start = rq_of(cfs_rq)->clock;
560 if (tsk->state & TASK_UNINTERRUPTIBLE)
561 se->block_start = rq_of(cfs_rq)->clock;
562 }
563 #endif
564 }
565
566 if (se != cfs_rq->curr)
567 __dequeue_entity(cfs_rq, se);
568 account_entity_dequeue(cfs_rq, se);
569 }
570
571 /*
572 * Preempt the current task with a newly woken task if needed:
573 */
574 static void
575 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
576 {
577 unsigned long ideal_runtime, delta_exec;
578
579 ideal_runtime = sched_slice(cfs_rq, curr);
580 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
581 if (delta_exec > ideal_runtime)
582 resched_task(rq_of(cfs_rq)->curr);
583 }
584
585 static void
586 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /* 'current' is not kept within the tree. */
589 if (se->on_rq) {
590 /*
591 * Any task has to be enqueued before it get to execute on
592 * a CPU. So account for the time it spent waiting on the
593 * runqueue.
594 */
595 update_stats_wait_end(cfs_rq, se);
596 __dequeue_entity(cfs_rq, se);
597 }
598
599 update_stats_curr_start(cfs_rq, se);
600 cfs_rq->curr = se;
601 #ifdef CONFIG_SCHEDSTATS
602 /*
603 * Track our maximum slice length, if the CPU's load is at
604 * least twice that of our own weight (i.e. dont track it
605 * when there are only lesser-weight tasks around):
606 */
607 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
608 se->slice_max = max(se->slice_max,
609 se->sum_exec_runtime - se->prev_sum_exec_runtime);
610 }
611 #endif
612 se->prev_sum_exec_runtime = se->sum_exec_runtime;
613 }
614
615 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
616 {
617 struct sched_entity *se = NULL;
618
619 if (first_fair(cfs_rq)) {
620 se = __pick_next_entity(cfs_rq);
621 set_next_entity(cfs_rq, se);
622 }
623
624 return se;
625 }
626
627 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
628 {
629 /*
630 * If still on the runqueue then deactivate_task()
631 * was not called and update_curr() has to be done:
632 */
633 if (prev->on_rq)
634 update_curr(cfs_rq);
635
636 check_spread(cfs_rq, prev);
637 if (prev->on_rq) {
638 update_stats_wait_start(cfs_rq, prev);
639 /* Put 'current' back into the tree. */
640 __enqueue_entity(cfs_rq, prev);
641 }
642 cfs_rq->curr = NULL;
643 }
644
645 static void
646 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
647 {
648 /*
649 * Update run-time statistics of the 'current'.
650 */
651 update_curr(cfs_rq);
652
653 #ifdef CONFIG_SCHED_HRTICK
654 /*
655 * queued ticks are scheduled to match the slice, so don't bother
656 * validating it and just reschedule.
657 */
658 if (queued)
659 return resched_task(rq_of(cfs_rq)->curr);
660 /*
661 * don't let the period tick interfere with the hrtick preemption
662 */
663 if (!sched_feat(DOUBLE_TICK) &&
664 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
665 return;
666 #endif
667
668 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
669 check_preempt_tick(cfs_rq, curr);
670 }
671
672 /**************************************************
673 * CFS operations on tasks:
674 */
675
676 #ifdef CONFIG_FAIR_GROUP_SCHED
677
678 /* Walk up scheduling entities hierarchy */
679 #define for_each_sched_entity(se) \
680 for (; se; se = se->parent)
681
682 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
683 {
684 return p->se.cfs_rq;
685 }
686
687 /* runqueue on which this entity is (to be) queued */
688 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
689 {
690 return se->cfs_rq;
691 }
692
693 /* runqueue "owned" by this group */
694 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
695 {
696 return grp->my_q;
697 }
698
699 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
700 * another cpu ('this_cpu')
701 */
702 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
703 {
704 return cfs_rq->tg->cfs_rq[this_cpu];
705 }
706
707 /* Iterate thr' all leaf cfs_rq's on a runqueue */
708 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
709 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
710
711 /* Do the two (enqueued) entities belong to the same group ? */
712 static inline int
713 is_same_group(struct sched_entity *se, struct sched_entity *pse)
714 {
715 if (se->cfs_rq == pse->cfs_rq)
716 return 1;
717
718 return 0;
719 }
720
721 static inline struct sched_entity *parent_entity(struct sched_entity *se)
722 {
723 return se->parent;
724 }
725
726 #define GROUP_IMBALANCE_PCT 20
727
728 #else /* CONFIG_FAIR_GROUP_SCHED */
729
730 #define for_each_sched_entity(se) \
731 for (; se; se = NULL)
732
733 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
734 {
735 return &task_rq(p)->cfs;
736 }
737
738 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
739 {
740 struct task_struct *p = task_of(se);
741 struct rq *rq = task_rq(p);
742
743 return &rq->cfs;
744 }
745
746 /* runqueue "owned" by this group */
747 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
748 {
749 return NULL;
750 }
751
752 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
753 {
754 return &cpu_rq(this_cpu)->cfs;
755 }
756
757 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
758 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
759
760 static inline int
761 is_same_group(struct sched_entity *se, struct sched_entity *pse)
762 {
763 return 1;
764 }
765
766 static inline struct sched_entity *parent_entity(struct sched_entity *se)
767 {
768 return NULL;
769 }
770
771 #endif /* CONFIG_FAIR_GROUP_SCHED */
772
773 #ifdef CONFIG_SCHED_HRTICK
774 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
775 {
776 int requeue = rq->curr == p;
777 struct sched_entity *se = &p->se;
778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
779
780 WARN_ON(task_rq(p) != rq);
781
782 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
783 u64 slice = sched_slice(cfs_rq, se);
784 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
785 s64 delta = slice - ran;
786
787 if (delta < 0) {
788 if (rq->curr == p)
789 resched_task(p);
790 return;
791 }
792
793 /*
794 * Don't schedule slices shorter than 10000ns, that just
795 * doesn't make sense. Rely on vruntime for fairness.
796 */
797 if (!requeue)
798 delta = max(10000LL, delta);
799
800 hrtick_start(rq, delta, requeue);
801 }
802 }
803 #else
804 static inline void
805 hrtick_start_fair(struct rq *rq, struct task_struct *p)
806 {
807 }
808 #endif
809
810 /*
811 * The enqueue_task method is called before nr_running is
812 * increased. Here we update the fair scheduling stats and
813 * then put the task into the rbtree:
814 */
815 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
816 {
817 struct cfs_rq *cfs_rq;
818 struct sched_entity *se = &p->se,
819 *topse = NULL; /* Highest schedulable entity */
820 int incload = 1;
821
822 for_each_sched_entity(se) {
823 topse = se;
824 if (se->on_rq) {
825 incload = 0;
826 break;
827 }
828 cfs_rq = cfs_rq_of(se);
829 enqueue_entity(cfs_rq, se, wakeup);
830 wakeup = 1;
831 }
832 /* Increment cpu load if we just enqueued the first task of a group on
833 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
834 * at the highest grouping level.
835 */
836 if (incload)
837 inc_cpu_load(rq, topse->load.weight);
838
839 hrtick_start_fair(rq, rq->curr);
840 }
841
842 /*
843 * The dequeue_task method is called before nr_running is
844 * decreased. We remove the task from the rbtree and
845 * update the fair scheduling stats:
846 */
847 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
848 {
849 struct cfs_rq *cfs_rq;
850 struct sched_entity *se = &p->se,
851 *topse = NULL; /* Highest schedulable entity */
852 int decload = 1;
853
854 for_each_sched_entity(se) {
855 topse = se;
856 cfs_rq = cfs_rq_of(se);
857 dequeue_entity(cfs_rq, se, sleep);
858 /* Don't dequeue parent if it has other entities besides us */
859 if (cfs_rq->load.weight) {
860 if (parent_entity(se))
861 decload = 0;
862 break;
863 }
864 sleep = 1;
865 }
866 /* Decrement cpu load if we just dequeued the last task of a group on
867 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
868 * at the highest grouping level.
869 */
870 if (decload)
871 dec_cpu_load(rq, topse->load.weight);
872
873 hrtick_start_fair(rq, rq->curr);
874 }
875
876 /*
877 * sched_yield() support is very simple - we dequeue and enqueue.
878 *
879 * If compat_yield is turned on then we requeue to the end of the tree.
880 */
881 static void yield_task_fair(struct rq *rq)
882 {
883 struct task_struct *curr = rq->curr;
884 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
885 struct sched_entity *rightmost, *se = &curr->se;
886
887 /*
888 * Are we the only task in the tree?
889 */
890 if (unlikely(cfs_rq->nr_running == 1))
891 return;
892
893 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
894 __update_rq_clock(rq);
895 /*
896 * Update run-time statistics of the 'current'.
897 */
898 update_curr(cfs_rq);
899
900 return;
901 }
902 /*
903 * Find the rightmost entry in the rbtree:
904 */
905 rightmost = __pick_last_entity(cfs_rq);
906 /*
907 * Already in the rightmost position?
908 */
909 if (unlikely(rightmost->vruntime < se->vruntime))
910 return;
911
912 /*
913 * Minimally necessary key value to be last in the tree:
914 * Upon rescheduling, sched_class::put_prev_task() will place
915 * 'current' within the tree based on its new key value.
916 */
917 se->vruntime = rightmost->vruntime + 1;
918 }
919
920 /*
921 * wake_idle() will wake a task on an idle cpu if task->cpu is
922 * not idle and an idle cpu is available. The span of cpus to
923 * search starts with cpus closest then further out as needed,
924 * so we always favor a closer, idle cpu.
925 *
926 * Returns the CPU we should wake onto.
927 */
928 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
929 static int wake_idle(int cpu, struct task_struct *p)
930 {
931 cpumask_t tmp;
932 struct sched_domain *sd;
933 int i;
934
935 /*
936 * If it is idle, then it is the best cpu to run this task.
937 *
938 * This cpu is also the best, if it has more than one task already.
939 * Siblings must be also busy(in most cases) as they didn't already
940 * pickup the extra load from this cpu and hence we need not check
941 * sibling runqueue info. This will avoid the checks and cache miss
942 * penalities associated with that.
943 */
944 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
945 return cpu;
946
947 for_each_domain(cpu, sd) {
948 if (sd->flags & SD_WAKE_IDLE) {
949 cpus_and(tmp, sd->span, p->cpus_allowed);
950 for_each_cpu_mask(i, tmp) {
951 if (idle_cpu(i)) {
952 if (i != task_cpu(p)) {
953 schedstat_inc(p,
954 se.nr_wakeups_idle);
955 }
956 return i;
957 }
958 }
959 } else {
960 break;
961 }
962 }
963 return cpu;
964 }
965 #else
966 static inline int wake_idle(int cpu, struct task_struct *p)
967 {
968 return cpu;
969 }
970 #endif
971
972 #ifdef CONFIG_SMP
973 static int select_task_rq_fair(struct task_struct *p, int sync)
974 {
975 int cpu, this_cpu;
976 struct rq *rq;
977 struct sched_domain *sd, *this_sd = NULL;
978 int new_cpu;
979
980 cpu = task_cpu(p);
981 rq = task_rq(p);
982 this_cpu = smp_processor_id();
983 new_cpu = cpu;
984
985 if (cpu == this_cpu)
986 goto out_set_cpu;
987
988 for_each_domain(this_cpu, sd) {
989 if (cpu_isset(cpu, sd->span)) {
990 this_sd = sd;
991 break;
992 }
993 }
994
995 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
996 goto out_set_cpu;
997
998 /*
999 * Check for affine wakeup and passive balancing possibilities.
1000 */
1001 if (this_sd) {
1002 int idx = this_sd->wake_idx;
1003 unsigned int imbalance;
1004 unsigned long load, this_load;
1005
1006 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1007
1008 load = source_load(cpu, idx);
1009 this_load = target_load(this_cpu, idx);
1010
1011 new_cpu = this_cpu; /* Wake to this CPU if we can */
1012
1013 if (this_sd->flags & SD_WAKE_AFFINE) {
1014 unsigned long tl = this_load;
1015 unsigned long tl_per_task;
1016
1017 /*
1018 * Attract cache-cold tasks on sync wakeups:
1019 */
1020 if (sync && !task_hot(p, rq->clock, this_sd))
1021 goto out_set_cpu;
1022
1023 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1024 tl_per_task = cpu_avg_load_per_task(this_cpu);
1025
1026 /*
1027 * If sync wakeup then subtract the (maximum possible)
1028 * effect of the currently running task from the load
1029 * of the current CPU:
1030 */
1031 if (sync)
1032 tl -= current->se.load.weight;
1033
1034 if ((tl <= load &&
1035 tl + target_load(cpu, idx) <= tl_per_task) ||
1036 100*(tl + p->se.load.weight) <= imbalance*load) {
1037 /*
1038 * This domain has SD_WAKE_AFFINE and
1039 * p is cache cold in this domain, and
1040 * there is no bad imbalance.
1041 */
1042 schedstat_inc(this_sd, ttwu_move_affine);
1043 schedstat_inc(p, se.nr_wakeups_affine);
1044 goto out_set_cpu;
1045 }
1046 }
1047
1048 /*
1049 * Start passive balancing when half the imbalance_pct
1050 * limit is reached.
1051 */
1052 if (this_sd->flags & SD_WAKE_BALANCE) {
1053 if (imbalance*this_load <= 100*load) {
1054 schedstat_inc(this_sd, ttwu_move_balance);
1055 schedstat_inc(p, se.nr_wakeups_passive);
1056 goto out_set_cpu;
1057 }
1058 }
1059 }
1060
1061 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1062 out_set_cpu:
1063 return wake_idle(new_cpu, p);
1064 }
1065 #endif /* CONFIG_SMP */
1066
1067
1068 /*
1069 * Preempt the current task with a newly woken task if needed:
1070 */
1071 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1072 {
1073 struct task_struct *curr = rq->curr;
1074 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1075 struct sched_entity *se = &curr->se, *pse = &p->se;
1076 unsigned long gran;
1077
1078 if (unlikely(rt_prio(p->prio))) {
1079 update_rq_clock(rq);
1080 update_curr(cfs_rq);
1081 resched_task(curr);
1082 return;
1083 }
1084 /*
1085 * Batch tasks do not preempt (their preemption is driven by
1086 * the tick):
1087 */
1088 if (unlikely(p->policy == SCHED_BATCH))
1089 return;
1090
1091 if (!sched_feat(WAKEUP_PREEMPT))
1092 return;
1093
1094 while (!is_same_group(se, pse)) {
1095 se = parent_entity(se);
1096 pse = parent_entity(pse);
1097 }
1098
1099 gran = sysctl_sched_wakeup_granularity;
1100 if (unlikely(se->load.weight != NICE_0_LOAD))
1101 gran = calc_delta_fair(gran, &se->load);
1102
1103 if (pse->vruntime + gran < se->vruntime)
1104 resched_task(curr);
1105 }
1106
1107 static struct task_struct *pick_next_task_fair(struct rq *rq)
1108 {
1109 struct task_struct *p;
1110 struct cfs_rq *cfs_rq = &rq->cfs;
1111 struct sched_entity *se;
1112
1113 if (unlikely(!cfs_rq->nr_running))
1114 return NULL;
1115
1116 do {
1117 se = pick_next_entity(cfs_rq);
1118 cfs_rq = group_cfs_rq(se);
1119 } while (cfs_rq);
1120
1121 p = task_of(se);
1122 hrtick_start_fair(rq, p);
1123
1124 return p;
1125 }
1126
1127 /*
1128 * Account for a descheduled task:
1129 */
1130 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1131 {
1132 struct sched_entity *se = &prev->se;
1133 struct cfs_rq *cfs_rq;
1134
1135 for_each_sched_entity(se) {
1136 cfs_rq = cfs_rq_of(se);
1137 put_prev_entity(cfs_rq, se);
1138 }
1139 }
1140
1141 #ifdef CONFIG_SMP
1142 /**************************************************
1143 * Fair scheduling class load-balancing methods:
1144 */
1145
1146 /*
1147 * Load-balancing iterator. Note: while the runqueue stays locked
1148 * during the whole iteration, the current task might be
1149 * dequeued so the iterator has to be dequeue-safe. Here we
1150 * achieve that by always pre-iterating before returning
1151 * the current task:
1152 */
1153 static struct task_struct *
1154 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1155 {
1156 struct task_struct *p;
1157
1158 if (!curr)
1159 return NULL;
1160
1161 p = rb_entry(curr, struct task_struct, se.run_node);
1162 cfs_rq->rb_load_balance_curr = rb_next(curr);
1163
1164 return p;
1165 }
1166
1167 static struct task_struct *load_balance_start_fair(void *arg)
1168 {
1169 struct cfs_rq *cfs_rq = arg;
1170
1171 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1172 }
1173
1174 static struct task_struct *load_balance_next_fair(void *arg)
1175 {
1176 struct cfs_rq *cfs_rq = arg;
1177
1178 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1179 }
1180
1181 static unsigned long
1182 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1183 unsigned long max_load_move,
1184 struct sched_domain *sd, enum cpu_idle_type idle,
1185 int *all_pinned, int *this_best_prio)
1186 {
1187 struct cfs_rq *busy_cfs_rq;
1188 long rem_load_move = max_load_move;
1189 struct rq_iterator cfs_rq_iterator;
1190 unsigned long load_moved;
1191
1192 cfs_rq_iterator.start = load_balance_start_fair;
1193 cfs_rq_iterator.next = load_balance_next_fair;
1194
1195 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1198 unsigned long maxload, task_load, group_weight;
1199 unsigned long thisload, per_task_load;
1200 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1201
1202 task_load = busy_cfs_rq->load.weight;
1203 group_weight = se->load.weight;
1204
1205 /*
1206 * 'group_weight' is contributed by tasks of total weight
1207 * 'task_load'. To move 'rem_load_move' worth of weight only,
1208 * we need to move a maximum task load of:
1209 *
1210 * maxload = (remload / group_weight) * task_load;
1211 */
1212 maxload = (rem_load_move * task_load) / group_weight;
1213
1214 if (!maxload || !task_load)
1215 continue;
1216
1217 per_task_load = task_load / busy_cfs_rq->nr_running;
1218 /*
1219 * balance_tasks will try to forcibly move atleast one task if
1220 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1221 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1222 */
1223 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1224 continue;
1225
1226 /* Disable priority-based load balance */
1227 *this_best_prio = 0;
1228 thisload = this_cfs_rq->load.weight;
1229 #else
1230 # define maxload rem_load_move
1231 #endif
1232 /*
1233 * pass busy_cfs_rq argument into
1234 * load_balance_[start|next]_fair iterators
1235 */
1236 cfs_rq_iterator.arg = busy_cfs_rq;
1237 load_moved = balance_tasks(this_rq, this_cpu, busiest,
1238 maxload, sd, idle, all_pinned,
1239 this_best_prio,
1240 &cfs_rq_iterator);
1241
1242 #ifdef CONFIG_FAIR_GROUP_SCHED
1243 /*
1244 * load_moved holds the task load that was moved. The
1245 * effective (group) weight moved would be:
1246 * load_moved_eff = load_moved/task_load * group_weight;
1247 */
1248 load_moved = (group_weight * load_moved) / task_load;
1249
1250 /* Adjust shares on both cpus to reflect load_moved */
1251 group_weight -= load_moved;
1252 set_se_shares(se, group_weight);
1253
1254 se = busy_cfs_rq->tg->se[this_cpu];
1255 if (!thisload)
1256 group_weight = load_moved;
1257 else
1258 group_weight = se->load.weight + load_moved;
1259 set_se_shares(se, group_weight);
1260 #endif
1261
1262 rem_load_move -= load_moved;
1263
1264 if (rem_load_move <= 0)
1265 break;
1266 }
1267
1268 return max_load_move - rem_load_move;
1269 }
1270
1271 static int
1272 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1273 struct sched_domain *sd, enum cpu_idle_type idle)
1274 {
1275 struct cfs_rq *busy_cfs_rq;
1276 struct rq_iterator cfs_rq_iterator;
1277
1278 cfs_rq_iterator.start = load_balance_start_fair;
1279 cfs_rq_iterator.next = load_balance_next_fair;
1280
1281 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1282 /*
1283 * pass busy_cfs_rq argument into
1284 * load_balance_[start|next]_fair iterators
1285 */
1286 cfs_rq_iterator.arg = busy_cfs_rq;
1287 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1288 &cfs_rq_iterator))
1289 return 1;
1290 }
1291
1292 return 0;
1293 }
1294 #endif
1295
1296 /*
1297 * scheduler tick hitting a task of our scheduling class:
1298 */
1299 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1300 {
1301 struct cfs_rq *cfs_rq;
1302 struct sched_entity *se = &curr->se;
1303
1304 for_each_sched_entity(se) {
1305 cfs_rq = cfs_rq_of(se);
1306 entity_tick(cfs_rq, se, queued);
1307 }
1308 }
1309
1310 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1311
1312 /*
1313 * Share the fairness runtime between parent and child, thus the
1314 * total amount of pressure for CPU stays equal - new tasks
1315 * get a chance to run but frequent forkers are not allowed to
1316 * monopolize the CPU. Note: the parent runqueue is locked,
1317 * the child is not running yet.
1318 */
1319 static void task_new_fair(struct rq *rq, struct task_struct *p)
1320 {
1321 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1322 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1323 int this_cpu = smp_processor_id();
1324
1325 sched_info_queued(p);
1326
1327 update_curr(cfs_rq);
1328 place_entity(cfs_rq, se, 1);
1329
1330 /* 'curr' will be NULL if the child belongs to a different group */
1331 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1332 curr && curr->vruntime < se->vruntime) {
1333 /*
1334 * Upon rescheduling, sched_class::put_prev_task() will place
1335 * 'current' within the tree based on its new key value.
1336 */
1337 swap(curr->vruntime, se->vruntime);
1338 }
1339
1340 enqueue_task_fair(rq, p, 0);
1341 resched_task(rq->curr);
1342 }
1343
1344 /*
1345 * Priority of the task has changed. Check to see if we preempt
1346 * the current task.
1347 */
1348 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1349 int oldprio, int running)
1350 {
1351 /*
1352 * Reschedule if we are currently running on this runqueue and
1353 * our priority decreased, or if we are not currently running on
1354 * this runqueue and our priority is higher than the current's
1355 */
1356 if (running) {
1357 if (p->prio > oldprio)
1358 resched_task(rq->curr);
1359 } else
1360 check_preempt_curr(rq, p);
1361 }
1362
1363 /*
1364 * We switched to the sched_fair class.
1365 */
1366 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1367 int running)
1368 {
1369 /*
1370 * We were most likely switched from sched_rt, so
1371 * kick off the schedule if running, otherwise just see
1372 * if we can still preempt the current task.
1373 */
1374 if (running)
1375 resched_task(rq->curr);
1376 else
1377 check_preempt_curr(rq, p);
1378 }
1379
1380 /* Account for a task changing its policy or group.
1381 *
1382 * This routine is mostly called to set cfs_rq->curr field when a task
1383 * migrates between groups/classes.
1384 */
1385 static void set_curr_task_fair(struct rq *rq)
1386 {
1387 struct sched_entity *se = &rq->curr->se;
1388
1389 for_each_sched_entity(se)
1390 set_next_entity(cfs_rq_of(se), se);
1391 }
1392
1393 /*
1394 * All the scheduling class methods:
1395 */
1396 static const struct sched_class fair_sched_class = {
1397 .next = &idle_sched_class,
1398 .enqueue_task = enqueue_task_fair,
1399 .dequeue_task = dequeue_task_fair,
1400 .yield_task = yield_task_fair,
1401 #ifdef CONFIG_SMP
1402 .select_task_rq = select_task_rq_fair,
1403 #endif /* CONFIG_SMP */
1404
1405 .check_preempt_curr = check_preempt_wakeup,
1406
1407 .pick_next_task = pick_next_task_fair,
1408 .put_prev_task = put_prev_task_fair,
1409
1410 #ifdef CONFIG_SMP
1411 .load_balance = load_balance_fair,
1412 .move_one_task = move_one_task_fair,
1413 #endif
1414
1415 .set_curr_task = set_curr_task_fair,
1416 .task_tick = task_tick_fair,
1417 .task_new = task_new_fair,
1418
1419 .prio_changed = prio_changed_fair,
1420 .switched_to = switched_to_fair,
1421 };
1422
1423 #ifdef CONFIG_SCHED_DEBUG
1424 static void print_cfs_stats(struct seq_file *m, int cpu)
1425 {
1426 struct cfs_rq *cfs_rq;
1427
1428 #ifdef CONFIG_FAIR_GROUP_SCHED
1429 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1430 #endif
1431 lock_task_group_list();
1432 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1433 print_cfs_rq(m, cpu, cfs_rq);
1434 unlock_task_group_list();
1435 }
1436 #endif
This page took 0.121109 seconds and 6 git commands to generate.