sched: remove __update_rq_clock() call from entity_tick()
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20 /*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34 unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36 /*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47 /*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55 unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57 unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59 /*
60 * Initialized in sched_init_granularity():
61 */
62 unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64 /*
65 * Debugging: various feature bits
66 */
67 enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74 };
75
76 unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84 extern struct sched_class fair_sched_class;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* currently running entity (if any) on this cfs_rq */
99 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100 {
101 return cfs_rq->curr;
102 }
103
104 /* An entity is a task if it doesn't "own" a runqueue */
105 #define entity_is_task(se) (!se->my_q)
106
107 static inline void
108 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109 {
110 cfs_rq->curr = se;
111 }
112
113 #else /* CONFIG_FAIR_GROUP_SCHED */
114
115 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116 {
117 return container_of(cfs_rq, struct rq, cfs);
118 }
119
120 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121 {
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128 }
129
130 #define entity_is_task(se) 1
131
132 static inline void
133 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135 #endif /* CONFIG_FAIR_GROUP_SCHED */
136
137 static inline struct task_struct *task_of(struct sched_entity *se)
138 {
139 return container_of(se, struct task_struct, se);
140 }
141
142
143 /**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147 /*
148 * Enqueue an entity into the rb-tree:
149 */
150 static inline void
151 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152 {
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189 }
190
191 static inline void
192 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200 }
201
202 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203 {
204 return cfs_rq->rb_leftmost;
205 }
206
207 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208 {
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210 }
211
212 /**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216 /*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220 static long
221 niced_granularity(struct sched_entity *curr, unsigned long granularity)
222 {
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240 }
241
242 static inline void
243 limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244 {
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261 }
262
263 static inline void
264 __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265 {
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269 }
270
271 static void
272 add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273 {
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277 }
278
279 /*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283 static inline void
284 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
285 {
286 unsigned long delta, delta_exec, delta_fair, delta_mine;
287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
290 delta_exec = curr->delta_exec;
291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
296 if (unlikely(!load))
297 return;
298
299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321 }
322
323 static void update_curr(struct cfs_rq *cfs_rq)
324 {
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
336 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
341 __update_curr(cfs_rq, curr);
342 curr->delta_exec = 0;
343 }
344 curr->exec_start = rq_of(cfs_rq)->clock;
345 }
346
347 static inline void
348 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 se->wait_start_fair = cfs_rq->fair_clock;
351 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
352 }
353
354 /*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358 #if BITS_PER_LONG == 32
359 static inline unsigned long
360 calc_weighted(unsigned long delta, unsigned long weight, int shift)
361 {
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367 }
368 #else
369 static inline unsigned long
370 calc_weighted(unsigned long delta, unsigned long weight, int shift)
371 {
372 return delta * weight >> shift;
373 }
374 #endif
375
376 /*
377 * Task is being enqueued - update stats:
378 */
379 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
380 {
381 s64 key;
382
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq_curr(cfs_rq))
388 update_stats_wait_start(cfs_rq, se);
389 /*
390 * Update the key:
391 */
392 key = cfs_rq->fair_clock;
393
394 /*
395 * Optimize the common nice 0 case:
396 */
397 if (likely(se->load.weight == NICE_0_LOAD)) {
398 key -= se->wait_runtime;
399 } else {
400 u64 tmp;
401
402 if (se->wait_runtime < 0) {
403 tmp = -se->wait_runtime;
404 key += (tmp * se->load.inv_weight) >>
405 (WMULT_SHIFT - NICE_0_SHIFT);
406 } else {
407 tmp = se->wait_runtime;
408 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
409 }
410 }
411
412 se->fair_key = key;
413 }
414
415 /*
416 * Note: must be called with a freshly updated rq->fair_clock.
417 */
418 static inline void
419 __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
420 {
421 unsigned long delta_fair = se->delta_fair_run;
422
423 schedstat_set(se->wait_max, max(se->wait_max,
424 rq_of(cfs_rq)->clock - se->wait_start));
425
426 if (unlikely(se->load.weight != NICE_0_LOAD))
427 delta_fair = calc_weighted(delta_fair, se->load.weight,
428 NICE_0_SHIFT);
429
430 add_wait_runtime(cfs_rq, se, delta_fair);
431 }
432
433 static void
434 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
435 {
436 unsigned long delta_fair;
437
438 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
439 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
440
441 se->delta_fair_run += delta_fair;
442 if (unlikely(abs(se->delta_fair_run) >=
443 sysctl_sched_stat_granularity)) {
444 __update_stats_wait_end(cfs_rq, se);
445 se->delta_fair_run = 0;
446 }
447
448 se->wait_start_fair = 0;
449 schedstat_set(se->wait_start, 0);
450 }
451
452 static inline void
453 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
454 {
455 update_curr(cfs_rq);
456 /*
457 * Mark the end of the wait period if dequeueing a
458 * waiting task:
459 */
460 if (se != cfs_rq_curr(cfs_rq))
461 update_stats_wait_end(cfs_rq, se);
462 }
463
464 /*
465 * We are picking a new current task - update its stats:
466 */
467 static inline void
468 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 /*
471 * We are starting a new run period:
472 */
473 se->exec_start = rq_of(cfs_rq)->clock;
474 }
475
476 /*
477 * We are descheduling a task - update its stats:
478 */
479 static inline void
480 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
481 {
482 se->exec_start = 0;
483 }
484
485 /**************************************************
486 * Scheduling class queueing methods:
487 */
488
489 static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
490 {
491 unsigned long load = cfs_rq->load.weight, delta_fair;
492 long prev_runtime;
493
494 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
495 load = rq_of(cfs_rq)->cpu_load[2];
496
497 delta_fair = se->delta_fair_sleep;
498
499 /*
500 * Fix up delta_fair with the effect of us running
501 * during the whole sleep period:
502 */
503 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
504 delta_fair = div64_likely32((u64)delta_fair * load,
505 load + se->load.weight);
506
507 if (unlikely(se->load.weight != NICE_0_LOAD))
508 delta_fair = calc_weighted(delta_fair, se->load.weight,
509 NICE_0_SHIFT);
510
511 prev_runtime = se->wait_runtime;
512 __add_wait_runtime(cfs_rq, se, delta_fair);
513 delta_fair = se->wait_runtime - prev_runtime;
514
515 /*
516 * Track the amount of bonus we've given to sleepers:
517 */
518 cfs_rq->sleeper_bonus += delta_fair;
519
520 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
521 }
522
523 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 struct task_struct *tsk = task_of(se);
526 unsigned long delta_fair;
527
528 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
529 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
530 return;
531
532 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
533 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
534
535 se->delta_fair_sleep += delta_fair;
536 if (unlikely(abs(se->delta_fair_sleep) >=
537 sysctl_sched_stat_granularity)) {
538 __enqueue_sleeper(cfs_rq, se);
539 se->delta_fair_sleep = 0;
540 }
541
542 se->sleep_start_fair = 0;
543
544 #ifdef CONFIG_SCHEDSTATS
545 if (se->sleep_start) {
546 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
547
548 if ((s64)delta < 0)
549 delta = 0;
550
551 if (unlikely(delta > se->sleep_max))
552 se->sleep_max = delta;
553
554 se->sleep_start = 0;
555 se->sum_sleep_runtime += delta;
556 }
557 if (se->block_start) {
558 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
559
560 if ((s64)delta < 0)
561 delta = 0;
562
563 if (unlikely(delta > se->block_max))
564 se->block_max = delta;
565
566 se->block_start = 0;
567 se->sum_sleep_runtime += delta;
568 }
569 #endif
570 }
571
572 static void
573 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
574 {
575 /*
576 * Update the fair clock.
577 */
578 update_curr(cfs_rq);
579
580 if (wakeup)
581 enqueue_sleeper(cfs_rq, se);
582
583 update_stats_enqueue(cfs_rq, se);
584 __enqueue_entity(cfs_rq, se);
585 }
586
587 static void
588 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
589 {
590 update_stats_dequeue(cfs_rq, se);
591 if (sleep) {
592 se->sleep_start_fair = cfs_rq->fair_clock;
593 #ifdef CONFIG_SCHEDSTATS
594 if (entity_is_task(se)) {
595 struct task_struct *tsk = task_of(se);
596
597 if (tsk->state & TASK_INTERRUPTIBLE)
598 se->sleep_start = rq_of(cfs_rq)->clock;
599 if (tsk->state & TASK_UNINTERRUPTIBLE)
600 se->block_start = rq_of(cfs_rq)->clock;
601 }
602 cfs_rq->wait_runtime -= se->wait_runtime;
603 #endif
604 }
605 __dequeue_entity(cfs_rq, se);
606 }
607
608 /*
609 * Preempt the current task with a newly woken task if needed:
610 */
611 static void
612 __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
613 struct sched_entity *curr, unsigned long granularity)
614 {
615 s64 __delta = curr->fair_key - se->fair_key;
616
617 /*
618 * Take scheduling granularity into account - do not
619 * preempt the current task unless the best task has
620 * a larger than sched_granularity fairness advantage:
621 */
622 if (__delta > niced_granularity(curr, granularity))
623 resched_task(rq_of(cfs_rq)->curr);
624 }
625
626 static inline void
627 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 {
629 /*
630 * Any task has to be enqueued before it get to execute on
631 * a CPU. So account for the time it spent waiting on the
632 * runqueue. (note, here we rely on pick_next_task() having
633 * done a put_prev_task_fair() shortly before this, which
634 * updated rq->fair_clock - used by update_stats_wait_end())
635 */
636 update_stats_wait_end(cfs_rq, se);
637 update_stats_curr_start(cfs_rq, se);
638 set_cfs_rq_curr(cfs_rq, se);
639 }
640
641 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
642 {
643 struct sched_entity *se = __pick_next_entity(cfs_rq);
644
645 set_next_entity(cfs_rq, se);
646
647 return se;
648 }
649
650 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
651 {
652 /*
653 * If still on the runqueue then deactivate_task()
654 * was not called and update_curr() has to be done:
655 */
656 if (prev->on_rq)
657 update_curr(cfs_rq);
658
659 update_stats_curr_end(cfs_rq, prev);
660
661 if (prev->on_rq)
662 update_stats_wait_start(cfs_rq, prev);
663 set_cfs_rq_curr(cfs_rq, NULL);
664 }
665
666 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
667 {
668 struct sched_entity *next;
669
670 /*
671 * Dequeue and enqueue the task to update its
672 * position within the tree:
673 */
674 dequeue_entity(cfs_rq, curr, 0);
675 enqueue_entity(cfs_rq, curr, 0);
676
677 /*
678 * Reschedule if another task tops the current one.
679 */
680 next = __pick_next_entity(cfs_rq);
681 if (next == curr)
682 return;
683
684 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
685 }
686
687 /**************************************************
688 * CFS operations on tasks:
689 */
690
691 #ifdef CONFIG_FAIR_GROUP_SCHED
692
693 /* Walk up scheduling entities hierarchy */
694 #define for_each_sched_entity(se) \
695 for (; se; se = se->parent)
696
697 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
698 {
699 return p->se.cfs_rq;
700 }
701
702 /* runqueue on which this entity is (to be) queued */
703 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
704 {
705 return se->cfs_rq;
706 }
707
708 /* runqueue "owned" by this group */
709 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
710 {
711 return grp->my_q;
712 }
713
714 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
715 * another cpu ('this_cpu')
716 */
717 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
718 {
719 /* A later patch will take group into account */
720 return &cpu_rq(this_cpu)->cfs;
721 }
722
723 /* Iterate thr' all leaf cfs_rq's on a runqueue */
724 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
725 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
726
727 /* Do the two (enqueued) tasks belong to the same group ? */
728 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
729 {
730 if (curr->se.cfs_rq == p->se.cfs_rq)
731 return 1;
732
733 return 0;
734 }
735
736 #else /* CONFIG_FAIR_GROUP_SCHED */
737
738 #define for_each_sched_entity(se) \
739 for (; se; se = NULL)
740
741 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
742 {
743 return &task_rq(p)->cfs;
744 }
745
746 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
747 {
748 struct task_struct *p = task_of(se);
749 struct rq *rq = task_rq(p);
750
751 return &rq->cfs;
752 }
753
754 /* runqueue "owned" by this group */
755 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
756 {
757 return NULL;
758 }
759
760 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
761 {
762 return &cpu_rq(this_cpu)->cfs;
763 }
764
765 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
766 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
767
768 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
769 {
770 return 1;
771 }
772
773 #endif /* CONFIG_FAIR_GROUP_SCHED */
774
775 /*
776 * The enqueue_task method is called before nr_running is
777 * increased. Here we update the fair scheduling stats and
778 * then put the task into the rbtree:
779 */
780 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
781 {
782 struct cfs_rq *cfs_rq;
783 struct sched_entity *se = &p->se;
784
785 for_each_sched_entity(se) {
786 if (se->on_rq)
787 break;
788 cfs_rq = cfs_rq_of(se);
789 enqueue_entity(cfs_rq, se, wakeup);
790 }
791 }
792
793 /*
794 * The dequeue_task method is called before nr_running is
795 * decreased. We remove the task from the rbtree and
796 * update the fair scheduling stats:
797 */
798 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
799 {
800 struct cfs_rq *cfs_rq;
801 struct sched_entity *se = &p->se;
802
803 for_each_sched_entity(se) {
804 cfs_rq = cfs_rq_of(se);
805 dequeue_entity(cfs_rq, se, sleep);
806 /* Don't dequeue parent if it has other entities besides us */
807 if (cfs_rq->load.weight)
808 break;
809 }
810 }
811
812 /*
813 * sched_yield() support is very simple - we dequeue and enqueue
814 */
815 static void yield_task_fair(struct rq *rq, struct task_struct *p)
816 {
817 struct cfs_rq *cfs_rq = task_cfs_rq(p);
818
819 __update_rq_clock(rq);
820 /*
821 * Dequeue and enqueue the task to update its
822 * position within the tree:
823 */
824 dequeue_entity(cfs_rq, &p->se, 0);
825 enqueue_entity(cfs_rq, &p->se, 0);
826 }
827
828 /*
829 * Preempt the current task with a newly woken task if needed:
830 */
831 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
832 {
833 struct task_struct *curr = rq->curr;
834 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
835 unsigned long gran;
836
837 if (unlikely(rt_prio(p->prio))) {
838 update_rq_clock(rq);
839 update_curr(cfs_rq);
840 resched_task(curr);
841 return;
842 }
843
844 gran = sysctl_sched_wakeup_granularity;
845 /*
846 * Batch tasks prefer throughput over latency:
847 */
848 if (unlikely(p->policy == SCHED_BATCH))
849 gran = sysctl_sched_batch_wakeup_granularity;
850
851 if (is_same_group(curr, p))
852 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
853 }
854
855 static struct task_struct *pick_next_task_fair(struct rq *rq)
856 {
857 struct cfs_rq *cfs_rq = &rq->cfs;
858 struct sched_entity *se;
859
860 if (unlikely(!cfs_rq->nr_running))
861 return NULL;
862
863 do {
864 se = pick_next_entity(cfs_rq);
865 cfs_rq = group_cfs_rq(se);
866 } while (cfs_rq);
867
868 return task_of(se);
869 }
870
871 /*
872 * Account for a descheduled task:
873 */
874 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
875 {
876 struct sched_entity *se = &prev->se;
877 struct cfs_rq *cfs_rq;
878
879 for_each_sched_entity(se) {
880 cfs_rq = cfs_rq_of(se);
881 put_prev_entity(cfs_rq, se);
882 }
883 }
884
885 /**************************************************
886 * Fair scheduling class load-balancing methods:
887 */
888
889 /*
890 * Load-balancing iterator. Note: while the runqueue stays locked
891 * during the whole iteration, the current task might be
892 * dequeued so the iterator has to be dequeue-safe. Here we
893 * achieve that by always pre-iterating before returning
894 * the current task:
895 */
896 static inline struct task_struct *
897 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
898 {
899 struct task_struct *p;
900
901 if (!curr)
902 return NULL;
903
904 p = rb_entry(curr, struct task_struct, se.run_node);
905 cfs_rq->rb_load_balance_curr = rb_next(curr);
906
907 return p;
908 }
909
910 static struct task_struct *load_balance_start_fair(void *arg)
911 {
912 struct cfs_rq *cfs_rq = arg;
913
914 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
915 }
916
917 static struct task_struct *load_balance_next_fair(void *arg)
918 {
919 struct cfs_rq *cfs_rq = arg;
920
921 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
922 }
923
924 #ifdef CONFIG_FAIR_GROUP_SCHED
925 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
926 {
927 struct sched_entity *curr;
928 struct task_struct *p;
929
930 if (!cfs_rq->nr_running)
931 return MAX_PRIO;
932
933 curr = __pick_next_entity(cfs_rq);
934 p = task_of(curr);
935
936 return p->prio;
937 }
938 #endif
939
940 static unsigned long
941 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 unsigned long max_nr_move, unsigned long max_load_move,
943 struct sched_domain *sd, enum cpu_idle_type idle,
944 int *all_pinned, int *this_best_prio)
945 {
946 struct cfs_rq *busy_cfs_rq;
947 unsigned long load_moved, total_nr_moved = 0, nr_moved;
948 long rem_load_move = max_load_move;
949 struct rq_iterator cfs_rq_iterator;
950
951 cfs_rq_iterator.start = load_balance_start_fair;
952 cfs_rq_iterator.next = load_balance_next_fair;
953
954 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
955 #ifdef CONFIG_FAIR_GROUP_SCHED
956 struct cfs_rq *this_cfs_rq;
957 long imbalances;
958 unsigned long maxload;
959
960 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
961
962 imbalance = busy_cfs_rq->load.weight -
963 this_cfs_rq->load.weight;
964 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
965 if (imbalance <= 0)
966 continue;
967
968 /* Don't pull more than imbalance/2 */
969 imbalance /= 2;
970 maxload = min(rem_load_move, imbalance);
971
972 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
973 #else
974 #define maxload rem_load_move
975 #endif
976 /* pass busy_cfs_rq argument into
977 * load_balance_[start|next]_fair iterators
978 */
979 cfs_rq_iterator.arg = busy_cfs_rq;
980 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
981 max_nr_move, maxload, sd, idle, all_pinned,
982 &load_moved, this_best_prio, &cfs_rq_iterator);
983
984 total_nr_moved += nr_moved;
985 max_nr_move -= nr_moved;
986 rem_load_move -= load_moved;
987
988 if (max_nr_move <= 0 || rem_load_move <= 0)
989 break;
990 }
991
992 return max_load_move - rem_load_move;
993 }
994
995 /*
996 * scheduler tick hitting a task of our scheduling class:
997 */
998 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
999 {
1000 struct cfs_rq *cfs_rq;
1001 struct sched_entity *se = &curr->se;
1002
1003 for_each_sched_entity(se) {
1004 cfs_rq = cfs_rq_of(se);
1005 entity_tick(cfs_rq, se);
1006 }
1007 }
1008
1009 /*
1010 * Share the fairness runtime between parent and child, thus the
1011 * total amount of pressure for CPU stays equal - new tasks
1012 * get a chance to run but frequent forkers are not allowed to
1013 * monopolize the CPU. Note: the parent runqueue is locked,
1014 * the child is not running yet.
1015 */
1016 static void task_new_fair(struct rq *rq, struct task_struct *p)
1017 {
1018 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1019 struct sched_entity *se = &p->se;
1020
1021 sched_info_queued(p);
1022
1023 update_stats_enqueue(cfs_rq, se);
1024 /*
1025 * Child runs first: we let it run before the parent
1026 * until it reschedules once. We set up the key so that
1027 * it will preempt the parent:
1028 */
1029 p->se.fair_key = current->se.fair_key -
1030 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1031 /*
1032 * The first wait is dominated by the child-runs-first logic,
1033 * so do not credit it with that waiting time yet:
1034 */
1035 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1036 p->se.wait_start_fair = 0;
1037
1038 /*
1039 * The statistical average of wait_runtime is about
1040 * -granularity/2, so initialize the task with that:
1041 */
1042 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1043 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1044
1045 __enqueue_entity(cfs_rq, se);
1046 }
1047
1048 #ifdef CONFIG_FAIR_GROUP_SCHED
1049 /* Account for a task changing its policy or group.
1050 *
1051 * This routine is mostly called to set cfs_rq->curr field when a task
1052 * migrates between groups/classes.
1053 */
1054 static void set_curr_task_fair(struct rq *rq)
1055 {
1056 struct task_struct *curr = rq->curr;
1057 struct sched_entity *se = &curr->se;
1058 struct cfs_rq *cfs_rq;
1059
1060 update_rq_clock(rq);
1061
1062 for_each_sched_entity(se) {
1063 cfs_rq = cfs_rq_of(se);
1064 set_next_entity(cfs_rq, se);
1065 }
1066 }
1067 #else
1068 static void set_curr_task_fair(struct rq *rq)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074 * All the scheduling class methods:
1075 */
1076 struct sched_class fair_sched_class __read_mostly = {
1077 .enqueue_task = enqueue_task_fair,
1078 .dequeue_task = dequeue_task_fair,
1079 .yield_task = yield_task_fair,
1080
1081 .check_preempt_curr = check_preempt_curr_fair,
1082
1083 .pick_next_task = pick_next_task_fair,
1084 .put_prev_task = put_prev_task_fair,
1085
1086 .load_balance = load_balance_fair,
1087
1088 .set_curr_task = set_curr_task_fair,
1089 .task_tick = task_tick_fair,
1090 .task_new = task_new_fair,
1091 };
1092
1093 #ifdef CONFIG_SCHED_DEBUG
1094 static void print_cfs_stats(struct seq_file *m, int cpu)
1095 {
1096 struct rq *rq = cpu_rq(cpu);
1097 struct cfs_rq *cfs_rq;
1098
1099 for_each_leaf_cfs_rq(rq, cfs_rq)
1100 print_cfs_rq(m, cpu, cfs_rq);
1101 }
1102 #endif
This page took 0.068328 seconds and 6 git commands to generate.