Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 #else /* CONFIG_FAIR_GROUP_SCHED */
147
148 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
149 {
150 return container_of(cfs_rq, struct rq, cfs);
151 }
152
153 #define entity_is_task(se) 1
154
155 #define for_each_sched_entity(se) \
156 for (; se; se = NULL)
157
158 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
159 {
160 return &task_rq(p)->cfs;
161 }
162
163 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
164 {
165 struct task_struct *p = task_of(se);
166 struct rq *rq = task_rq(p);
167
168 return &rq->cfs;
169 }
170
171 /* runqueue "owned" by this group */
172 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
173 {
174 return NULL;
175 }
176
177 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
178 {
179 return &cpu_rq(this_cpu)->cfs;
180 }
181
182 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
183 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184
185 static inline int
186 is_same_group(struct sched_entity *se, struct sched_entity *pse)
187 {
188 return 1;
189 }
190
191 static inline struct sched_entity *parent_entity(struct sched_entity *se)
192 {
193 return NULL;
194 }
195
196 #endif /* CONFIG_FAIR_GROUP_SCHED */
197
198
199 /**************************************************************
200 * Scheduling class tree data structure manipulation methods:
201 */
202
203 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
204 {
205 s64 delta = (s64)(vruntime - min_vruntime);
206 if (delta > 0)
207 min_vruntime = vruntime;
208
209 return min_vruntime;
210 }
211
212 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
213 {
214 s64 delta = (s64)(vruntime - min_vruntime);
215 if (delta < 0)
216 min_vruntime = vruntime;
217
218 return min_vruntime;
219 }
220
221 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
222 {
223 return se->vruntime - cfs_rq->min_vruntime;
224 }
225
226 /*
227 * Enqueue an entity into the rb-tree:
228 */
229 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
230 {
231 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
232 struct rb_node *parent = NULL;
233 struct sched_entity *entry;
234 s64 key = entity_key(cfs_rq, se);
235 int leftmost = 1;
236
237 /*
238 * Find the right place in the rbtree:
239 */
240 while (*link) {
241 parent = *link;
242 entry = rb_entry(parent, struct sched_entity, run_node);
243 /*
244 * We dont care about collisions. Nodes with
245 * the same key stay together.
246 */
247 if (key < entity_key(cfs_rq, entry)) {
248 link = &parent->rb_left;
249 } else {
250 link = &parent->rb_right;
251 leftmost = 0;
252 }
253 }
254
255 /*
256 * Maintain a cache of leftmost tree entries (it is frequently
257 * used):
258 */
259 if (leftmost) {
260 cfs_rq->rb_leftmost = &se->run_node;
261 /*
262 * maintain cfs_rq->min_vruntime to be a monotonic increasing
263 * value tracking the leftmost vruntime in the tree.
264 */
265 cfs_rq->min_vruntime =
266 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
267 }
268
269 rb_link_node(&se->run_node, parent, link);
270 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
271 }
272
273 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
274 {
275 if (cfs_rq->rb_leftmost == &se->run_node) {
276 struct rb_node *next_node;
277 struct sched_entity *next;
278
279 next_node = rb_next(&se->run_node);
280 cfs_rq->rb_leftmost = next_node;
281
282 if (next_node) {
283 next = rb_entry(next_node,
284 struct sched_entity, run_node);
285 cfs_rq->min_vruntime =
286 max_vruntime(cfs_rq->min_vruntime,
287 next->vruntime);
288 }
289 }
290
291 if (cfs_rq->next == se)
292 cfs_rq->next = NULL;
293
294 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
295 }
296
297 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
298 {
299 return cfs_rq->rb_leftmost;
300 }
301
302 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
303 {
304 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
305 }
306
307 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
308 {
309 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
310
311 if (!last)
312 return NULL;
313
314 return rb_entry(last, struct sched_entity, run_node);
315 }
316
317 /**************************************************************
318 * Scheduling class statistics methods:
319 */
320
321 #ifdef CONFIG_SCHED_DEBUG
322 int sched_nr_latency_handler(struct ctl_table *table, int write,
323 struct file *filp, void __user *buffer, size_t *lenp,
324 loff_t *ppos)
325 {
326 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
327
328 if (ret || !write)
329 return ret;
330
331 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
332 sysctl_sched_min_granularity);
333
334 return 0;
335 }
336 #endif
337
338 /*
339 * delta *= P[w / rw]
340 */
341 static inline unsigned long
342 calc_delta_weight(unsigned long delta, struct sched_entity *se)
343 {
344 for_each_sched_entity(se) {
345 delta = calc_delta_mine(delta,
346 se->load.weight, &cfs_rq_of(se)->load);
347 }
348
349 return delta;
350 }
351
352 /*
353 * delta /= w
354 */
355 static inline unsigned long
356 calc_delta_fair(unsigned long delta, struct sched_entity *se)
357 {
358 if (unlikely(se->load.weight != NICE_0_LOAD))
359 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
360
361 return delta;
362 }
363
364 /*
365 * The idea is to set a period in which each task runs once.
366 *
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
369 *
370 * p = (nr <= nl) ? l : l*nr/nl
371 */
372 static u64 __sched_period(unsigned long nr_running)
373 {
374 u64 period = sysctl_sched_latency;
375 unsigned long nr_latency = sched_nr_latency;
376
377 if (unlikely(nr_running > nr_latency)) {
378 period = sysctl_sched_min_granularity;
379 period *= nr_running;
380 }
381
382 return period;
383 }
384
385 /*
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
388 *
389 * s = p*P[w/rw]
390 */
391 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392 {
393 unsigned long nr_running = cfs_rq->nr_running;
394
395 if (unlikely(!se->on_rq))
396 nr_running++;
397
398 return calc_delta_weight(__sched_period(nr_running), se);
399 }
400
401 /*
402 * We calculate the vruntime slice of a to be inserted task
403 *
404 * vs = s/w
405 */
406 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 {
408 return calc_delta_fair(sched_slice(cfs_rq, se), se);
409 }
410
411 /*
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
414 */
415 static inline void
416 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
417 unsigned long delta_exec)
418 {
419 unsigned long delta_exec_weighted;
420
421 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422
423 curr->sum_exec_runtime += delta_exec;
424 schedstat_add(cfs_rq, exec_clock, delta_exec);
425 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
426 curr->vruntime += delta_exec_weighted;
427 }
428
429 static void update_curr(struct cfs_rq *cfs_rq)
430 {
431 struct sched_entity *curr = cfs_rq->curr;
432 u64 now = rq_of(cfs_rq)->clock;
433 unsigned long delta_exec;
434
435 if (unlikely(!curr))
436 return;
437
438 /*
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
442 */
443 delta_exec = (unsigned long)(now - curr->exec_start);
444
445 __update_curr(cfs_rq, curr, delta_exec);
446 curr->exec_start = now;
447
448 if (entity_is_task(curr)) {
449 struct task_struct *curtask = task_of(curr);
450
451 cpuacct_charge(curtask, delta_exec);
452 account_group_exec_runtime(curtask, delta_exec);
453 }
454 }
455
456 static inline void
457 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458 {
459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 }
461
462 /*
463 * Task is being enqueued - update stats:
464 */
465 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 {
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
471 if (se != cfs_rq->curr)
472 update_stats_wait_start(cfs_rq, se);
473 }
474
475 static void
476 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477 {
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
483 schedstat_set(se->wait_start, 0);
484 }
485
486 static inline void
487 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
493 if (se != cfs_rq->curr)
494 update_stats_wait_end(cfs_rq, se);
495 }
496
497 /*
498 * We are picking a new current task - update its stats:
499 */
500 static inline void
501 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 {
503 /*
504 * We are starting a new run period:
505 */
506 se->exec_start = rq_of(cfs_rq)->clock;
507 }
508
509 /**************************************************
510 * Scheduling class queueing methods:
511 */
512
513 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
514 static void
515 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
516 {
517 cfs_rq->task_weight += weight;
518 }
519 #else
520 static inline void
521 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522 {
523 }
524 #endif
525
526 static void
527 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 update_load_add(&cfs_rq->load, se->load.weight);
530 if (!parent_entity(se))
531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
532 if (entity_is_task(se)) {
533 add_cfs_task_weight(cfs_rq, se->load.weight);
534 list_add(&se->group_node, &cfs_rq->tasks);
535 }
536 cfs_rq->nr_running++;
537 se->on_rq = 1;
538 }
539
540 static void
541 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 update_load_sub(&cfs_rq->load, se->load.weight);
544 if (!parent_entity(se))
545 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
546 if (entity_is_task(se)) {
547 add_cfs_task_weight(cfs_rq, -se->load.weight);
548 list_del_init(&se->group_node);
549 }
550 cfs_rq->nr_running--;
551 se->on_rq = 0;
552 }
553
554 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 #ifdef CONFIG_SCHEDSTATS
557 if (se->sleep_start) {
558 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
559 struct task_struct *tsk = task_of(se);
560
561 if ((s64)delta < 0)
562 delta = 0;
563
564 if (unlikely(delta > se->sleep_max))
565 se->sleep_max = delta;
566
567 se->sleep_start = 0;
568 se->sum_sleep_runtime += delta;
569
570 account_scheduler_latency(tsk, delta >> 10, 1);
571 }
572 if (se->block_start) {
573 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
574 struct task_struct *tsk = task_of(se);
575
576 if ((s64)delta < 0)
577 delta = 0;
578
579 if (unlikely(delta > se->block_max))
580 se->block_max = delta;
581
582 se->block_start = 0;
583 se->sum_sleep_runtime += delta;
584
585 /*
586 * Blocking time is in units of nanosecs, so shift by 20 to
587 * get a milliseconds-range estimation of the amount of
588 * time that the task spent sleeping:
589 */
590 if (unlikely(prof_on == SLEEP_PROFILING)) {
591
592 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
593 delta >> 20);
594 }
595 account_scheduler_latency(tsk, delta >> 10, 0);
596 }
597 #endif
598 }
599
600 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 #ifdef CONFIG_SCHED_DEBUG
603 s64 d = se->vruntime - cfs_rq->min_vruntime;
604
605 if (d < 0)
606 d = -d;
607
608 if (d > 3*sysctl_sched_latency)
609 schedstat_inc(cfs_rq, nr_spread_over);
610 #endif
611 }
612
613 static void
614 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
615 {
616 u64 vruntime;
617
618 if (first_fair(cfs_rq)) {
619 vruntime = min_vruntime(cfs_rq->min_vruntime,
620 __pick_next_entity(cfs_rq)->vruntime);
621 } else
622 vruntime = cfs_rq->min_vruntime;
623
624 /*
625 * The 'current' period is already promised to the current tasks,
626 * however the extra weight of the new task will slow them down a
627 * little, place the new task so that it fits in the slot that
628 * stays open at the end.
629 */
630 if (initial && sched_feat(START_DEBIT))
631 vruntime += sched_vslice(cfs_rq, se);
632
633 if (!initial) {
634 /* sleeps upto a single latency don't count. */
635 if (sched_feat(NEW_FAIR_SLEEPERS)) {
636 unsigned long thresh = sysctl_sched_latency;
637
638 /*
639 * convert the sleeper threshold into virtual time
640 */
641 if (sched_feat(NORMALIZED_SLEEPER))
642 thresh = calc_delta_fair(thresh, se);
643
644 vruntime -= thresh;
645 }
646
647 /* ensure we never gain time by being placed backwards. */
648 vruntime = max_vruntime(se->vruntime, vruntime);
649 }
650
651 se->vruntime = vruntime;
652 }
653
654 static void
655 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
656 {
657 /*
658 * Update run-time statistics of the 'current'.
659 */
660 update_curr(cfs_rq);
661 account_entity_enqueue(cfs_rq, se);
662
663 if (wakeup) {
664 place_entity(cfs_rq, se, 0);
665 enqueue_sleeper(cfs_rq, se);
666 }
667
668 update_stats_enqueue(cfs_rq, se);
669 check_spread(cfs_rq, se);
670 if (se != cfs_rq->curr)
671 __enqueue_entity(cfs_rq, se);
672 }
673
674 static void
675 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
676 {
677 /*
678 * Update run-time statistics of the 'current'.
679 */
680 update_curr(cfs_rq);
681
682 update_stats_dequeue(cfs_rq, se);
683 if (sleep) {
684 #ifdef CONFIG_SCHEDSTATS
685 if (entity_is_task(se)) {
686 struct task_struct *tsk = task_of(se);
687
688 if (tsk->state & TASK_INTERRUPTIBLE)
689 se->sleep_start = rq_of(cfs_rq)->clock;
690 if (tsk->state & TASK_UNINTERRUPTIBLE)
691 se->block_start = rq_of(cfs_rq)->clock;
692 }
693 #endif
694 }
695
696 if (se != cfs_rq->curr)
697 __dequeue_entity(cfs_rq, se);
698 account_entity_dequeue(cfs_rq, se);
699 }
700
701 /*
702 * Preempt the current task with a newly woken task if needed:
703 */
704 static void
705 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
706 {
707 unsigned long ideal_runtime, delta_exec;
708
709 ideal_runtime = sched_slice(cfs_rq, curr);
710 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
711 if (delta_exec > ideal_runtime)
712 resched_task(rq_of(cfs_rq)->curr);
713 }
714
715 static void
716 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
717 {
718 /* 'current' is not kept within the tree. */
719 if (se->on_rq) {
720 /*
721 * Any task has to be enqueued before it get to execute on
722 * a CPU. So account for the time it spent waiting on the
723 * runqueue.
724 */
725 update_stats_wait_end(cfs_rq, se);
726 __dequeue_entity(cfs_rq, se);
727 }
728
729 update_stats_curr_start(cfs_rq, se);
730 cfs_rq->curr = se;
731 #ifdef CONFIG_SCHEDSTATS
732 /*
733 * Track our maximum slice length, if the CPU's load is at
734 * least twice that of our own weight (i.e. dont track it
735 * when there are only lesser-weight tasks around):
736 */
737 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
738 se->slice_max = max(se->slice_max,
739 se->sum_exec_runtime - se->prev_sum_exec_runtime);
740 }
741 #endif
742 se->prev_sum_exec_runtime = se->sum_exec_runtime;
743 }
744
745 static struct sched_entity *
746 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
747 {
748 struct rq *rq = rq_of(cfs_rq);
749 u64 pair_slice = rq->clock - cfs_rq->pair_start;
750
751 if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
752 cfs_rq->pair_start = rq->clock;
753 return se;
754 }
755
756 return cfs_rq->next;
757 }
758
759 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
760 {
761 struct sched_entity *se = NULL;
762
763 if (first_fair(cfs_rq)) {
764 se = __pick_next_entity(cfs_rq);
765 se = pick_next(cfs_rq, se);
766 set_next_entity(cfs_rq, se);
767 }
768
769 return se;
770 }
771
772 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
773 {
774 /*
775 * If still on the runqueue then deactivate_task()
776 * was not called and update_curr() has to be done:
777 */
778 if (prev->on_rq)
779 update_curr(cfs_rq);
780
781 check_spread(cfs_rq, prev);
782 if (prev->on_rq) {
783 update_stats_wait_start(cfs_rq, prev);
784 /* Put 'current' back into the tree. */
785 __enqueue_entity(cfs_rq, prev);
786 }
787 cfs_rq->curr = NULL;
788 }
789
790 static void
791 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
792 {
793 /*
794 * Update run-time statistics of the 'current'.
795 */
796 update_curr(cfs_rq);
797
798 #ifdef CONFIG_SCHED_HRTICK
799 /*
800 * queued ticks are scheduled to match the slice, so don't bother
801 * validating it and just reschedule.
802 */
803 if (queued) {
804 resched_task(rq_of(cfs_rq)->curr);
805 return;
806 }
807 /*
808 * don't let the period tick interfere with the hrtick preemption
809 */
810 if (!sched_feat(DOUBLE_TICK) &&
811 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
812 return;
813 #endif
814
815 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
816 check_preempt_tick(cfs_rq, curr);
817 }
818
819 /**************************************************
820 * CFS operations on tasks:
821 */
822
823 #ifdef CONFIG_SCHED_HRTICK
824 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
825 {
826 struct sched_entity *se = &p->se;
827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
828
829 WARN_ON(task_rq(p) != rq);
830
831 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
832 u64 slice = sched_slice(cfs_rq, se);
833 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
834 s64 delta = slice - ran;
835
836 if (delta < 0) {
837 if (rq->curr == p)
838 resched_task(p);
839 return;
840 }
841
842 /*
843 * Don't schedule slices shorter than 10000ns, that just
844 * doesn't make sense. Rely on vruntime for fairness.
845 */
846 if (rq->curr != p)
847 delta = max_t(s64, 10000LL, delta);
848
849 hrtick_start(rq, delta);
850 }
851 }
852
853 /*
854 * called from enqueue/dequeue and updates the hrtick when the
855 * current task is from our class and nr_running is low enough
856 * to matter.
857 */
858 static void hrtick_update(struct rq *rq)
859 {
860 struct task_struct *curr = rq->curr;
861
862 if (curr->sched_class != &fair_sched_class)
863 return;
864
865 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
866 hrtick_start_fair(rq, curr);
867 }
868 #else /* !CONFIG_SCHED_HRTICK */
869 static inline void
870 hrtick_start_fair(struct rq *rq, struct task_struct *p)
871 {
872 }
873
874 static inline void hrtick_update(struct rq *rq)
875 {
876 }
877 #endif
878
879 /*
880 * The enqueue_task method is called before nr_running is
881 * increased. Here we update the fair scheduling stats and
882 * then put the task into the rbtree:
883 */
884 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
885 {
886 struct cfs_rq *cfs_rq;
887 struct sched_entity *se = &p->se;
888
889 for_each_sched_entity(se) {
890 if (se->on_rq)
891 break;
892 cfs_rq = cfs_rq_of(se);
893 enqueue_entity(cfs_rq, se, wakeup);
894 wakeup = 1;
895 }
896
897 hrtick_update(rq);
898 }
899
900 /*
901 * The dequeue_task method is called before nr_running is
902 * decreased. We remove the task from the rbtree and
903 * update the fair scheduling stats:
904 */
905 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
906 {
907 struct cfs_rq *cfs_rq;
908 struct sched_entity *se = &p->se;
909
910 for_each_sched_entity(se) {
911 cfs_rq = cfs_rq_of(se);
912 dequeue_entity(cfs_rq, se, sleep);
913 /* Don't dequeue parent if it has other entities besides us */
914 if (cfs_rq->load.weight)
915 break;
916 sleep = 1;
917 }
918
919 hrtick_update(rq);
920 }
921
922 /*
923 * sched_yield() support is very simple - we dequeue and enqueue.
924 *
925 * If compat_yield is turned on then we requeue to the end of the tree.
926 */
927 static void yield_task_fair(struct rq *rq)
928 {
929 struct task_struct *curr = rq->curr;
930 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
931 struct sched_entity *rightmost, *se = &curr->se;
932
933 /*
934 * Are we the only task in the tree?
935 */
936 if (unlikely(cfs_rq->nr_running == 1))
937 return;
938
939 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
940 update_rq_clock(rq);
941 /*
942 * Update run-time statistics of the 'current'.
943 */
944 update_curr(cfs_rq);
945
946 return;
947 }
948 /*
949 * Find the rightmost entry in the rbtree:
950 */
951 rightmost = __pick_last_entity(cfs_rq);
952 /*
953 * Already in the rightmost position?
954 */
955 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
956 return;
957
958 /*
959 * Minimally necessary key value to be last in the tree:
960 * Upon rescheduling, sched_class::put_prev_task() will place
961 * 'current' within the tree based on its new key value.
962 */
963 se->vruntime = rightmost->vruntime + 1;
964 }
965
966 /*
967 * wake_idle() will wake a task on an idle cpu if task->cpu is
968 * not idle and an idle cpu is available. The span of cpus to
969 * search starts with cpus closest then further out as needed,
970 * so we always favor a closer, idle cpu.
971 * Domains may include CPUs that are not usable for migration,
972 * hence we need to mask them out (cpu_active_map)
973 *
974 * Returns the CPU we should wake onto.
975 */
976 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
977 static int wake_idle(int cpu, struct task_struct *p)
978 {
979 cpumask_t tmp;
980 struct sched_domain *sd;
981 int i;
982
983 /*
984 * If it is idle, then it is the best cpu to run this task.
985 *
986 * This cpu is also the best, if it has more than one task already.
987 * Siblings must be also busy(in most cases) as they didn't already
988 * pickup the extra load from this cpu and hence we need not check
989 * sibling runqueue info. This will avoid the checks and cache miss
990 * penalities associated with that.
991 */
992 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
993 return cpu;
994
995 for_each_domain(cpu, sd) {
996 if ((sd->flags & SD_WAKE_IDLE)
997 || ((sd->flags & SD_WAKE_IDLE_FAR)
998 && !task_hot(p, task_rq(p)->clock, sd))) {
999 cpus_and(tmp, sd->span, p->cpus_allowed);
1000 cpus_and(tmp, tmp, cpu_active_map);
1001 for_each_cpu_mask_nr(i, tmp) {
1002 if (idle_cpu(i)) {
1003 if (i != task_cpu(p)) {
1004 schedstat_inc(p,
1005 se.nr_wakeups_idle);
1006 }
1007 return i;
1008 }
1009 }
1010 } else {
1011 break;
1012 }
1013 }
1014 return cpu;
1015 }
1016 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1017 static inline int wake_idle(int cpu, struct task_struct *p)
1018 {
1019 return cpu;
1020 }
1021 #endif
1022
1023 #ifdef CONFIG_SMP
1024
1025 #ifdef CONFIG_FAIR_GROUP_SCHED
1026 /*
1027 * effective_load() calculates the load change as seen from the root_task_group
1028 *
1029 * Adding load to a group doesn't make a group heavier, but can cause movement
1030 * of group shares between cpus. Assuming the shares were perfectly aligned one
1031 * can calculate the shift in shares.
1032 *
1033 * The problem is that perfectly aligning the shares is rather expensive, hence
1034 * we try to avoid doing that too often - see update_shares(), which ratelimits
1035 * this change.
1036 *
1037 * We compensate this by not only taking the current delta into account, but
1038 * also considering the delta between when the shares were last adjusted and
1039 * now.
1040 *
1041 * We still saw a performance dip, some tracing learned us that between
1042 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1043 * significantly. Therefore try to bias the error in direction of failing
1044 * the affine wakeup.
1045 *
1046 */
1047 static long effective_load(struct task_group *tg, int cpu,
1048 long wl, long wg)
1049 {
1050 struct sched_entity *se = tg->se[cpu];
1051
1052 if (!tg->parent)
1053 return wl;
1054
1055 /*
1056 * By not taking the decrease of shares on the other cpu into
1057 * account our error leans towards reducing the affine wakeups.
1058 */
1059 if (!wl && sched_feat(ASYM_EFF_LOAD))
1060 return wl;
1061
1062 for_each_sched_entity(se) {
1063 long S, rw, s, a, b;
1064 long more_w;
1065
1066 /*
1067 * Instead of using this increment, also add the difference
1068 * between when the shares were last updated and now.
1069 */
1070 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1071 wl += more_w;
1072 wg += more_w;
1073
1074 S = se->my_q->tg->shares;
1075 s = se->my_q->shares;
1076 rw = se->my_q->rq_weight;
1077
1078 a = S*(rw + wl);
1079 b = S*rw + s*wg;
1080
1081 wl = s*(a-b);
1082
1083 if (likely(b))
1084 wl /= b;
1085
1086 /*
1087 * Assume the group is already running and will
1088 * thus already be accounted for in the weight.
1089 *
1090 * That is, moving shares between CPUs, does not
1091 * alter the group weight.
1092 */
1093 wg = 0;
1094 }
1095
1096 return wl;
1097 }
1098
1099 #else
1100
1101 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1102 unsigned long wl, unsigned long wg)
1103 {
1104 return wl;
1105 }
1106
1107 #endif
1108
1109 static int
1110 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1111 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1112 int idx, unsigned long load, unsigned long this_load,
1113 unsigned int imbalance)
1114 {
1115 struct task_struct *curr = this_rq->curr;
1116 struct task_group *tg;
1117 unsigned long tl = this_load;
1118 unsigned long tl_per_task;
1119 unsigned long weight;
1120 int balanced;
1121
1122 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1123 return 0;
1124
1125 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1126 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1127 p->se.avg_overlap < sysctl_sched_migration_cost)
1128 sync = 1;
1129
1130 /*
1131 * If sync wakeup then subtract the (maximum possible)
1132 * effect of the currently running task from the load
1133 * of the current CPU:
1134 */
1135 if (sync) {
1136 tg = task_group(current);
1137 weight = current->se.load.weight;
1138
1139 tl += effective_load(tg, this_cpu, -weight, -weight);
1140 load += effective_load(tg, prev_cpu, 0, -weight);
1141 }
1142
1143 tg = task_group(p);
1144 weight = p->se.load.weight;
1145
1146 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1147 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1148
1149 /*
1150 * If the currently running task will sleep within
1151 * a reasonable amount of time then attract this newly
1152 * woken task:
1153 */
1154 if (sync && balanced)
1155 return 1;
1156
1157 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1158 tl_per_task = cpu_avg_load_per_task(this_cpu);
1159
1160 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1161 tl_per_task)) {
1162 /*
1163 * This domain has SD_WAKE_AFFINE and
1164 * p is cache cold in this domain, and
1165 * there is no bad imbalance.
1166 */
1167 schedstat_inc(this_sd, ttwu_move_affine);
1168 schedstat_inc(p, se.nr_wakeups_affine);
1169
1170 return 1;
1171 }
1172 return 0;
1173 }
1174
1175 static int select_task_rq_fair(struct task_struct *p, int sync)
1176 {
1177 struct sched_domain *sd, *this_sd = NULL;
1178 int prev_cpu, this_cpu, new_cpu;
1179 unsigned long load, this_load;
1180 struct rq *this_rq;
1181 unsigned int imbalance;
1182 int idx;
1183
1184 prev_cpu = task_cpu(p);
1185 this_cpu = smp_processor_id();
1186 this_rq = cpu_rq(this_cpu);
1187 new_cpu = prev_cpu;
1188
1189 if (prev_cpu == this_cpu)
1190 goto out;
1191 /*
1192 * 'this_sd' is the first domain that both
1193 * this_cpu and prev_cpu are present in:
1194 */
1195 for_each_domain(this_cpu, sd) {
1196 if (cpu_isset(prev_cpu, sd->span)) {
1197 this_sd = sd;
1198 break;
1199 }
1200 }
1201
1202 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1203 goto out;
1204
1205 /*
1206 * Check for affine wakeup and passive balancing possibilities.
1207 */
1208 if (!this_sd)
1209 goto out;
1210
1211 idx = this_sd->wake_idx;
1212
1213 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1214
1215 load = source_load(prev_cpu, idx);
1216 this_load = target_load(this_cpu, idx);
1217
1218 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1219 load, this_load, imbalance))
1220 return this_cpu;
1221
1222 /*
1223 * Start passive balancing when half the imbalance_pct
1224 * limit is reached.
1225 */
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1229 schedstat_inc(p, se.nr_wakeups_passive);
1230 return this_cpu;
1231 }
1232 }
1233
1234 out:
1235 return wake_idle(new_cpu, p);
1236 }
1237 #endif /* CONFIG_SMP */
1238
1239 static unsigned long wakeup_gran(struct sched_entity *se)
1240 {
1241 unsigned long gran = sysctl_sched_wakeup_granularity;
1242
1243 /*
1244 * More easily preempt - nice tasks, while not making it harder for
1245 * + nice tasks.
1246 */
1247 if (sched_feat(ASYM_GRAN))
1248 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1249
1250 return gran;
1251 }
1252
1253 /*
1254 * Preempt the current task with a newly woken task if needed:
1255 */
1256 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1257 {
1258 struct task_struct *curr = rq->curr;
1259 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1260 struct sched_entity *se = &curr->se, *pse = &p->se;
1261 s64 delta_exec;
1262
1263 if (unlikely(rt_prio(p->prio))) {
1264 update_rq_clock(rq);
1265 update_curr(cfs_rq);
1266 resched_task(curr);
1267 return;
1268 }
1269
1270 if (unlikely(se == pse))
1271 return;
1272
1273 cfs_rq_of(pse)->next = pse;
1274
1275 /*
1276 * We can come here with TIF_NEED_RESCHED already set from new task
1277 * wake up path.
1278 */
1279 if (test_tsk_need_resched(curr))
1280 return;
1281
1282 /*
1283 * Batch tasks do not preempt (their preemption is driven by
1284 * the tick):
1285 */
1286 if (unlikely(p->policy == SCHED_BATCH))
1287 return;
1288
1289 if (!sched_feat(WAKEUP_PREEMPT))
1290 return;
1291
1292 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1293 (se->avg_overlap < sysctl_sched_migration_cost &&
1294 pse->avg_overlap < sysctl_sched_migration_cost))) {
1295 resched_task(curr);
1296 return;
1297 }
1298
1299 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1300 if (delta_exec > wakeup_gran(pse))
1301 resched_task(curr);
1302 }
1303
1304 static struct task_struct *pick_next_task_fair(struct rq *rq)
1305 {
1306 struct task_struct *p;
1307 struct cfs_rq *cfs_rq = &rq->cfs;
1308 struct sched_entity *se;
1309
1310 if (unlikely(!cfs_rq->nr_running))
1311 return NULL;
1312
1313 do {
1314 se = pick_next_entity(cfs_rq);
1315 cfs_rq = group_cfs_rq(se);
1316 } while (cfs_rq);
1317
1318 p = task_of(se);
1319 hrtick_start_fair(rq, p);
1320
1321 return p;
1322 }
1323
1324 /*
1325 * Account for a descheduled task:
1326 */
1327 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1328 {
1329 struct sched_entity *se = &prev->se;
1330 struct cfs_rq *cfs_rq;
1331
1332 for_each_sched_entity(se) {
1333 cfs_rq = cfs_rq_of(se);
1334 put_prev_entity(cfs_rq, se);
1335 }
1336 }
1337
1338 #ifdef CONFIG_SMP
1339 /**************************************************
1340 * Fair scheduling class load-balancing methods:
1341 */
1342
1343 /*
1344 * Load-balancing iterator. Note: while the runqueue stays locked
1345 * during the whole iteration, the current task might be
1346 * dequeued so the iterator has to be dequeue-safe. Here we
1347 * achieve that by always pre-iterating before returning
1348 * the current task:
1349 */
1350 static struct task_struct *
1351 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1352 {
1353 struct task_struct *p = NULL;
1354 struct sched_entity *se;
1355
1356 if (next == &cfs_rq->tasks)
1357 return NULL;
1358
1359 se = list_entry(next, struct sched_entity, group_node);
1360 p = task_of(se);
1361 cfs_rq->balance_iterator = next->next;
1362
1363 return p;
1364 }
1365
1366 static struct task_struct *load_balance_start_fair(void *arg)
1367 {
1368 struct cfs_rq *cfs_rq = arg;
1369
1370 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1371 }
1372
1373 static struct task_struct *load_balance_next_fair(void *arg)
1374 {
1375 struct cfs_rq *cfs_rq = arg;
1376
1377 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1378 }
1379
1380 static unsigned long
1381 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1382 unsigned long max_load_move, struct sched_domain *sd,
1383 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1384 struct cfs_rq *cfs_rq)
1385 {
1386 struct rq_iterator cfs_rq_iterator;
1387
1388 cfs_rq_iterator.start = load_balance_start_fair;
1389 cfs_rq_iterator.next = load_balance_next_fair;
1390 cfs_rq_iterator.arg = cfs_rq;
1391
1392 return balance_tasks(this_rq, this_cpu, busiest,
1393 max_load_move, sd, idle, all_pinned,
1394 this_best_prio, &cfs_rq_iterator);
1395 }
1396
1397 #ifdef CONFIG_FAIR_GROUP_SCHED
1398 static unsigned long
1399 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1400 unsigned long max_load_move,
1401 struct sched_domain *sd, enum cpu_idle_type idle,
1402 int *all_pinned, int *this_best_prio)
1403 {
1404 long rem_load_move = max_load_move;
1405 int busiest_cpu = cpu_of(busiest);
1406 struct task_group *tg;
1407
1408 rcu_read_lock();
1409 update_h_load(busiest_cpu);
1410
1411 list_for_each_entry_rcu(tg, &task_groups, list) {
1412 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1413 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1414 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1415 u64 rem_load, moved_load;
1416
1417 /*
1418 * empty group
1419 */
1420 if (!busiest_cfs_rq->task_weight)
1421 continue;
1422
1423 rem_load = (u64)rem_load_move * busiest_weight;
1424 rem_load = div_u64(rem_load, busiest_h_load + 1);
1425
1426 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1427 rem_load, sd, idle, all_pinned, this_best_prio,
1428 tg->cfs_rq[busiest_cpu]);
1429
1430 if (!moved_load)
1431 continue;
1432
1433 moved_load *= busiest_h_load;
1434 moved_load = div_u64(moved_load, busiest_weight + 1);
1435
1436 rem_load_move -= moved_load;
1437 if (rem_load_move < 0)
1438 break;
1439 }
1440 rcu_read_unlock();
1441
1442 return max_load_move - rem_load_move;
1443 }
1444 #else
1445 static unsigned long
1446 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1447 unsigned long max_load_move,
1448 struct sched_domain *sd, enum cpu_idle_type idle,
1449 int *all_pinned, int *this_best_prio)
1450 {
1451 return __load_balance_fair(this_rq, this_cpu, busiest,
1452 max_load_move, sd, idle, all_pinned,
1453 this_best_prio, &busiest->cfs);
1454 }
1455 #endif
1456
1457 static int
1458 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1459 struct sched_domain *sd, enum cpu_idle_type idle)
1460 {
1461 struct cfs_rq *busy_cfs_rq;
1462 struct rq_iterator cfs_rq_iterator;
1463
1464 cfs_rq_iterator.start = load_balance_start_fair;
1465 cfs_rq_iterator.next = load_balance_next_fair;
1466
1467 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1468 /*
1469 * pass busy_cfs_rq argument into
1470 * load_balance_[start|next]_fair iterators
1471 */
1472 cfs_rq_iterator.arg = busy_cfs_rq;
1473 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1474 &cfs_rq_iterator))
1475 return 1;
1476 }
1477
1478 return 0;
1479 }
1480 #endif /* CONFIG_SMP */
1481
1482 /*
1483 * scheduler tick hitting a task of our scheduling class:
1484 */
1485 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1486 {
1487 struct cfs_rq *cfs_rq;
1488 struct sched_entity *se = &curr->se;
1489
1490 for_each_sched_entity(se) {
1491 cfs_rq = cfs_rq_of(se);
1492 entity_tick(cfs_rq, se, queued);
1493 }
1494 }
1495
1496 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1497
1498 /*
1499 * Share the fairness runtime between parent and child, thus the
1500 * total amount of pressure for CPU stays equal - new tasks
1501 * get a chance to run but frequent forkers are not allowed to
1502 * monopolize the CPU. Note: the parent runqueue is locked,
1503 * the child is not running yet.
1504 */
1505 static void task_new_fair(struct rq *rq, struct task_struct *p)
1506 {
1507 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1508 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1509 int this_cpu = smp_processor_id();
1510
1511 sched_info_queued(p);
1512
1513 update_curr(cfs_rq);
1514 place_entity(cfs_rq, se, 1);
1515
1516 /* 'curr' will be NULL if the child belongs to a different group */
1517 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1518 curr && curr->vruntime < se->vruntime) {
1519 /*
1520 * Upon rescheduling, sched_class::put_prev_task() will place
1521 * 'current' within the tree based on its new key value.
1522 */
1523 swap(curr->vruntime, se->vruntime);
1524 resched_task(rq->curr);
1525 }
1526
1527 enqueue_task_fair(rq, p, 0);
1528 }
1529
1530 /*
1531 * Priority of the task has changed. Check to see if we preempt
1532 * the current task.
1533 */
1534 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1535 int oldprio, int running)
1536 {
1537 /*
1538 * Reschedule if we are currently running on this runqueue and
1539 * our priority decreased, or if we are not currently running on
1540 * this runqueue and our priority is higher than the current's
1541 */
1542 if (running) {
1543 if (p->prio > oldprio)
1544 resched_task(rq->curr);
1545 } else
1546 check_preempt_curr(rq, p, 0);
1547 }
1548
1549 /*
1550 * We switched to the sched_fair class.
1551 */
1552 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1553 int running)
1554 {
1555 /*
1556 * We were most likely switched from sched_rt, so
1557 * kick off the schedule if running, otherwise just see
1558 * if we can still preempt the current task.
1559 */
1560 if (running)
1561 resched_task(rq->curr);
1562 else
1563 check_preempt_curr(rq, p, 0);
1564 }
1565
1566 /* Account for a task changing its policy or group.
1567 *
1568 * This routine is mostly called to set cfs_rq->curr field when a task
1569 * migrates between groups/classes.
1570 */
1571 static void set_curr_task_fair(struct rq *rq)
1572 {
1573 struct sched_entity *se = &rq->curr->se;
1574
1575 for_each_sched_entity(se)
1576 set_next_entity(cfs_rq_of(se), se);
1577 }
1578
1579 #ifdef CONFIG_FAIR_GROUP_SCHED
1580 static void moved_group_fair(struct task_struct *p)
1581 {
1582 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1583
1584 update_curr(cfs_rq);
1585 place_entity(cfs_rq, &p->se, 1);
1586 }
1587 #endif
1588
1589 /*
1590 * All the scheduling class methods:
1591 */
1592 static const struct sched_class fair_sched_class = {
1593 .next = &idle_sched_class,
1594 .enqueue_task = enqueue_task_fair,
1595 .dequeue_task = dequeue_task_fair,
1596 .yield_task = yield_task_fair,
1597 #ifdef CONFIG_SMP
1598 .select_task_rq = select_task_rq_fair,
1599 #endif /* CONFIG_SMP */
1600
1601 .check_preempt_curr = check_preempt_wakeup,
1602
1603 .pick_next_task = pick_next_task_fair,
1604 .put_prev_task = put_prev_task_fair,
1605
1606 #ifdef CONFIG_SMP
1607 .load_balance = load_balance_fair,
1608 .move_one_task = move_one_task_fair,
1609 #endif
1610
1611 .set_curr_task = set_curr_task_fair,
1612 .task_tick = task_tick_fair,
1613 .task_new = task_new_fair,
1614
1615 .prio_changed = prio_changed_fair,
1616 .switched_to = switched_to_fair,
1617
1618 #ifdef CONFIG_FAIR_GROUP_SCHED
1619 .moved_group = moved_group_fair,
1620 #endif
1621 };
1622
1623 #ifdef CONFIG_SCHED_DEBUG
1624 static void print_cfs_stats(struct seq_file *m, int cpu)
1625 {
1626 struct cfs_rq *cfs_rq;
1627
1628 rcu_read_lock();
1629 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1630 print_cfs_rq(m, cpu, cfs_rq);
1631 rcu_read_unlock();
1632 }
1633 #endif
This page took 0.175992 seconds and 6 git commands to generate.