Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20 /*
21 * Preemption granularity:
22 * (default: 10 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34 unsigned int sysctl_sched_granularity __read_mostly = 10000000UL;
35
36 /*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 25 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
45
46 /*
47 * SCHED_OTHER wake-up granularity.
48 * (default: 1 msec, units: nanoseconds)
49 *
50 * This option delays the preemption effects of decoupled workloads
51 * and reduces their over-scheduling. Synchronous workloads will still
52 * have immediate wakeup/sleep latencies.
53 */
54 unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
55
56 unsigned int sysctl_sched_stat_granularity __read_mostly;
57
58 /*
59 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
60 */
61 unsigned int sysctl_sched_runtime_limit __read_mostly;
62
63 /*
64 * Debugging: various feature bits
65 */
66 enum {
67 SCHED_FEAT_FAIR_SLEEPERS = 1,
68 SCHED_FEAT_SLEEPER_AVG = 2,
69 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
70 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
71 SCHED_FEAT_START_DEBIT = 16,
72 SCHED_FEAT_SKIP_INITIAL = 32,
73 };
74
75 unsigned int sysctl_sched_features __read_mostly =
76 SCHED_FEAT_FAIR_SLEEPERS *1 |
77 SCHED_FEAT_SLEEPER_AVG *0 |
78 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
79 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
80 SCHED_FEAT_START_DEBIT *1 |
81 SCHED_FEAT_SKIP_INITIAL *0;
82
83 extern struct sched_class fair_sched_class;
84
85 /**************************************************************
86 * CFS operations on generic schedulable entities:
87 */
88
89 #ifdef CONFIG_FAIR_GROUP_SCHED
90
91 /* cpu runqueue to which this cfs_rq is attached */
92 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 {
94 return cfs_rq->rq;
95 }
96
97 /* currently running entity (if any) on this cfs_rq */
98 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
99 {
100 return cfs_rq->curr;
101 }
102
103 /* An entity is a task if it doesn't "own" a runqueue */
104 #define entity_is_task(se) (!se->my_q)
105
106 static inline void
107 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
108 {
109 cfs_rq->curr = se;
110 }
111
112 #else /* CONFIG_FAIR_GROUP_SCHED */
113
114 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
115 {
116 return container_of(cfs_rq, struct rq, cfs);
117 }
118
119 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
120 {
121 struct rq *rq = rq_of(cfs_rq);
122
123 if (unlikely(rq->curr->sched_class != &fair_sched_class))
124 return NULL;
125
126 return &rq->curr->se;
127 }
128
129 #define entity_is_task(se) 1
130
131 static inline void
132 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
133
134 #endif /* CONFIG_FAIR_GROUP_SCHED */
135
136 static inline struct task_struct *task_of(struct sched_entity *se)
137 {
138 return container_of(se, struct task_struct, se);
139 }
140
141
142 /**************************************************************
143 * Scheduling class tree data structure manipulation methods:
144 */
145
146 /*
147 * Enqueue an entity into the rb-tree:
148 */
149 static inline void
150 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
151 {
152 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
153 struct rb_node *parent = NULL;
154 struct sched_entity *entry;
155 s64 key = se->fair_key;
156 int leftmost = 1;
157
158 /*
159 * Find the right place in the rbtree:
160 */
161 while (*link) {
162 parent = *link;
163 entry = rb_entry(parent, struct sched_entity, run_node);
164 /*
165 * We dont care about collisions. Nodes with
166 * the same key stay together.
167 */
168 if (key - entry->fair_key < 0) {
169 link = &parent->rb_left;
170 } else {
171 link = &parent->rb_right;
172 leftmost = 0;
173 }
174 }
175
176 /*
177 * Maintain a cache of leftmost tree entries (it is frequently
178 * used):
179 */
180 if (leftmost)
181 cfs_rq->rb_leftmost = &se->run_node;
182
183 rb_link_node(&se->run_node, parent, link);
184 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_add(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running++;
187 se->on_rq = 1;
188 }
189
190 static inline void
191 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
192 {
193 if (cfs_rq->rb_leftmost == &se->run_node)
194 cfs_rq->rb_leftmost = rb_next(&se->run_node);
195 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
196 update_load_sub(&cfs_rq->load, se->load.weight);
197 cfs_rq->nr_running--;
198 se->on_rq = 0;
199 }
200
201 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
202 {
203 return cfs_rq->rb_leftmost;
204 }
205
206 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
207 {
208 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
209 }
210
211 /**************************************************************
212 * Scheduling class statistics methods:
213 */
214
215 /*
216 * We rescale the rescheduling granularity of tasks according to their
217 * nice level, but only linearly, not exponentially:
218 */
219 static long
220 niced_granularity(struct sched_entity *curr, unsigned long granularity)
221 {
222 u64 tmp;
223
224 if (likely(curr->load.weight == NICE_0_LOAD))
225 return granularity;
226 /*
227 * Positive nice levels get the same granularity as nice-0:
228 */
229 if (likely(curr->load.weight < NICE_0_LOAD)) {
230 tmp = curr->load.weight * (u64)granularity;
231 return (long) (tmp >> NICE_0_SHIFT);
232 }
233 /*
234 * Negative nice level tasks get linearly finer
235 * granularity:
236 */
237 tmp = curr->load.inv_weight * (u64)granularity;
238
239 /*
240 * It will always fit into 'long':
241 */
242 return (long) (tmp >> WMULT_SHIFT);
243 }
244
245 static inline void
246 limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
247 {
248 long limit = sysctl_sched_runtime_limit;
249
250 /*
251 * Niced tasks have the same history dynamic range as
252 * non-niced tasks:
253 */
254 if (unlikely(se->wait_runtime > limit)) {
255 se->wait_runtime = limit;
256 schedstat_inc(se, wait_runtime_overruns);
257 schedstat_inc(cfs_rq, wait_runtime_overruns);
258 }
259 if (unlikely(se->wait_runtime < -limit)) {
260 se->wait_runtime = -limit;
261 schedstat_inc(se, wait_runtime_underruns);
262 schedstat_inc(cfs_rq, wait_runtime_underruns);
263 }
264 }
265
266 static inline void
267 __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
268 {
269 se->wait_runtime += delta;
270 schedstat_add(se, sum_wait_runtime, delta);
271 limit_wait_runtime(cfs_rq, se);
272 }
273
274 static void
275 add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
276 {
277 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
278 __add_wait_runtime(cfs_rq, se, delta);
279 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
280 }
281
282 /*
283 * Update the current task's runtime statistics. Skip current tasks that
284 * are not in our scheduling class.
285 */
286 static inline void
287 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
288 {
289 unsigned long delta, delta_exec, delta_fair, delta_mine;
290 struct load_weight *lw = &cfs_rq->load;
291 unsigned long load = lw->weight;
292
293 delta_exec = curr->delta_exec;
294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295
296 curr->sum_exec_runtime += delta_exec;
297 cfs_rq->exec_clock += delta_exec;
298
299 if (unlikely(!load))
300 return;
301
302 delta_fair = calc_delta_fair(delta_exec, lw);
303 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
304
305 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
306 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
307 delta = min(delta, (unsigned long)(
308 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
309 cfs_rq->sleeper_bonus -= delta;
310 delta_mine -= delta;
311 }
312
313 cfs_rq->fair_clock += delta_fair;
314 /*
315 * We executed delta_exec amount of time on the CPU,
316 * but we were only entitled to delta_mine amount of
317 * time during that period (if nr_running == 1 then
318 * the two values are equal)
319 * [Note: delta_mine - delta_exec is negative]:
320 */
321 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
322 }
323
324 static void update_curr(struct cfs_rq *cfs_rq)
325 {
326 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
327 unsigned long delta_exec;
328
329 if (unlikely(!curr))
330 return;
331
332 /*
333 * Get the amount of time the current task was running
334 * since the last time we changed load (this cannot
335 * overflow on 32 bits):
336 */
337 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
338
339 curr->delta_exec += delta_exec;
340
341 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
342 __update_curr(cfs_rq, curr);
343 curr->delta_exec = 0;
344 }
345 curr->exec_start = rq_of(cfs_rq)->clock;
346 }
347
348 static inline void
349 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 se->wait_start_fair = cfs_rq->fair_clock;
352 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
353 }
354
355 /*
356 * We calculate fair deltas here, so protect against the random effects
357 * of a multiplication overflow by capping it to the runtime limit:
358 */
359 #if BITS_PER_LONG == 32
360 static inline unsigned long
361 calc_weighted(unsigned long delta, unsigned long weight, int shift)
362 {
363 u64 tmp = (u64)delta * weight >> shift;
364
365 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
366 return sysctl_sched_runtime_limit*2;
367 return tmp;
368 }
369 #else
370 static inline unsigned long
371 calc_weighted(unsigned long delta, unsigned long weight, int shift)
372 {
373 return delta * weight >> shift;
374 }
375 #endif
376
377 /*
378 * Task is being enqueued - update stats:
379 */
380 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 {
382 s64 key;
383
384 /*
385 * Are we enqueueing a waiting task? (for current tasks
386 * a dequeue/enqueue event is a NOP)
387 */
388 if (se != cfs_rq_curr(cfs_rq))
389 update_stats_wait_start(cfs_rq, se);
390 /*
391 * Update the key:
392 */
393 key = cfs_rq->fair_clock;
394
395 /*
396 * Optimize the common nice 0 case:
397 */
398 if (likely(se->load.weight == NICE_0_LOAD)) {
399 key -= se->wait_runtime;
400 } else {
401 u64 tmp;
402
403 if (se->wait_runtime < 0) {
404 tmp = -se->wait_runtime;
405 key += (tmp * se->load.inv_weight) >>
406 (WMULT_SHIFT - NICE_0_SHIFT);
407 } else {
408 tmp = se->wait_runtime;
409 key -= (tmp * se->load.inv_weight) >>
410 (WMULT_SHIFT - NICE_0_SHIFT);
411 }
412 }
413
414 se->fair_key = key;
415 }
416
417 /*
418 * Note: must be called with a freshly updated rq->fair_clock.
419 */
420 static inline void
421 __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
422 {
423 unsigned long delta_fair = se->delta_fair_run;
424
425 schedstat_set(se->wait_max, max(se->wait_max,
426 rq_of(cfs_rq)->clock - se->wait_start));
427
428 if (unlikely(se->load.weight != NICE_0_LOAD))
429 delta_fair = calc_weighted(delta_fair, se->load.weight,
430 NICE_0_SHIFT);
431
432 add_wait_runtime(cfs_rq, se, delta_fair);
433 }
434
435 static void
436 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
437 {
438 unsigned long delta_fair;
439
440 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
441 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
442
443 se->delta_fair_run += delta_fair;
444 if (unlikely(abs(se->delta_fair_run) >=
445 sysctl_sched_stat_granularity)) {
446 __update_stats_wait_end(cfs_rq, se);
447 se->delta_fair_run = 0;
448 }
449
450 se->wait_start_fair = 0;
451 schedstat_set(se->wait_start, 0);
452 }
453
454 static inline void
455 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
456 {
457 update_curr(cfs_rq);
458 /*
459 * Mark the end of the wait period if dequeueing a
460 * waiting task:
461 */
462 if (se != cfs_rq_curr(cfs_rq))
463 update_stats_wait_end(cfs_rq, se);
464 }
465
466 /*
467 * We are picking a new current task - update its stats:
468 */
469 static inline void
470 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
471 {
472 /*
473 * We are starting a new run period:
474 */
475 se->exec_start = rq_of(cfs_rq)->clock;
476 }
477
478 /*
479 * We are descheduling a task - update its stats:
480 */
481 static inline void
482 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
483 {
484 se->exec_start = 0;
485 }
486
487 /**************************************************
488 * Scheduling class queueing methods:
489 */
490
491 static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 unsigned long load = cfs_rq->load.weight, delta_fair;
494 long prev_runtime;
495
496 /*
497 * Do not boost sleepers if there's too much bonus 'in flight'
498 * already:
499 */
500 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
501 return;
502
503 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
504 load = rq_of(cfs_rq)->cpu_load[2];
505
506 delta_fair = se->delta_fair_sleep;
507
508 /*
509 * Fix up delta_fair with the effect of us running
510 * during the whole sleep period:
511 */
512 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
513 delta_fair = div64_likely32((u64)delta_fair * load,
514 load + se->load.weight);
515
516 if (unlikely(se->load.weight != NICE_0_LOAD))
517 delta_fair = calc_weighted(delta_fair, se->load.weight,
518 NICE_0_SHIFT);
519
520 prev_runtime = se->wait_runtime;
521 __add_wait_runtime(cfs_rq, se, delta_fair);
522 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
523 delta_fair = se->wait_runtime - prev_runtime;
524
525 /*
526 * Track the amount of bonus we've given to sleepers:
527 */
528 cfs_rq->sleeper_bonus += delta_fair;
529 }
530
531 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 struct task_struct *tsk = task_of(se);
534 unsigned long delta_fair;
535
536 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
537 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
538 return;
539
540 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
541 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
542
543 se->delta_fair_sleep += delta_fair;
544 if (unlikely(abs(se->delta_fair_sleep) >=
545 sysctl_sched_stat_granularity)) {
546 __enqueue_sleeper(cfs_rq, se);
547 se->delta_fair_sleep = 0;
548 }
549
550 se->sleep_start_fair = 0;
551
552 #ifdef CONFIG_SCHEDSTATS
553 if (se->sleep_start) {
554 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
555
556 if ((s64)delta < 0)
557 delta = 0;
558
559 if (unlikely(delta > se->sleep_max))
560 se->sleep_max = delta;
561
562 se->sleep_start = 0;
563 se->sum_sleep_runtime += delta;
564 }
565 if (se->block_start) {
566 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
567
568 if ((s64)delta < 0)
569 delta = 0;
570
571 if (unlikely(delta > se->block_max))
572 se->block_max = delta;
573
574 se->block_start = 0;
575 se->sum_sleep_runtime += delta;
576 }
577 #endif
578 }
579
580 static void
581 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
582 {
583 /*
584 * Update the fair clock.
585 */
586 update_curr(cfs_rq);
587
588 if (wakeup)
589 enqueue_sleeper(cfs_rq, se);
590
591 update_stats_enqueue(cfs_rq, se);
592 __enqueue_entity(cfs_rq, se);
593 }
594
595 static void
596 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
597 {
598 update_stats_dequeue(cfs_rq, se);
599 if (sleep) {
600 se->sleep_start_fair = cfs_rq->fair_clock;
601 #ifdef CONFIG_SCHEDSTATS
602 if (entity_is_task(se)) {
603 struct task_struct *tsk = task_of(se);
604
605 if (tsk->state & TASK_INTERRUPTIBLE)
606 se->sleep_start = rq_of(cfs_rq)->clock;
607 if (tsk->state & TASK_UNINTERRUPTIBLE)
608 se->block_start = rq_of(cfs_rq)->clock;
609 }
610 cfs_rq->wait_runtime -= se->wait_runtime;
611 #endif
612 }
613 __dequeue_entity(cfs_rq, se);
614 }
615
616 /*
617 * Preempt the current task with a newly woken task if needed:
618 */
619 static void
620 __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
621 struct sched_entity *curr, unsigned long granularity)
622 {
623 s64 __delta = curr->fair_key - se->fair_key;
624
625 /*
626 * Take scheduling granularity into account - do not
627 * preempt the current task unless the best task has
628 * a larger than sched_granularity fairness advantage:
629 */
630 if (__delta > niced_granularity(curr, granularity))
631 resched_task(rq_of(cfs_rq)->curr);
632 }
633
634 static inline void
635 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 /*
638 * Any task has to be enqueued before it get to execute on
639 * a CPU. So account for the time it spent waiting on the
640 * runqueue. (note, here we rely on pick_next_task() having
641 * done a put_prev_task_fair() shortly before this, which
642 * updated rq->fair_clock - used by update_stats_wait_end())
643 */
644 update_stats_wait_end(cfs_rq, se);
645 update_stats_curr_start(cfs_rq, se);
646 set_cfs_rq_curr(cfs_rq, se);
647 }
648
649 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
650 {
651 struct sched_entity *se = __pick_next_entity(cfs_rq);
652
653 set_next_entity(cfs_rq, se);
654
655 return se;
656 }
657
658 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
659 {
660 /*
661 * If still on the runqueue then deactivate_task()
662 * was not called and update_curr() has to be done:
663 */
664 if (prev->on_rq)
665 update_curr(cfs_rq);
666
667 update_stats_curr_end(cfs_rq, prev);
668
669 if (prev->on_rq)
670 update_stats_wait_start(cfs_rq, prev);
671 set_cfs_rq_curr(cfs_rq, NULL);
672 }
673
674 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
675 {
676 struct sched_entity *next;
677
678 /*
679 * Dequeue and enqueue the task to update its
680 * position within the tree:
681 */
682 dequeue_entity(cfs_rq, curr, 0);
683 enqueue_entity(cfs_rq, curr, 0);
684
685 /*
686 * Reschedule if another task tops the current one.
687 */
688 next = __pick_next_entity(cfs_rq);
689 if (next == curr)
690 return;
691
692 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
693 }
694
695 /**************************************************
696 * CFS operations on tasks:
697 */
698
699 #ifdef CONFIG_FAIR_GROUP_SCHED
700
701 /* Walk up scheduling entities hierarchy */
702 #define for_each_sched_entity(se) \
703 for (; se; se = se->parent)
704
705 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
706 {
707 return p->se.cfs_rq;
708 }
709
710 /* runqueue on which this entity is (to be) queued */
711 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
712 {
713 return se->cfs_rq;
714 }
715
716 /* runqueue "owned" by this group */
717 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
718 {
719 return grp->my_q;
720 }
721
722 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
723 * another cpu ('this_cpu')
724 */
725 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
726 {
727 /* A later patch will take group into account */
728 return &cpu_rq(this_cpu)->cfs;
729 }
730
731 /* Iterate thr' all leaf cfs_rq's on a runqueue */
732 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
733 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
734
735 /* Do the two (enqueued) tasks belong to the same group ? */
736 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
737 {
738 if (curr->se.cfs_rq == p->se.cfs_rq)
739 return 1;
740
741 return 0;
742 }
743
744 #else /* CONFIG_FAIR_GROUP_SCHED */
745
746 #define for_each_sched_entity(se) \
747 for (; se; se = NULL)
748
749 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
750 {
751 return &task_rq(p)->cfs;
752 }
753
754 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
755 {
756 struct task_struct *p = task_of(se);
757 struct rq *rq = task_rq(p);
758
759 return &rq->cfs;
760 }
761
762 /* runqueue "owned" by this group */
763 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
764 {
765 return NULL;
766 }
767
768 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
769 {
770 return &cpu_rq(this_cpu)->cfs;
771 }
772
773 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
774 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
775
776 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
777 {
778 return 1;
779 }
780
781 #endif /* CONFIG_FAIR_GROUP_SCHED */
782
783 /*
784 * The enqueue_task method is called before nr_running is
785 * increased. Here we update the fair scheduling stats and
786 * then put the task into the rbtree:
787 */
788 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
789 {
790 struct cfs_rq *cfs_rq;
791 struct sched_entity *se = &p->se;
792
793 for_each_sched_entity(se) {
794 if (se->on_rq)
795 break;
796 cfs_rq = cfs_rq_of(se);
797 enqueue_entity(cfs_rq, se, wakeup);
798 }
799 }
800
801 /*
802 * The dequeue_task method is called before nr_running is
803 * decreased. We remove the task from the rbtree and
804 * update the fair scheduling stats:
805 */
806 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
807 {
808 struct cfs_rq *cfs_rq;
809 struct sched_entity *se = &p->se;
810
811 for_each_sched_entity(se) {
812 cfs_rq = cfs_rq_of(se);
813 dequeue_entity(cfs_rq, se, sleep);
814 /* Don't dequeue parent if it has other entities besides us */
815 if (cfs_rq->load.weight)
816 break;
817 }
818 }
819
820 /*
821 * sched_yield() support is very simple - we dequeue and enqueue
822 */
823 static void yield_task_fair(struct rq *rq, struct task_struct *p)
824 {
825 struct cfs_rq *cfs_rq = task_cfs_rq(p);
826
827 __update_rq_clock(rq);
828 /*
829 * Dequeue and enqueue the task to update its
830 * position within the tree:
831 */
832 dequeue_entity(cfs_rq, &p->se, 0);
833 enqueue_entity(cfs_rq, &p->se, 0);
834 }
835
836 /*
837 * Preempt the current task with a newly woken task if needed:
838 */
839 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
840 {
841 struct task_struct *curr = rq->curr;
842 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
843 unsigned long gran;
844
845 if (unlikely(rt_prio(p->prio))) {
846 update_rq_clock(rq);
847 update_curr(cfs_rq);
848 resched_task(curr);
849 return;
850 }
851
852 gran = sysctl_sched_wakeup_granularity;
853 /*
854 * Batch tasks prefer throughput over latency:
855 */
856 if (unlikely(p->policy == SCHED_BATCH))
857 gran = sysctl_sched_batch_wakeup_granularity;
858
859 if (is_same_group(curr, p))
860 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
861 }
862
863 static struct task_struct *pick_next_task_fair(struct rq *rq)
864 {
865 struct cfs_rq *cfs_rq = &rq->cfs;
866 struct sched_entity *se;
867
868 if (unlikely(!cfs_rq->nr_running))
869 return NULL;
870
871 do {
872 se = pick_next_entity(cfs_rq);
873 cfs_rq = group_cfs_rq(se);
874 } while (cfs_rq);
875
876 return task_of(se);
877 }
878
879 /*
880 * Account for a descheduled task:
881 */
882 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
883 {
884 struct sched_entity *se = &prev->se;
885 struct cfs_rq *cfs_rq;
886
887 for_each_sched_entity(se) {
888 cfs_rq = cfs_rq_of(se);
889 put_prev_entity(cfs_rq, se);
890 }
891 }
892
893 /**************************************************
894 * Fair scheduling class load-balancing methods:
895 */
896
897 /*
898 * Load-balancing iterator. Note: while the runqueue stays locked
899 * during the whole iteration, the current task might be
900 * dequeued so the iterator has to be dequeue-safe. Here we
901 * achieve that by always pre-iterating before returning
902 * the current task:
903 */
904 static inline struct task_struct *
905 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
906 {
907 struct task_struct *p;
908
909 if (!curr)
910 return NULL;
911
912 p = rb_entry(curr, struct task_struct, se.run_node);
913 cfs_rq->rb_load_balance_curr = rb_next(curr);
914
915 return p;
916 }
917
918 static struct task_struct *load_balance_start_fair(void *arg)
919 {
920 struct cfs_rq *cfs_rq = arg;
921
922 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
923 }
924
925 static struct task_struct *load_balance_next_fair(void *arg)
926 {
927 struct cfs_rq *cfs_rq = arg;
928
929 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
930 }
931
932 #ifdef CONFIG_FAIR_GROUP_SCHED
933 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
934 {
935 struct sched_entity *curr;
936 struct task_struct *p;
937
938 if (!cfs_rq->nr_running)
939 return MAX_PRIO;
940
941 curr = __pick_next_entity(cfs_rq);
942 p = task_of(curr);
943
944 return p->prio;
945 }
946 #endif
947
948 static unsigned long
949 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
950 unsigned long max_nr_move, unsigned long max_load_move,
951 struct sched_domain *sd, enum cpu_idle_type idle,
952 int *all_pinned, int *this_best_prio)
953 {
954 struct cfs_rq *busy_cfs_rq;
955 unsigned long load_moved, total_nr_moved = 0, nr_moved;
956 long rem_load_move = max_load_move;
957 struct rq_iterator cfs_rq_iterator;
958
959 cfs_rq_iterator.start = load_balance_start_fair;
960 cfs_rq_iterator.next = load_balance_next_fair;
961
962 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
963 #ifdef CONFIG_FAIR_GROUP_SCHED
964 struct cfs_rq *this_cfs_rq;
965 long imbalance;
966 unsigned long maxload;
967
968 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
969
970 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
971 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
972 if (imbalance <= 0)
973 continue;
974
975 /* Don't pull more than imbalance/2 */
976 imbalance /= 2;
977 maxload = min(rem_load_move, imbalance);
978
979 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
980 #else
981 # define maxload rem_load_move
982 #endif
983 /* pass busy_cfs_rq argument into
984 * load_balance_[start|next]_fair iterators
985 */
986 cfs_rq_iterator.arg = busy_cfs_rq;
987 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
988 max_nr_move, maxload, sd, idle, all_pinned,
989 &load_moved, this_best_prio, &cfs_rq_iterator);
990
991 total_nr_moved += nr_moved;
992 max_nr_move -= nr_moved;
993 rem_load_move -= load_moved;
994
995 if (max_nr_move <= 0 || rem_load_move <= 0)
996 break;
997 }
998
999 return max_load_move - rem_load_move;
1000 }
1001
1002 /*
1003 * scheduler tick hitting a task of our scheduling class:
1004 */
1005 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1006 {
1007 struct cfs_rq *cfs_rq;
1008 struct sched_entity *se = &curr->se;
1009
1010 for_each_sched_entity(se) {
1011 cfs_rq = cfs_rq_of(se);
1012 entity_tick(cfs_rq, se);
1013 }
1014 }
1015
1016 /*
1017 * Share the fairness runtime between parent and child, thus the
1018 * total amount of pressure for CPU stays equal - new tasks
1019 * get a chance to run but frequent forkers are not allowed to
1020 * monopolize the CPU. Note: the parent runqueue is locked,
1021 * the child is not running yet.
1022 */
1023 static void task_new_fair(struct rq *rq, struct task_struct *p)
1024 {
1025 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1026 struct sched_entity *se = &p->se;
1027
1028 sched_info_queued(p);
1029
1030 update_stats_enqueue(cfs_rq, se);
1031 /*
1032 * Child runs first: we let it run before the parent
1033 * until it reschedules once. We set up the key so that
1034 * it will preempt the parent:
1035 */
1036 p->se.fair_key = current->se.fair_key -
1037 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1038 /*
1039 * The first wait is dominated by the child-runs-first logic,
1040 * so do not credit it with that waiting time yet:
1041 */
1042 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1043 p->se.wait_start_fair = 0;
1044
1045 /*
1046 * The statistical average of wait_runtime is about
1047 * -granularity/2, so initialize the task with that:
1048 */
1049 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1050 p->se.wait_runtime = -((long)sysctl_sched_granularity / 2);
1051
1052 __enqueue_entity(cfs_rq, se);
1053 }
1054
1055 #ifdef CONFIG_FAIR_GROUP_SCHED
1056 /* Account for a task changing its policy or group.
1057 *
1058 * This routine is mostly called to set cfs_rq->curr field when a task
1059 * migrates between groups/classes.
1060 */
1061 static void set_curr_task_fair(struct rq *rq)
1062 {
1063 struct sched_entity *se = &rq->curr->se;
1064
1065 for_each_sched_entity(se)
1066 set_next_entity(cfs_rq_of(se), se);
1067 }
1068 #else
1069 static void set_curr_task_fair(struct rq *rq)
1070 {
1071 }
1072 #endif
1073
1074 /*
1075 * All the scheduling class methods:
1076 */
1077 struct sched_class fair_sched_class __read_mostly = {
1078 .enqueue_task = enqueue_task_fair,
1079 .dequeue_task = dequeue_task_fair,
1080 .yield_task = yield_task_fair,
1081
1082 .check_preempt_curr = check_preempt_curr_fair,
1083
1084 .pick_next_task = pick_next_task_fair,
1085 .put_prev_task = put_prev_task_fair,
1086
1087 .load_balance = load_balance_fair,
1088
1089 .set_curr_task = set_curr_task_fair,
1090 .task_tick = task_tick_fair,
1091 .task_new = task_new_fair,
1092 };
1093
1094 #ifdef CONFIG_SCHED_DEBUG
1095 static void print_cfs_stats(struct seq_file *m, int cpu)
1096 {
1097 struct cfs_rq *cfs_rq;
1098
1099 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1100 print_cfs_rq(m, cpu, cfs_rq);
1101 }
1102 #endif
This page took 0.052686 seconds and 6 git commands to generate.