sched: fix fair preempt check
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 return se->vruntime - cfs_rq->min_vruntime;
272 }
273
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (vruntime == cfs_rq->min_vruntime)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294
295 /*
296 * Enqueue an entity into the rb-tree:
297 */
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
342 }
343
344 if (cfs_rq->next == se)
345 cfs_rq->next = NULL;
346
347 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
348 }
349
350 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
351 {
352 struct rb_node *left = cfs_rq->rb_leftmost;
353
354 if (!left)
355 return NULL;
356
357 return rb_entry(left, struct sched_entity, run_node);
358 }
359
360 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
361 {
362 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
363
364 if (!last)
365 return NULL;
366
367 return rb_entry(last, struct sched_entity, run_node);
368 }
369
370 /**************************************************************
371 * Scheduling class statistics methods:
372 */
373
374 #ifdef CONFIG_SCHED_DEBUG
375 int sched_nr_latency_handler(struct ctl_table *table, int write,
376 struct file *filp, void __user *buffer, size_t *lenp,
377 loff_t *ppos)
378 {
379 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
380
381 if (ret || !write)
382 return ret;
383
384 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
385 sysctl_sched_min_granularity);
386
387 return 0;
388 }
389 #endif
390
391 /*
392 * delta *= P[w / rw]
393 */
394 static inline unsigned long
395 calc_delta_weight(unsigned long delta, struct sched_entity *se)
396 {
397 for_each_sched_entity(se) {
398 delta = calc_delta_mine(delta,
399 se->load.weight, &cfs_rq_of(se)->load);
400 }
401
402 return delta;
403 }
404
405 /*
406 * delta /= w
407 */
408 static inline unsigned long
409 calc_delta_fair(unsigned long delta, struct sched_entity *se)
410 {
411 if (unlikely(se->load.weight != NICE_0_LOAD))
412 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413
414 return delta;
415 }
416
417 /*
418 * The idea is to set a period in which each task runs once.
419 *
420 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
421 * this period because otherwise the slices get too small.
422 *
423 * p = (nr <= nl) ? l : l*nr/nl
424 */
425 static u64 __sched_period(unsigned long nr_running)
426 {
427 u64 period = sysctl_sched_latency;
428 unsigned long nr_latency = sched_nr_latency;
429
430 if (unlikely(nr_running > nr_latency)) {
431 period = sysctl_sched_min_granularity;
432 period *= nr_running;
433 }
434
435 return period;
436 }
437
438 /*
439 * We calculate the wall-time slice from the period by taking a part
440 * proportional to the weight.
441 *
442 * s = p*P[w/rw]
443 */
444 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445 {
446 unsigned long nr_running = cfs_rq->nr_running;
447
448 if (unlikely(!se->on_rq))
449 nr_running++;
450
451 return calc_delta_weight(__sched_period(nr_running), se);
452 }
453
454 /*
455 * We calculate the vruntime slice of a to be inserted task
456 *
457 * vs = s/w
458 */
459 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
460 {
461 return calc_delta_fair(sched_slice(cfs_rq, se), se);
462 }
463
464 /*
465 * Update the current task's runtime statistics. Skip current tasks that
466 * are not in our scheduling class.
467 */
468 static inline void
469 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
470 unsigned long delta_exec)
471 {
472 unsigned long delta_exec_weighted;
473
474 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
475
476 curr->sum_exec_runtime += delta_exec;
477 schedstat_add(cfs_rq, exec_clock, delta_exec);
478 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
479 curr->vruntime += delta_exec_weighted;
480 update_min_vruntime(cfs_rq);
481 }
482
483 static void update_curr(struct cfs_rq *cfs_rq)
484 {
485 struct sched_entity *curr = cfs_rq->curr;
486 u64 now = rq_of(cfs_rq)->clock;
487 unsigned long delta_exec;
488
489 if (unlikely(!curr))
490 return;
491
492 /*
493 * Get the amount of time the current task was running
494 * since the last time we changed load (this cannot
495 * overflow on 32 bits):
496 */
497 delta_exec = (unsigned long)(now - curr->exec_start);
498
499 __update_curr(cfs_rq, curr, delta_exec);
500 curr->exec_start = now;
501
502 if (entity_is_task(curr)) {
503 struct task_struct *curtask = task_of(curr);
504
505 cpuacct_charge(curtask, delta_exec);
506 account_group_exec_runtime(curtask, delta_exec);
507 }
508 }
509
510 static inline void
511 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 {
513 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
514 }
515
516 /*
517 * Task is being enqueued - update stats:
518 */
519 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 {
521 /*
522 * Are we enqueueing a waiting task? (for current tasks
523 * a dequeue/enqueue event is a NOP)
524 */
525 if (se != cfs_rq->curr)
526 update_stats_wait_start(cfs_rq, se);
527 }
528
529 static void
530 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532 schedstat_set(se->wait_max, max(se->wait_max,
533 rq_of(cfs_rq)->clock - se->wait_start));
534 schedstat_set(se->wait_count, se->wait_count + 1);
535 schedstat_set(se->wait_sum, se->wait_sum +
536 rq_of(cfs_rq)->clock - se->wait_start);
537 schedstat_set(se->wait_start, 0);
538 }
539
540 static inline void
541 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 /*
544 * Mark the end of the wait period if dequeueing a
545 * waiting task:
546 */
547 if (se != cfs_rq->curr)
548 update_stats_wait_end(cfs_rq, se);
549 }
550
551 /*
552 * We are picking a new current task - update its stats:
553 */
554 static inline void
555 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 /*
558 * We are starting a new run period:
559 */
560 se->exec_start = rq_of(cfs_rq)->clock;
561 }
562
563 /**************************************************
564 * Scheduling class queueing methods:
565 */
566
567 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
568 static void
569 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
570 {
571 cfs_rq->task_weight += weight;
572 }
573 #else
574 static inline void
575 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
576 {
577 }
578 #endif
579
580 static void
581 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
582 {
583 update_load_add(&cfs_rq->load, se->load.weight);
584 if (!parent_entity(se))
585 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
586 if (entity_is_task(se)) {
587 add_cfs_task_weight(cfs_rq, se->load.weight);
588 list_add(&se->group_node, &cfs_rq->tasks);
589 }
590 cfs_rq->nr_running++;
591 se->on_rq = 1;
592 }
593
594 static void
595 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
596 {
597 update_load_sub(&cfs_rq->load, se->load.weight);
598 if (!parent_entity(se))
599 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
600 if (entity_is_task(se)) {
601 add_cfs_task_weight(cfs_rq, -se->load.weight);
602 list_del_init(&se->group_node);
603 }
604 cfs_rq->nr_running--;
605 se->on_rq = 0;
606 }
607
608 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 {
610 #ifdef CONFIG_SCHEDSTATS
611 if (se->sleep_start) {
612 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
613 struct task_struct *tsk = task_of(se);
614
615 if ((s64)delta < 0)
616 delta = 0;
617
618 if (unlikely(delta > se->sleep_max))
619 se->sleep_max = delta;
620
621 se->sleep_start = 0;
622 se->sum_sleep_runtime += delta;
623
624 account_scheduler_latency(tsk, delta >> 10, 1);
625 }
626 if (se->block_start) {
627 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
628 struct task_struct *tsk = task_of(se);
629
630 if ((s64)delta < 0)
631 delta = 0;
632
633 if (unlikely(delta > se->block_max))
634 se->block_max = delta;
635
636 se->block_start = 0;
637 se->sum_sleep_runtime += delta;
638
639 /*
640 * Blocking time is in units of nanosecs, so shift by 20 to
641 * get a milliseconds-range estimation of the amount of
642 * time that the task spent sleeping:
643 */
644 if (unlikely(prof_on == SLEEP_PROFILING)) {
645
646 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
647 delta >> 20);
648 }
649 account_scheduler_latency(tsk, delta >> 10, 0);
650 }
651 #endif
652 }
653
654 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 {
656 #ifdef CONFIG_SCHED_DEBUG
657 s64 d = se->vruntime - cfs_rq->min_vruntime;
658
659 if (d < 0)
660 d = -d;
661
662 if (d > 3*sysctl_sched_latency)
663 schedstat_inc(cfs_rq, nr_spread_over);
664 #endif
665 }
666
667 static void
668 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
669 {
670 u64 vruntime = cfs_rq->min_vruntime;
671
672 /*
673 * The 'current' period is already promised to the current tasks,
674 * however the extra weight of the new task will slow them down a
675 * little, place the new task so that it fits in the slot that
676 * stays open at the end.
677 */
678 if (initial && sched_feat(START_DEBIT))
679 vruntime += sched_vslice(cfs_rq, se);
680
681 if (!initial) {
682 /* sleeps upto a single latency don't count. */
683 if (sched_feat(NEW_FAIR_SLEEPERS)) {
684 unsigned long thresh = sysctl_sched_latency;
685
686 /*
687 * convert the sleeper threshold into virtual time
688 */
689 if (sched_feat(NORMALIZED_SLEEPER))
690 thresh = calc_delta_fair(thresh, se);
691
692 vruntime -= thresh;
693 }
694
695 /* ensure we never gain time by being placed backwards. */
696 vruntime = max_vruntime(se->vruntime, vruntime);
697 }
698
699 se->vruntime = vruntime;
700 }
701
702 static void
703 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 {
705 /*
706 * Update run-time statistics of the 'current'.
707 */
708 update_curr(cfs_rq);
709 account_entity_enqueue(cfs_rq, se);
710
711 if (wakeup) {
712 place_entity(cfs_rq, se, 0);
713 enqueue_sleeper(cfs_rq, se);
714 }
715
716 update_stats_enqueue(cfs_rq, se);
717 check_spread(cfs_rq, se);
718 if (se != cfs_rq->curr)
719 __enqueue_entity(cfs_rq, se);
720 }
721
722 static void
723 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
724 {
725 /*
726 * Update run-time statistics of the 'current'.
727 */
728 update_curr(cfs_rq);
729
730 update_stats_dequeue(cfs_rq, se);
731 if (sleep) {
732 #ifdef CONFIG_SCHEDSTATS
733 if (entity_is_task(se)) {
734 struct task_struct *tsk = task_of(se);
735
736 if (tsk->state & TASK_INTERRUPTIBLE)
737 se->sleep_start = rq_of(cfs_rq)->clock;
738 if (tsk->state & TASK_UNINTERRUPTIBLE)
739 se->block_start = rq_of(cfs_rq)->clock;
740 }
741 #endif
742 }
743
744 if (se != cfs_rq->curr)
745 __dequeue_entity(cfs_rq, se);
746 account_entity_dequeue(cfs_rq, se);
747 update_min_vruntime(cfs_rq);
748 }
749
750 /*
751 * Preempt the current task with a newly woken task if needed:
752 */
753 static void
754 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
755 {
756 unsigned long ideal_runtime, delta_exec;
757
758 ideal_runtime = sched_slice(cfs_rq, curr);
759 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
760 if (delta_exec > ideal_runtime)
761 resched_task(rq_of(cfs_rq)->curr);
762 }
763
764 static void
765 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /* 'current' is not kept within the tree. */
768 if (se->on_rq) {
769 /*
770 * Any task has to be enqueued before it get to execute on
771 * a CPU. So account for the time it spent waiting on the
772 * runqueue.
773 */
774 update_stats_wait_end(cfs_rq, se);
775 __dequeue_entity(cfs_rq, se);
776 }
777
778 update_stats_curr_start(cfs_rq, se);
779 cfs_rq->curr = se;
780 #ifdef CONFIG_SCHEDSTATS
781 /*
782 * Track our maximum slice length, if the CPU's load is at
783 * least twice that of our own weight (i.e. dont track it
784 * when there are only lesser-weight tasks around):
785 */
786 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
787 se->slice_max = max(se->slice_max,
788 se->sum_exec_runtime - se->prev_sum_exec_runtime);
789 }
790 #endif
791 se->prev_sum_exec_runtime = se->sum_exec_runtime;
792 }
793
794 static int
795 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
796
797 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
798 {
799 struct sched_entity *se = __pick_next_entity(cfs_rq);
800
801 if (!cfs_rq->next || wakeup_preempt_entity(cfs_rq->next, se) == 1)
802 return se;
803
804 return cfs_rq->next;
805 }
806
807 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
808 {
809 /*
810 * If still on the runqueue then deactivate_task()
811 * was not called and update_curr() has to be done:
812 */
813 if (prev->on_rq)
814 update_curr(cfs_rq);
815
816 check_spread(cfs_rq, prev);
817 if (prev->on_rq) {
818 update_stats_wait_start(cfs_rq, prev);
819 /* Put 'current' back into the tree. */
820 __enqueue_entity(cfs_rq, prev);
821 }
822 cfs_rq->curr = NULL;
823 }
824
825 static void
826 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
827 {
828 /*
829 * Update run-time statistics of the 'current'.
830 */
831 update_curr(cfs_rq);
832
833 #ifdef CONFIG_SCHED_HRTICK
834 /*
835 * queued ticks are scheduled to match the slice, so don't bother
836 * validating it and just reschedule.
837 */
838 if (queued) {
839 resched_task(rq_of(cfs_rq)->curr);
840 return;
841 }
842 /*
843 * don't let the period tick interfere with the hrtick preemption
844 */
845 if (!sched_feat(DOUBLE_TICK) &&
846 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
847 return;
848 #endif
849
850 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
851 check_preempt_tick(cfs_rq, curr);
852 }
853
854 /**************************************************
855 * CFS operations on tasks:
856 */
857
858 #ifdef CONFIG_SCHED_HRTICK
859 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
860 {
861 struct sched_entity *se = &p->se;
862 struct cfs_rq *cfs_rq = cfs_rq_of(se);
863
864 WARN_ON(task_rq(p) != rq);
865
866 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
867 u64 slice = sched_slice(cfs_rq, se);
868 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
869 s64 delta = slice - ran;
870
871 if (delta < 0) {
872 if (rq->curr == p)
873 resched_task(p);
874 return;
875 }
876
877 /*
878 * Don't schedule slices shorter than 10000ns, that just
879 * doesn't make sense. Rely on vruntime for fairness.
880 */
881 if (rq->curr != p)
882 delta = max_t(s64, 10000LL, delta);
883
884 hrtick_start(rq, delta);
885 }
886 }
887
888 /*
889 * called from enqueue/dequeue and updates the hrtick when the
890 * current task is from our class and nr_running is low enough
891 * to matter.
892 */
893 static void hrtick_update(struct rq *rq)
894 {
895 struct task_struct *curr = rq->curr;
896
897 if (curr->sched_class != &fair_sched_class)
898 return;
899
900 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
901 hrtick_start_fair(rq, curr);
902 }
903 #else /* !CONFIG_SCHED_HRTICK */
904 static inline void
905 hrtick_start_fair(struct rq *rq, struct task_struct *p)
906 {
907 }
908
909 static inline void hrtick_update(struct rq *rq)
910 {
911 }
912 #endif
913
914 /*
915 * The enqueue_task method is called before nr_running is
916 * increased. Here we update the fair scheduling stats and
917 * then put the task into the rbtree:
918 */
919 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
920 {
921 struct cfs_rq *cfs_rq;
922 struct sched_entity *se = &p->se;
923
924 for_each_sched_entity(se) {
925 if (se->on_rq)
926 break;
927 cfs_rq = cfs_rq_of(se);
928 enqueue_entity(cfs_rq, se, wakeup);
929 wakeup = 1;
930 }
931
932 hrtick_update(rq);
933 }
934
935 /*
936 * The dequeue_task method is called before nr_running is
937 * decreased. We remove the task from the rbtree and
938 * update the fair scheduling stats:
939 */
940 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
941 {
942 struct cfs_rq *cfs_rq;
943 struct sched_entity *se = &p->se;
944
945 for_each_sched_entity(se) {
946 cfs_rq = cfs_rq_of(se);
947 dequeue_entity(cfs_rq, se, sleep);
948 /* Don't dequeue parent if it has other entities besides us */
949 if (cfs_rq->load.weight)
950 break;
951 sleep = 1;
952 }
953
954 hrtick_update(rq);
955 }
956
957 /*
958 * sched_yield() support is very simple - we dequeue and enqueue.
959 *
960 * If compat_yield is turned on then we requeue to the end of the tree.
961 */
962 static void yield_task_fair(struct rq *rq)
963 {
964 struct task_struct *curr = rq->curr;
965 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
966 struct sched_entity *rightmost, *se = &curr->se;
967
968 /*
969 * Are we the only task in the tree?
970 */
971 if (unlikely(cfs_rq->nr_running == 1))
972 return;
973
974 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
975 update_rq_clock(rq);
976 /*
977 * Update run-time statistics of the 'current'.
978 */
979 update_curr(cfs_rq);
980
981 return;
982 }
983 /*
984 * Find the rightmost entry in the rbtree:
985 */
986 rightmost = __pick_last_entity(cfs_rq);
987 /*
988 * Already in the rightmost position?
989 */
990 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
991 return;
992
993 /*
994 * Minimally necessary key value to be last in the tree:
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
997 */
998 se->vruntime = rightmost->vruntime + 1;
999 }
1000
1001 /*
1002 * wake_idle() will wake a task on an idle cpu if task->cpu is
1003 * not idle and an idle cpu is available. The span of cpus to
1004 * search starts with cpus closest then further out as needed,
1005 * so we always favor a closer, idle cpu.
1006 * Domains may include CPUs that are not usable for migration,
1007 * hence we need to mask them out (cpu_active_map)
1008 *
1009 * Returns the CPU we should wake onto.
1010 */
1011 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1012 static int wake_idle(int cpu, struct task_struct *p)
1013 {
1014 cpumask_t tmp;
1015 struct sched_domain *sd;
1016 int i;
1017
1018 /*
1019 * If it is idle, then it is the best cpu to run this task.
1020 *
1021 * This cpu is also the best, if it has more than one task already.
1022 * Siblings must be also busy(in most cases) as they didn't already
1023 * pickup the extra load from this cpu and hence we need not check
1024 * sibling runqueue info. This will avoid the checks and cache miss
1025 * penalities associated with that.
1026 */
1027 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1028 return cpu;
1029
1030 for_each_domain(cpu, sd) {
1031 if ((sd->flags & SD_WAKE_IDLE)
1032 || ((sd->flags & SD_WAKE_IDLE_FAR)
1033 && !task_hot(p, task_rq(p)->clock, sd))) {
1034 cpus_and(tmp, sd->span, p->cpus_allowed);
1035 cpus_and(tmp, tmp, cpu_active_map);
1036 for_each_cpu_mask_nr(i, tmp) {
1037 if (idle_cpu(i)) {
1038 if (i != task_cpu(p)) {
1039 schedstat_inc(p,
1040 se.nr_wakeups_idle);
1041 }
1042 return i;
1043 }
1044 }
1045 } else {
1046 break;
1047 }
1048 }
1049 return cpu;
1050 }
1051 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1052 static inline int wake_idle(int cpu, struct task_struct *p)
1053 {
1054 return cpu;
1055 }
1056 #endif
1057
1058 #ifdef CONFIG_SMP
1059
1060 #ifdef CONFIG_FAIR_GROUP_SCHED
1061 /*
1062 * effective_load() calculates the load change as seen from the root_task_group
1063 *
1064 * Adding load to a group doesn't make a group heavier, but can cause movement
1065 * of group shares between cpus. Assuming the shares were perfectly aligned one
1066 * can calculate the shift in shares.
1067 *
1068 * The problem is that perfectly aligning the shares is rather expensive, hence
1069 * we try to avoid doing that too often - see update_shares(), which ratelimits
1070 * this change.
1071 *
1072 * We compensate this by not only taking the current delta into account, but
1073 * also considering the delta between when the shares were last adjusted and
1074 * now.
1075 *
1076 * We still saw a performance dip, some tracing learned us that between
1077 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1078 * significantly. Therefore try to bias the error in direction of failing
1079 * the affine wakeup.
1080 *
1081 */
1082 static long effective_load(struct task_group *tg, int cpu,
1083 long wl, long wg)
1084 {
1085 struct sched_entity *se = tg->se[cpu];
1086
1087 if (!tg->parent)
1088 return wl;
1089
1090 /*
1091 * By not taking the decrease of shares on the other cpu into
1092 * account our error leans towards reducing the affine wakeups.
1093 */
1094 if (!wl && sched_feat(ASYM_EFF_LOAD))
1095 return wl;
1096
1097 for_each_sched_entity(se) {
1098 long S, rw, s, a, b;
1099 long more_w;
1100
1101 /*
1102 * Instead of using this increment, also add the difference
1103 * between when the shares were last updated and now.
1104 */
1105 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1106 wl += more_w;
1107 wg += more_w;
1108
1109 S = se->my_q->tg->shares;
1110 s = se->my_q->shares;
1111 rw = se->my_q->rq_weight;
1112
1113 a = S*(rw + wl);
1114 b = S*rw + s*wg;
1115
1116 wl = s*(a-b);
1117
1118 if (likely(b))
1119 wl /= b;
1120
1121 /*
1122 * Assume the group is already running and will
1123 * thus already be accounted for in the weight.
1124 *
1125 * That is, moving shares between CPUs, does not
1126 * alter the group weight.
1127 */
1128 wg = 0;
1129 }
1130
1131 return wl;
1132 }
1133
1134 #else
1135
1136 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1137 unsigned long wl, unsigned long wg)
1138 {
1139 return wl;
1140 }
1141
1142 #endif
1143
1144 static int
1145 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1146 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1147 int idx, unsigned long load, unsigned long this_load,
1148 unsigned int imbalance)
1149 {
1150 struct task_struct *curr = this_rq->curr;
1151 struct task_group *tg;
1152 unsigned long tl = this_load;
1153 unsigned long tl_per_task;
1154 unsigned long weight;
1155 int balanced;
1156
1157 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1158 return 0;
1159
1160 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1161 p->se.avg_overlap > sysctl_sched_migration_cost))
1162 sync = 0;
1163
1164 /*
1165 * If sync wakeup then subtract the (maximum possible)
1166 * effect of the currently running task from the load
1167 * of the current CPU:
1168 */
1169 if (sync) {
1170 tg = task_group(current);
1171 weight = current->se.load.weight;
1172
1173 tl += effective_load(tg, this_cpu, -weight, -weight);
1174 load += effective_load(tg, prev_cpu, 0, -weight);
1175 }
1176
1177 tg = task_group(p);
1178 weight = p->se.load.weight;
1179
1180 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1181 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1182
1183 /*
1184 * If the currently running task will sleep within
1185 * a reasonable amount of time then attract this newly
1186 * woken task:
1187 */
1188 if (sync && balanced)
1189 return 1;
1190
1191 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1192 tl_per_task = cpu_avg_load_per_task(this_cpu);
1193
1194 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1195 tl_per_task)) {
1196 /*
1197 * This domain has SD_WAKE_AFFINE and
1198 * p is cache cold in this domain, and
1199 * there is no bad imbalance.
1200 */
1201 schedstat_inc(this_sd, ttwu_move_affine);
1202 schedstat_inc(p, se.nr_wakeups_affine);
1203
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static int select_task_rq_fair(struct task_struct *p, int sync)
1210 {
1211 struct sched_domain *sd, *this_sd = NULL;
1212 int prev_cpu, this_cpu, new_cpu;
1213 unsigned long load, this_load;
1214 struct rq *this_rq;
1215 unsigned int imbalance;
1216 int idx;
1217
1218 prev_cpu = task_cpu(p);
1219 this_cpu = smp_processor_id();
1220 this_rq = cpu_rq(this_cpu);
1221 new_cpu = prev_cpu;
1222
1223 if (prev_cpu == this_cpu)
1224 goto out;
1225 /*
1226 * 'this_sd' is the first domain that both
1227 * this_cpu and prev_cpu are present in:
1228 */
1229 for_each_domain(this_cpu, sd) {
1230 if (cpu_isset(prev_cpu, sd->span)) {
1231 this_sd = sd;
1232 break;
1233 }
1234 }
1235
1236 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1237 goto out;
1238
1239 /*
1240 * Check for affine wakeup and passive balancing possibilities.
1241 */
1242 if (!this_sd)
1243 goto out;
1244
1245 idx = this_sd->wake_idx;
1246
1247 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1248
1249 load = source_load(prev_cpu, idx);
1250 this_load = target_load(this_cpu, idx);
1251
1252 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1253 load, this_load, imbalance))
1254 return this_cpu;
1255
1256 /*
1257 * Start passive balancing when half the imbalance_pct
1258 * limit is reached.
1259 */
1260 if (this_sd->flags & SD_WAKE_BALANCE) {
1261 if (imbalance*this_load <= 100*load) {
1262 schedstat_inc(this_sd, ttwu_move_balance);
1263 schedstat_inc(p, se.nr_wakeups_passive);
1264 return this_cpu;
1265 }
1266 }
1267
1268 out:
1269 return wake_idle(new_cpu, p);
1270 }
1271 #endif /* CONFIG_SMP */
1272
1273 static unsigned long wakeup_gran(struct sched_entity *se)
1274 {
1275 unsigned long gran = sysctl_sched_wakeup_granularity;
1276
1277 /*
1278 * More easily preempt - nice tasks, while not making it harder for
1279 * + nice tasks.
1280 */
1281 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1282 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1283
1284 return gran;
1285 }
1286
1287 /*
1288 * Should 'se' preempt 'curr'.
1289 *
1290 * |s1
1291 * |s2
1292 * |s3
1293 * g
1294 * |<--->|c
1295 *
1296 * w(c, s1) = -1
1297 * w(c, s2) = 0
1298 * w(c, s3) = 1
1299 *
1300 */
1301 static int
1302 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1303 {
1304 s64 gran, vdiff = curr->vruntime - se->vruntime;
1305
1306 if (vdiff <= 0)
1307 return -1;
1308
1309 gran = wakeup_gran(curr);
1310 if (vdiff > gran)
1311 return 1;
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Preempt the current task with a newly woken task if needed:
1318 */
1319 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1320 {
1321 struct task_struct *curr = rq->curr;
1322 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1323 struct sched_entity *se = &curr->se, *pse = &p->se;
1324
1325 if (unlikely(rt_prio(p->prio))) {
1326 update_rq_clock(rq);
1327 update_curr(cfs_rq);
1328 resched_task(curr);
1329 return;
1330 }
1331
1332 if (unlikely(p->sched_class != &fair_sched_class))
1333 return;
1334
1335 if (unlikely(se == pse))
1336 return;
1337
1338 cfs_rq_of(pse)->next = pse;
1339
1340 /*
1341 * We can come here with TIF_NEED_RESCHED already set from new task
1342 * wake up path.
1343 */
1344 if (test_tsk_need_resched(curr))
1345 return;
1346
1347 /*
1348 * Batch tasks do not preempt (their preemption is driven by
1349 * the tick):
1350 */
1351 if (unlikely(p->policy == SCHED_BATCH))
1352 return;
1353
1354 if (!sched_feat(WAKEUP_PREEMPT))
1355 return;
1356
1357 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1358 (se->avg_overlap < sysctl_sched_migration_cost &&
1359 pse->avg_overlap < sysctl_sched_migration_cost))) {
1360 resched_task(curr);
1361 return;
1362 }
1363
1364 find_matching_se(&se, &pse);
1365
1366 while (se) {
1367 BUG_ON(!pse);
1368
1369 if (wakeup_preempt_entity(se, pse) == 1) {
1370 resched_task(curr);
1371 break;
1372 }
1373
1374 se = parent_entity(se);
1375 pse = parent_entity(pse);
1376 }
1377 }
1378
1379 static struct task_struct *pick_next_task_fair(struct rq *rq)
1380 {
1381 struct task_struct *p;
1382 struct cfs_rq *cfs_rq = &rq->cfs;
1383 struct sched_entity *se;
1384
1385 if (unlikely(!cfs_rq->nr_running))
1386 return NULL;
1387
1388 do {
1389 se = pick_next_entity(cfs_rq);
1390 set_next_entity(cfs_rq, se);
1391 cfs_rq = group_cfs_rq(se);
1392 } while (cfs_rq);
1393
1394 p = task_of(se);
1395 hrtick_start_fair(rq, p);
1396
1397 return p;
1398 }
1399
1400 /*
1401 * Account for a descheduled task:
1402 */
1403 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1404 {
1405 struct sched_entity *se = &prev->se;
1406 struct cfs_rq *cfs_rq;
1407
1408 for_each_sched_entity(se) {
1409 cfs_rq = cfs_rq_of(se);
1410 put_prev_entity(cfs_rq, se);
1411 }
1412 }
1413
1414 #ifdef CONFIG_SMP
1415 /**************************************************
1416 * Fair scheduling class load-balancing methods:
1417 */
1418
1419 /*
1420 * Load-balancing iterator. Note: while the runqueue stays locked
1421 * during the whole iteration, the current task might be
1422 * dequeued so the iterator has to be dequeue-safe. Here we
1423 * achieve that by always pre-iterating before returning
1424 * the current task:
1425 */
1426 static struct task_struct *
1427 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1428 {
1429 struct task_struct *p = NULL;
1430 struct sched_entity *se;
1431
1432 if (next == &cfs_rq->tasks)
1433 return NULL;
1434
1435 se = list_entry(next, struct sched_entity, group_node);
1436 p = task_of(se);
1437 cfs_rq->balance_iterator = next->next;
1438
1439 return p;
1440 }
1441
1442 static struct task_struct *load_balance_start_fair(void *arg)
1443 {
1444 struct cfs_rq *cfs_rq = arg;
1445
1446 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1447 }
1448
1449 static struct task_struct *load_balance_next_fair(void *arg)
1450 {
1451 struct cfs_rq *cfs_rq = arg;
1452
1453 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1454 }
1455
1456 static unsigned long
1457 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1458 unsigned long max_load_move, struct sched_domain *sd,
1459 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1460 struct cfs_rq *cfs_rq)
1461 {
1462 struct rq_iterator cfs_rq_iterator;
1463
1464 cfs_rq_iterator.start = load_balance_start_fair;
1465 cfs_rq_iterator.next = load_balance_next_fair;
1466 cfs_rq_iterator.arg = cfs_rq;
1467
1468 return balance_tasks(this_rq, this_cpu, busiest,
1469 max_load_move, sd, idle, all_pinned,
1470 this_best_prio, &cfs_rq_iterator);
1471 }
1472
1473 #ifdef CONFIG_FAIR_GROUP_SCHED
1474 static unsigned long
1475 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1476 unsigned long max_load_move,
1477 struct sched_domain *sd, enum cpu_idle_type idle,
1478 int *all_pinned, int *this_best_prio)
1479 {
1480 long rem_load_move = max_load_move;
1481 int busiest_cpu = cpu_of(busiest);
1482 struct task_group *tg;
1483
1484 rcu_read_lock();
1485 update_h_load(busiest_cpu);
1486
1487 list_for_each_entry_rcu(tg, &task_groups, list) {
1488 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1489 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1490 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1491 u64 rem_load, moved_load;
1492
1493 /*
1494 * empty group
1495 */
1496 if (!busiest_cfs_rq->task_weight)
1497 continue;
1498
1499 rem_load = (u64)rem_load_move * busiest_weight;
1500 rem_load = div_u64(rem_load, busiest_h_load + 1);
1501
1502 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1503 rem_load, sd, idle, all_pinned, this_best_prio,
1504 tg->cfs_rq[busiest_cpu]);
1505
1506 if (!moved_load)
1507 continue;
1508
1509 moved_load *= busiest_h_load;
1510 moved_load = div_u64(moved_load, busiest_weight + 1);
1511
1512 rem_load_move -= moved_load;
1513 if (rem_load_move < 0)
1514 break;
1515 }
1516 rcu_read_unlock();
1517
1518 return max_load_move - rem_load_move;
1519 }
1520 #else
1521 static unsigned long
1522 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1523 unsigned long max_load_move,
1524 struct sched_domain *sd, enum cpu_idle_type idle,
1525 int *all_pinned, int *this_best_prio)
1526 {
1527 return __load_balance_fair(this_rq, this_cpu, busiest,
1528 max_load_move, sd, idle, all_pinned,
1529 this_best_prio, &busiest->cfs);
1530 }
1531 #endif
1532
1533 static int
1534 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1535 struct sched_domain *sd, enum cpu_idle_type idle)
1536 {
1537 struct cfs_rq *busy_cfs_rq;
1538 struct rq_iterator cfs_rq_iterator;
1539
1540 cfs_rq_iterator.start = load_balance_start_fair;
1541 cfs_rq_iterator.next = load_balance_next_fair;
1542
1543 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1544 /*
1545 * pass busy_cfs_rq argument into
1546 * load_balance_[start|next]_fair iterators
1547 */
1548 cfs_rq_iterator.arg = busy_cfs_rq;
1549 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1550 &cfs_rq_iterator))
1551 return 1;
1552 }
1553
1554 return 0;
1555 }
1556 #endif /* CONFIG_SMP */
1557
1558 /*
1559 * scheduler tick hitting a task of our scheduling class:
1560 */
1561 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1562 {
1563 struct cfs_rq *cfs_rq;
1564 struct sched_entity *se = &curr->se;
1565
1566 for_each_sched_entity(se) {
1567 cfs_rq = cfs_rq_of(se);
1568 entity_tick(cfs_rq, se, queued);
1569 }
1570 }
1571
1572 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1573
1574 /*
1575 * Share the fairness runtime between parent and child, thus the
1576 * total amount of pressure for CPU stays equal - new tasks
1577 * get a chance to run but frequent forkers are not allowed to
1578 * monopolize the CPU. Note: the parent runqueue is locked,
1579 * the child is not running yet.
1580 */
1581 static void task_new_fair(struct rq *rq, struct task_struct *p)
1582 {
1583 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1584 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1585 int this_cpu = smp_processor_id();
1586
1587 sched_info_queued(p);
1588
1589 update_curr(cfs_rq);
1590 place_entity(cfs_rq, se, 1);
1591
1592 /* 'curr' will be NULL if the child belongs to a different group */
1593 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1594 curr && curr->vruntime < se->vruntime) {
1595 /*
1596 * Upon rescheduling, sched_class::put_prev_task() will place
1597 * 'current' within the tree based on its new key value.
1598 */
1599 swap(curr->vruntime, se->vruntime);
1600 resched_task(rq->curr);
1601 }
1602
1603 enqueue_task_fair(rq, p, 0);
1604 }
1605
1606 /*
1607 * Priority of the task has changed. Check to see if we preempt
1608 * the current task.
1609 */
1610 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1611 int oldprio, int running)
1612 {
1613 /*
1614 * Reschedule if we are currently running on this runqueue and
1615 * our priority decreased, or if we are not currently running on
1616 * this runqueue and our priority is higher than the current's
1617 */
1618 if (running) {
1619 if (p->prio > oldprio)
1620 resched_task(rq->curr);
1621 } else
1622 check_preempt_curr(rq, p, 0);
1623 }
1624
1625 /*
1626 * We switched to the sched_fair class.
1627 */
1628 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1629 int running)
1630 {
1631 /*
1632 * We were most likely switched from sched_rt, so
1633 * kick off the schedule if running, otherwise just see
1634 * if we can still preempt the current task.
1635 */
1636 if (running)
1637 resched_task(rq->curr);
1638 else
1639 check_preempt_curr(rq, p, 0);
1640 }
1641
1642 /* Account for a task changing its policy or group.
1643 *
1644 * This routine is mostly called to set cfs_rq->curr field when a task
1645 * migrates between groups/classes.
1646 */
1647 static void set_curr_task_fair(struct rq *rq)
1648 {
1649 struct sched_entity *se = &rq->curr->se;
1650
1651 for_each_sched_entity(se)
1652 set_next_entity(cfs_rq_of(se), se);
1653 }
1654
1655 #ifdef CONFIG_FAIR_GROUP_SCHED
1656 static void moved_group_fair(struct task_struct *p)
1657 {
1658 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1659
1660 update_curr(cfs_rq);
1661 place_entity(cfs_rq, &p->se, 1);
1662 }
1663 #endif
1664
1665 /*
1666 * All the scheduling class methods:
1667 */
1668 static const struct sched_class fair_sched_class = {
1669 .next = &idle_sched_class,
1670 .enqueue_task = enqueue_task_fair,
1671 .dequeue_task = dequeue_task_fair,
1672 .yield_task = yield_task_fair,
1673
1674 .check_preempt_curr = check_preempt_wakeup,
1675
1676 .pick_next_task = pick_next_task_fair,
1677 .put_prev_task = put_prev_task_fair,
1678
1679 #ifdef CONFIG_SMP
1680 .select_task_rq = select_task_rq_fair,
1681
1682 .load_balance = load_balance_fair,
1683 .move_one_task = move_one_task_fair,
1684 #endif
1685
1686 .set_curr_task = set_curr_task_fair,
1687 .task_tick = task_tick_fair,
1688 .task_new = task_new_fair,
1689
1690 .prio_changed = prio_changed_fair,
1691 .switched_to = switched_to_fair,
1692
1693 #ifdef CONFIG_FAIR_GROUP_SCHED
1694 .moved_group = moved_group_fair,
1695 #endif
1696 };
1697
1698 #ifdef CONFIG_SCHED_DEBUG
1699 static void print_cfs_stats(struct seq_file *m, int cpu)
1700 {
1701 struct cfs_rq *cfs_rq;
1702
1703 rcu_read_lock();
1704 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1705 print_cfs_rq(m, cpu, cfs_rq);
1706 rcu_read_unlock();
1707 }
1708 #endif
This page took 0.067246 seconds and 6 git commands to generate.