sched: fix update_stats_enqueue() reniced codepath
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20 /*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34 unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36 /*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47 /*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55 unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57 unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59 /*
60 * Initialized in sched_init_granularity():
61 */
62 unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64 /*
65 * Debugging: various feature bits
66 */
67 enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74 };
75
76 unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84 extern struct sched_class fair_sched_class;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* currently running entity (if any) on this cfs_rq */
99 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100 {
101 return cfs_rq->curr;
102 }
103
104 /* An entity is a task if it doesn't "own" a runqueue */
105 #define entity_is_task(se) (!se->my_q)
106
107 static inline void
108 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109 {
110 cfs_rq->curr = se;
111 }
112
113 #else /* CONFIG_FAIR_GROUP_SCHED */
114
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116 {
117 return container_of(cfs_rq, struct rq, cfs);
118 }
119
120 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121 {
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128 }
129
130 #define entity_is_task(se) 1
131
132 static inline void
133 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135 #endif /* CONFIG_FAIR_GROUP_SCHED */
136
137 static inline struct task_struct *task_of(struct sched_entity *se)
138 {
139 return container_of(se, struct task_struct, se);
140 }
141
142
143 /**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147 /*
148 * Enqueue an entity into the rb-tree:
149 */
150 static inline void
151 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152 {
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189 }
190
191 static inline void
192 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200 }
201
202 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203 {
204 return cfs_rq->rb_leftmost;
205 }
206
207 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208 {
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210 }
211
212 /**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216 /*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220 static long
221 niced_granularity(struct sched_entity *curr, unsigned long granularity)
222 {
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240 }
241
242 static inline void
243 limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244 {
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261 }
262
263 static inline void
264 __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265 {
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269 }
270
271 static void
272 add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273 {
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277 }
278
279 /*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283 static inline void
284 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
285 {
286 unsigned long delta, delta_exec, delta_fair, delta_mine;
287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
290 delta_exec = curr->delta_exec;
291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
296 if (unlikely(!load))
297 return;
298
299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321 }
322
323 static void update_curr(struct cfs_rq *cfs_rq)
324 {
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
336 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
341 __update_curr(cfs_rq, curr);
342 curr->delta_exec = 0;
343 }
344 curr->exec_start = rq_of(cfs_rq)->clock;
345 }
346
347 static inline void
348 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 se->wait_start_fair = cfs_rq->fair_clock;
351 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
352 }
353
354 /*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358 #if BITS_PER_LONG == 32
359 static inline unsigned long
360 calc_weighted(unsigned long delta, unsigned long weight, int shift)
361 {
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367 }
368 #else
369 static inline unsigned long
370 calc_weighted(unsigned long delta, unsigned long weight, int shift)
371 {
372 return delta * weight >> shift;
373 }
374 #endif
375
376 /*
377 * Task is being enqueued - update stats:
378 */
379 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
380 {
381 s64 key;
382
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq_curr(cfs_rq))
388 update_stats_wait_start(cfs_rq, se);
389 /*
390 * Update the key:
391 */
392 key = cfs_rq->fair_clock;
393
394 /*
395 * Optimize the common nice 0 case:
396 */
397 if (likely(se->load.weight == NICE_0_LOAD)) {
398 key -= se->wait_runtime;
399 } else {
400 u64 tmp;
401
402 if (se->wait_runtime < 0) {
403 tmp = -se->wait_runtime;
404 key += (tmp * se->load.inv_weight) >>
405 (WMULT_SHIFT - NICE_0_SHIFT);
406 } else {
407 tmp = se->wait_runtime;
408 key -= (tmp * se->load.inv_weight) >>
409 (WMULT_SHIFT - NICE_0_SHIFT);
410 }
411 }
412
413 se->fair_key = key;
414 }
415
416 /*
417 * Note: must be called with a freshly updated rq->fair_clock.
418 */
419 static inline void
420 __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
421 {
422 unsigned long delta_fair = se->delta_fair_run;
423
424 schedstat_set(se->wait_max, max(se->wait_max,
425 rq_of(cfs_rq)->clock - se->wait_start));
426
427 if (unlikely(se->load.weight != NICE_0_LOAD))
428 delta_fair = calc_weighted(delta_fair, se->load.weight,
429 NICE_0_SHIFT);
430
431 add_wait_runtime(cfs_rq, se, delta_fair);
432 }
433
434 static void
435 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
436 {
437 unsigned long delta_fair;
438
439 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
440 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
441
442 se->delta_fair_run += delta_fair;
443 if (unlikely(abs(se->delta_fair_run) >=
444 sysctl_sched_stat_granularity)) {
445 __update_stats_wait_end(cfs_rq, se);
446 se->delta_fair_run = 0;
447 }
448
449 se->wait_start_fair = 0;
450 schedstat_set(se->wait_start, 0);
451 }
452
453 static inline void
454 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
455 {
456 update_curr(cfs_rq);
457 /*
458 * Mark the end of the wait period if dequeueing a
459 * waiting task:
460 */
461 if (se != cfs_rq_curr(cfs_rq))
462 update_stats_wait_end(cfs_rq, se);
463 }
464
465 /*
466 * We are picking a new current task - update its stats:
467 */
468 static inline void
469 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 {
471 /*
472 * We are starting a new run period:
473 */
474 se->exec_start = rq_of(cfs_rq)->clock;
475 }
476
477 /*
478 * We are descheduling a task - update its stats:
479 */
480 static inline void
481 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
482 {
483 se->exec_start = 0;
484 }
485
486 /**************************************************
487 * Scheduling class queueing methods:
488 */
489
490 static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 unsigned long load = cfs_rq->load.weight, delta_fair;
493 long prev_runtime;
494
495 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
496 load = rq_of(cfs_rq)->cpu_load[2];
497
498 delta_fair = se->delta_fair_sleep;
499
500 /*
501 * Fix up delta_fair with the effect of us running
502 * during the whole sleep period:
503 */
504 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
505 delta_fair = div64_likely32((u64)delta_fair * load,
506 load + se->load.weight);
507
508 if (unlikely(se->load.weight != NICE_0_LOAD))
509 delta_fair = calc_weighted(delta_fair, se->load.weight,
510 NICE_0_SHIFT);
511
512 prev_runtime = se->wait_runtime;
513 __add_wait_runtime(cfs_rq, se, delta_fair);
514 delta_fair = se->wait_runtime - prev_runtime;
515
516 /*
517 * Track the amount of bonus we've given to sleepers:
518 */
519 cfs_rq->sleeper_bonus += delta_fair;
520
521 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
522 }
523
524 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
525 {
526 struct task_struct *tsk = task_of(se);
527 unsigned long delta_fair;
528
529 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
530 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
531 return;
532
533 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
534 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
535
536 se->delta_fair_sleep += delta_fair;
537 if (unlikely(abs(se->delta_fair_sleep) >=
538 sysctl_sched_stat_granularity)) {
539 __enqueue_sleeper(cfs_rq, se);
540 se->delta_fair_sleep = 0;
541 }
542
543 se->sleep_start_fair = 0;
544
545 #ifdef CONFIG_SCHEDSTATS
546 if (se->sleep_start) {
547 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
548
549 if ((s64)delta < 0)
550 delta = 0;
551
552 if (unlikely(delta > se->sleep_max))
553 se->sleep_max = delta;
554
555 se->sleep_start = 0;
556 se->sum_sleep_runtime += delta;
557 }
558 if (se->block_start) {
559 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
560
561 if ((s64)delta < 0)
562 delta = 0;
563
564 if (unlikely(delta > se->block_max))
565 se->block_max = delta;
566
567 se->block_start = 0;
568 se->sum_sleep_runtime += delta;
569 }
570 #endif
571 }
572
573 static void
574 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
575 {
576 /*
577 * Update the fair clock.
578 */
579 update_curr(cfs_rq);
580
581 if (wakeup)
582 enqueue_sleeper(cfs_rq, se);
583
584 update_stats_enqueue(cfs_rq, se);
585 __enqueue_entity(cfs_rq, se);
586 }
587
588 static void
589 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
590 {
591 update_stats_dequeue(cfs_rq, se);
592 if (sleep) {
593 se->sleep_start_fair = cfs_rq->fair_clock;
594 #ifdef CONFIG_SCHEDSTATS
595 if (entity_is_task(se)) {
596 struct task_struct *tsk = task_of(se);
597
598 if (tsk->state & TASK_INTERRUPTIBLE)
599 se->sleep_start = rq_of(cfs_rq)->clock;
600 if (tsk->state & TASK_UNINTERRUPTIBLE)
601 se->block_start = rq_of(cfs_rq)->clock;
602 }
603 cfs_rq->wait_runtime -= se->wait_runtime;
604 #endif
605 }
606 __dequeue_entity(cfs_rq, se);
607 }
608
609 /*
610 * Preempt the current task with a newly woken task if needed:
611 */
612 static void
613 __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
614 struct sched_entity *curr, unsigned long granularity)
615 {
616 s64 __delta = curr->fair_key - se->fair_key;
617
618 /*
619 * Take scheduling granularity into account - do not
620 * preempt the current task unless the best task has
621 * a larger than sched_granularity fairness advantage:
622 */
623 if (__delta > niced_granularity(curr, granularity))
624 resched_task(rq_of(cfs_rq)->curr);
625 }
626
627 static inline void
628 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 /*
631 * Any task has to be enqueued before it get to execute on
632 * a CPU. So account for the time it spent waiting on the
633 * runqueue. (note, here we rely on pick_next_task() having
634 * done a put_prev_task_fair() shortly before this, which
635 * updated rq->fair_clock - used by update_stats_wait_end())
636 */
637 update_stats_wait_end(cfs_rq, se);
638 update_stats_curr_start(cfs_rq, se);
639 set_cfs_rq_curr(cfs_rq, se);
640 }
641
642 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
643 {
644 struct sched_entity *se = __pick_next_entity(cfs_rq);
645
646 set_next_entity(cfs_rq, se);
647
648 return se;
649 }
650
651 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
652 {
653 /*
654 * If still on the runqueue then deactivate_task()
655 * was not called and update_curr() has to be done:
656 */
657 if (prev->on_rq)
658 update_curr(cfs_rq);
659
660 update_stats_curr_end(cfs_rq, prev);
661
662 if (prev->on_rq)
663 update_stats_wait_start(cfs_rq, prev);
664 set_cfs_rq_curr(cfs_rq, NULL);
665 }
666
667 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
668 {
669 struct sched_entity *next;
670
671 /*
672 * Dequeue and enqueue the task to update its
673 * position within the tree:
674 */
675 dequeue_entity(cfs_rq, curr, 0);
676 enqueue_entity(cfs_rq, curr, 0);
677
678 /*
679 * Reschedule if another task tops the current one.
680 */
681 next = __pick_next_entity(cfs_rq);
682 if (next == curr)
683 return;
684
685 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
686 }
687
688 /**************************************************
689 * CFS operations on tasks:
690 */
691
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693
694 /* Walk up scheduling entities hierarchy */
695 #define for_each_sched_entity(se) \
696 for (; se; se = se->parent)
697
698 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
699 {
700 return p->se.cfs_rq;
701 }
702
703 /* runqueue on which this entity is (to be) queued */
704 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
705 {
706 return se->cfs_rq;
707 }
708
709 /* runqueue "owned" by this group */
710 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
711 {
712 return grp->my_q;
713 }
714
715 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
716 * another cpu ('this_cpu')
717 */
718 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
719 {
720 /* A later patch will take group into account */
721 return &cpu_rq(this_cpu)->cfs;
722 }
723
724 /* Iterate thr' all leaf cfs_rq's on a runqueue */
725 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
726 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
727
728 /* Do the two (enqueued) tasks belong to the same group ? */
729 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
730 {
731 if (curr->se.cfs_rq == p->se.cfs_rq)
732 return 1;
733
734 return 0;
735 }
736
737 #else /* CONFIG_FAIR_GROUP_SCHED */
738
739 #define for_each_sched_entity(se) \
740 for (; se; se = NULL)
741
742 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
743 {
744 return &task_rq(p)->cfs;
745 }
746
747 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
748 {
749 struct task_struct *p = task_of(se);
750 struct rq *rq = task_rq(p);
751
752 return &rq->cfs;
753 }
754
755 /* runqueue "owned" by this group */
756 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
757 {
758 return NULL;
759 }
760
761 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
762 {
763 return &cpu_rq(this_cpu)->cfs;
764 }
765
766 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
767 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
768
769 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
770 {
771 return 1;
772 }
773
774 #endif /* CONFIG_FAIR_GROUP_SCHED */
775
776 /*
777 * The enqueue_task method is called before nr_running is
778 * increased. Here we update the fair scheduling stats and
779 * then put the task into the rbtree:
780 */
781 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
782 {
783 struct cfs_rq *cfs_rq;
784 struct sched_entity *se = &p->se;
785
786 for_each_sched_entity(se) {
787 if (se->on_rq)
788 break;
789 cfs_rq = cfs_rq_of(se);
790 enqueue_entity(cfs_rq, se, wakeup);
791 }
792 }
793
794 /*
795 * The dequeue_task method is called before nr_running is
796 * decreased. We remove the task from the rbtree and
797 * update the fair scheduling stats:
798 */
799 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
800 {
801 struct cfs_rq *cfs_rq;
802 struct sched_entity *se = &p->se;
803
804 for_each_sched_entity(se) {
805 cfs_rq = cfs_rq_of(se);
806 dequeue_entity(cfs_rq, se, sleep);
807 /* Don't dequeue parent if it has other entities besides us */
808 if (cfs_rq->load.weight)
809 break;
810 }
811 }
812
813 /*
814 * sched_yield() support is very simple - we dequeue and enqueue
815 */
816 static void yield_task_fair(struct rq *rq, struct task_struct *p)
817 {
818 struct cfs_rq *cfs_rq = task_cfs_rq(p);
819
820 __update_rq_clock(rq);
821 /*
822 * Dequeue and enqueue the task to update its
823 * position within the tree:
824 */
825 dequeue_entity(cfs_rq, &p->se, 0);
826 enqueue_entity(cfs_rq, &p->se, 0);
827 }
828
829 /*
830 * Preempt the current task with a newly woken task if needed:
831 */
832 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
833 {
834 struct task_struct *curr = rq->curr;
835 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
836 unsigned long gran;
837
838 if (unlikely(rt_prio(p->prio))) {
839 update_rq_clock(rq);
840 update_curr(cfs_rq);
841 resched_task(curr);
842 return;
843 }
844
845 gran = sysctl_sched_wakeup_granularity;
846 /*
847 * Batch tasks prefer throughput over latency:
848 */
849 if (unlikely(p->policy == SCHED_BATCH))
850 gran = sysctl_sched_batch_wakeup_granularity;
851
852 if (is_same_group(curr, p))
853 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
854 }
855
856 static struct task_struct *pick_next_task_fair(struct rq *rq)
857 {
858 struct cfs_rq *cfs_rq = &rq->cfs;
859 struct sched_entity *se;
860
861 if (unlikely(!cfs_rq->nr_running))
862 return NULL;
863
864 do {
865 se = pick_next_entity(cfs_rq);
866 cfs_rq = group_cfs_rq(se);
867 } while (cfs_rq);
868
869 return task_of(se);
870 }
871
872 /*
873 * Account for a descheduled task:
874 */
875 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
876 {
877 struct sched_entity *se = &prev->se;
878 struct cfs_rq *cfs_rq;
879
880 for_each_sched_entity(se) {
881 cfs_rq = cfs_rq_of(se);
882 put_prev_entity(cfs_rq, se);
883 }
884 }
885
886 /**************************************************
887 * Fair scheduling class load-balancing methods:
888 */
889
890 /*
891 * Load-balancing iterator. Note: while the runqueue stays locked
892 * during the whole iteration, the current task might be
893 * dequeued so the iterator has to be dequeue-safe. Here we
894 * achieve that by always pre-iterating before returning
895 * the current task:
896 */
897 static inline struct task_struct *
898 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
899 {
900 struct task_struct *p;
901
902 if (!curr)
903 return NULL;
904
905 p = rb_entry(curr, struct task_struct, se.run_node);
906 cfs_rq->rb_load_balance_curr = rb_next(curr);
907
908 return p;
909 }
910
911 static struct task_struct *load_balance_start_fair(void *arg)
912 {
913 struct cfs_rq *cfs_rq = arg;
914
915 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
916 }
917
918 static struct task_struct *load_balance_next_fair(void *arg)
919 {
920 struct cfs_rq *cfs_rq = arg;
921
922 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
923 }
924
925 #ifdef CONFIG_FAIR_GROUP_SCHED
926 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
927 {
928 struct sched_entity *curr;
929 struct task_struct *p;
930
931 if (!cfs_rq->nr_running)
932 return MAX_PRIO;
933
934 curr = __pick_next_entity(cfs_rq);
935 p = task_of(curr);
936
937 return p->prio;
938 }
939 #endif
940
941 static unsigned long
942 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
943 unsigned long max_nr_move, unsigned long max_load_move,
944 struct sched_domain *sd, enum cpu_idle_type idle,
945 int *all_pinned, int *this_best_prio)
946 {
947 struct cfs_rq *busy_cfs_rq;
948 unsigned long load_moved, total_nr_moved = 0, nr_moved;
949 long rem_load_move = max_load_move;
950 struct rq_iterator cfs_rq_iterator;
951
952 cfs_rq_iterator.start = load_balance_start_fair;
953 cfs_rq_iterator.next = load_balance_next_fair;
954
955 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
956 #ifdef CONFIG_FAIR_GROUP_SCHED
957 struct cfs_rq *this_cfs_rq;
958 long imbalances;
959 unsigned long maxload;
960
961 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
962
963 imbalance = busy_cfs_rq->load.weight -
964 this_cfs_rq->load.weight;
965 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
966 if (imbalance <= 0)
967 continue;
968
969 /* Don't pull more than imbalance/2 */
970 imbalance /= 2;
971 maxload = min(rem_load_move, imbalance);
972
973 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
974 #else
975 #define maxload rem_load_move
976 #endif
977 /* pass busy_cfs_rq argument into
978 * load_balance_[start|next]_fair iterators
979 */
980 cfs_rq_iterator.arg = busy_cfs_rq;
981 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
982 max_nr_move, maxload, sd, idle, all_pinned,
983 &load_moved, this_best_prio, &cfs_rq_iterator);
984
985 total_nr_moved += nr_moved;
986 max_nr_move -= nr_moved;
987 rem_load_move -= load_moved;
988
989 if (max_nr_move <= 0 || rem_load_move <= 0)
990 break;
991 }
992
993 return max_load_move - rem_load_move;
994 }
995
996 /*
997 * scheduler tick hitting a task of our scheduling class:
998 */
999 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1000 {
1001 struct cfs_rq *cfs_rq;
1002 struct sched_entity *se = &curr->se;
1003
1004 for_each_sched_entity(se) {
1005 cfs_rq = cfs_rq_of(se);
1006 entity_tick(cfs_rq, se);
1007 }
1008 }
1009
1010 /*
1011 * Share the fairness runtime between parent and child, thus the
1012 * total amount of pressure for CPU stays equal - new tasks
1013 * get a chance to run but frequent forkers are not allowed to
1014 * monopolize the CPU. Note: the parent runqueue is locked,
1015 * the child is not running yet.
1016 */
1017 static void task_new_fair(struct rq *rq, struct task_struct *p)
1018 {
1019 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1020 struct sched_entity *se = &p->se;
1021
1022 sched_info_queued(p);
1023
1024 update_stats_enqueue(cfs_rq, se);
1025 /*
1026 * Child runs first: we let it run before the parent
1027 * until it reschedules once. We set up the key so that
1028 * it will preempt the parent:
1029 */
1030 p->se.fair_key = current->se.fair_key -
1031 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1032 /*
1033 * The first wait is dominated by the child-runs-first logic,
1034 * so do not credit it with that waiting time yet:
1035 */
1036 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1037 p->se.wait_start_fair = 0;
1038
1039 /*
1040 * The statistical average of wait_runtime is about
1041 * -granularity/2, so initialize the task with that:
1042 */
1043 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1044 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1045
1046 __enqueue_entity(cfs_rq, se);
1047 }
1048
1049 #ifdef CONFIG_FAIR_GROUP_SCHED
1050 /* Account for a task changing its policy or group.
1051 *
1052 * This routine is mostly called to set cfs_rq->curr field when a task
1053 * migrates between groups/classes.
1054 */
1055 static void set_curr_task_fair(struct rq *rq)
1056 {
1057 struct sched_entity *se = &rq->curr.se;
1058
1059 for_each_sched_entity(se)
1060 set_next_entity(cfs_rq_of(se), se);
1061 }
1062 #else
1063 static void set_curr_task_fair(struct rq *rq)
1064 {
1065 }
1066 #endif
1067
1068 /*
1069 * All the scheduling class methods:
1070 */
1071 struct sched_class fair_sched_class __read_mostly = {
1072 .enqueue_task = enqueue_task_fair,
1073 .dequeue_task = dequeue_task_fair,
1074 .yield_task = yield_task_fair,
1075
1076 .check_preempt_curr = check_preempt_curr_fair,
1077
1078 .pick_next_task = pick_next_task_fair,
1079 .put_prev_task = put_prev_task_fair,
1080
1081 .load_balance = load_balance_fair,
1082
1083 .set_curr_task = set_curr_task_fair,
1084 .task_tick = task_tick_fair,
1085 .task_new = task_new_fair,
1086 };
1087
1088 #ifdef CONFIG_SCHED_DEBUG
1089 static void print_cfs_stats(struct seq_file *m, int cpu)
1090 {
1091 struct cfs_rq *cfs_rq;
1092
1093 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1094 print_cfs_rq(m, cpu, cfs_rq);
1095 }
1096 #endif
This page took 0.06563 seconds and 6 git commands to generate.