sched: fix fair sleepers
[deliverable/linux.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73
74 /*
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
83
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
100
101 #else /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104 {
105 return container_of(cfs_rq, struct rq, cfs);
106 }
107
108 #define entity_is_task(se) 1
109
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
111
112 static inline struct task_struct *task_of(struct sched_entity *se)
113 {
114 return container_of(se, struct task_struct, se);
115 }
116
117
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 {
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138 }
139
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 {
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
190 }
191
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
209
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
214 }
215
216 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217 {
218 return cfs_rq->rb_leftmost;
219 }
220
221 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222 {
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224 }
225
226 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227 {
228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
229
230 if (!last)
231 return NULL;
232
233 return rb_entry(last, struct sched_entity, run_node);
234 }
235
236 /**************************************************************
237 * Scheduling class statistics methods:
238 */
239
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254 }
255 #endif
256
257 /*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
265 static u64 __sched_period(unsigned long nr_running)
266 {
267 u64 period = sysctl_sched_latency;
268 unsigned long nr_latency = sched_nr_latency;
269
270 if (unlikely(nr_running > nr_latency)) {
271 period = sysctl_sched_min_granularity;
272 period *= nr_running;
273 }
274
275 return period;
276 }
277
278 /*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
284 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
285 {
286 u64 slice = __sched_period(cfs_rq->nr_running);
287
288 slice *= se->load.weight;
289 do_div(slice, cfs_rq->load.weight);
290
291 return slice;
292 }
293
294 /*
295 * We calculate the vruntime slice.
296 *
297 * vs = s/w = p/rw
298 */
299 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
300 {
301 u64 vslice = __sched_period(nr_running);
302
303 vslice *= NICE_0_LOAD;
304 do_div(vslice, rq_weight);
305
306 return vslice;
307 }
308
309 static u64 sched_vslice(struct cfs_rq *cfs_rq)
310 {
311 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
312 }
313
314 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
315 {
316 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
317 cfs_rq->nr_running + 1);
318 }
319
320 /*
321 * Update the current task's runtime statistics. Skip current tasks that
322 * are not in our scheduling class.
323 */
324 static inline void
325 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
326 unsigned long delta_exec)
327 {
328 unsigned long delta_exec_weighted;
329
330 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
331
332 curr->sum_exec_runtime += delta_exec;
333 schedstat_add(cfs_rq, exec_clock, delta_exec);
334 delta_exec_weighted = delta_exec;
335 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
336 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
337 &curr->load);
338 }
339 curr->vruntime += delta_exec_weighted;
340 }
341
342 static void update_curr(struct cfs_rq *cfs_rq)
343 {
344 struct sched_entity *curr = cfs_rq->curr;
345 u64 now = rq_of(cfs_rq)->clock;
346 unsigned long delta_exec;
347
348 if (unlikely(!curr))
349 return;
350
351 /*
352 * Get the amount of time the current task was running
353 * since the last time we changed load (this cannot
354 * overflow on 32 bits):
355 */
356 delta_exec = (unsigned long)(now - curr->exec_start);
357
358 __update_curr(cfs_rq, curr, delta_exec);
359 curr->exec_start = now;
360
361 if (entity_is_task(curr)) {
362 struct task_struct *curtask = task_of(curr);
363
364 cpuacct_charge(curtask, delta_exec);
365 }
366 }
367
368 static inline void
369 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 {
371 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
372 }
373
374 /*
375 * Task is being enqueued - update stats:
376 */
377 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
378 {
379 /*
380 * Are we enqueueing a waiting task? (for current tasks
381 * a dequeue/enqueue event is a NOP)
382 */
383 if (se != cfs_rq->curr)
384 update_stats_wait_start(cfs_rq, se);
385 }
386
387 static void
388 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
389 {
390 schedstat_set(se->wait_max, max(se->wait_max,
391 rq_of(cfs_rq)->clock - se->wait_start));
392 schedstat_set(se->wait_count, se->wait_count + 1);
393 schedstat_set(se->wait_sum, se->wait_sum +
394 rq_of(cfs_rq)->clock - se->wait_start);
395 schedstat_set(se->wait_start, 0);
396 }
397
398 static inline void
399 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
400 {
401 /*
402 * Mark the end of the wait period if dequeueing a
403 * waiting task:
404 */
405 if (se != cfs_rq->curr)
406 update_stats_wait_end(cfs_rq, se);
407 }
408
409 /*
410 * We are picking a new current task - update its stats:
411 */
412 static inline void
413 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
414 {
415 /*
416 * We are starting a new run period:
417 */
418 se->exec_start = rq_of(cfs_rq)->clock;
419 }
420
421 /**************************************************
422 * Scheduling class queueing methods:
423 */
424
425 static void
426 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 {
428 update_load_add(&cfs_rq->load, se->load.weight);
429 cfs_rq->nr_running++;
430 se->on_rq = 1;
431 }
432
433 static void
434 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
435 {
436 update_load_sub(&cfs_rq->load, se->load.weight);
437 cfs_rq->nr_running--;
438 se->on_rq = 0;
439 }
440
441 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 #ifdef CONFIG_SCHEDSTATS
444 if (se->sleep_start) {
445 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
446 struct task_struct *tsk = task_of(se);
447
448 if ((s64)delta < 0)
449 delta = 0;
450
451 if (unlikely(delta > se->sleep_max))
452 se->sleep_max = delta;
453
454 se->sleep_start = 0;
455 se->sum_sleep_runtime += delta;
456
457 account_scheduler_latency(tsk, delta >> 10, 1);
458 }
459 if (se->block_start) {
460 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
461 struct task_struct *tsk = task_of(se);
462
463 if ((s64)delta < 0)
464 delta = 0;
465
466 if (unlikely(delta > se->block_max))
467 se->block_max = delta;
468
469 se->block_start = 0;
470 se->sum_sleep_runtime += delta;
471
472 /*
473 * Blocking time is in units of nanosecs, so shift by 20 to
474 * get a milliseconds-range estimation of the amount of
475 * time that the task spent sleeping:
476 */
477 if (unlikely(prof_on == SLEEP_PROFILING)) {
478
479 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
480 delta >> 20);
481 }
482 account_scheduler_latency(tsk, delta >> 10, 0);
483 }
484 #endif
485 }
486
487 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 #ifdef CONFIG_SCHED_DEBUG
490 s64 d = se->vruntime - cfs_rq->min_vruntime;
491
492 if (d < 0)
493 d = -d;
494
495 if (d > 3*sysctl_sched_latency)
496 schedstat_inc(cfs_rq, nr_spread_over);
497 #endif
498 }
499
500 static void
501 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
502 {
503 u64 vruntime;
504
505 if (first_fair(cfs_rq)) {
506 vruntime = min_vruntime(cfs_rq->min_vruntime,
507 __pick_next_entity(cfs_rq)->vruntime);
508 } else
509 vruntime = cfs_rq->min_vruntime;
510
511 if (sched_feat(TREE_AVG)) {
512 struct sched_entity *last = __pick_last_entity(cfs_rq);
513 if (last) {
514 vruntime += last->vruntime;
515 vruntime >>= 1;
516 }
517 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
518 vruntime += sched_vslice(cfs_rq)/2;
519
520 /*
521 * The 'current' period is already promised to the current tasks,
522 * however the extra weight of the new task will slow them down a
523 * little, place the new task so that it fits in the slot that
524 * stays open at the end.
525 */
526 if (initial && sched_feat(START_DEBIT))
527 vruntime += sched_vslice_add(cfs_rq, se);
528
529 if (!initial) {
530 /* sleeps upto a single latency don't count. */
531 if (sched_feat(NEW_FAIR_SLEEPERS)) {
532 vruntime -= calc_delta_fair(sysctl_sched_latency,
533 &cfs_rq->load);
534 }
535
536 /* ensure we never gain time by being placed backwards. */
537 vruntime = max_vruntime(se->vruntime, vruntime);
538 }
539
540 se->vruntime = vruntime;
541 }
542
543 static void
544 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
545 {
546 /*
547 * Update run-time statistics of the 'current'.
548 */
549 update_curr(cfs_rq);
550
551 if (wakeup) {
552 place_entity(cfs_rq, se, 0);
553 enqueue_sleeper(cfs_rq, se);
554 }
555
556 update_stats_enqueue(cfs_rq, se);
557 check_spread(cfs_rq, se);
558 if (se != cfs_rq->curr)
559 __enqueue_entity(cfs_rq, se);
560 account_entity_enqueue(cfs_rq, se);
561 }
562
563 static void
564 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
565 {
566 /*
567 * Update run-time statistics of the 'current'.
568 */
569 update_curr(cfs_rq);
570
571 update_stats_dequeue(cfs_rq, se);
572 if (sleep) {
573 #ifdef CONFIG_SCHEDSTATS
574 if (entity_is_task(se)) {
575 struct task_struct *tsk = task_of(se);
576
577 if (tsk->state & TASK_INTERRUPTIBLE)
578 se->sleep_start = rq_of(cfs_rq)->clock;
579 if (tsk->state & TASK_UNINTERRUPTIBLE)
580 se->block_start = rq_of(cfs_rq)->clock;
581 }
582 #endif
583 }
584
585 if (se != cfs_rq->curr)
586 __dequeue_entity(cfs_rq, se);
587 account_entity_dequeue(cfs_rq, se);
588 }
589
590 /*
591 * Preempt the current task with a newly woken task if needed:
592 */
593 static void
594 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
595 {
596 unsigned long ideal_runtime, delta_exec;
597
598 ideal_runtime = sched_slice(cfs_rq, curr);
599 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
600 if (delta_exec > ideal_runtime)
601 resched_task(rq_of(cfs_rq)->curr);
602 }
603
604 static void
605 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 /* 'current' is not kept within the tree. */
608 if (se->on_rq) {
609 /*
610 * Any task has to be enqueued before it get to execute on
611 * a CPU. So account for the time it spent waiting on the
612 * runqueue.
613 */
614 update_stats_wait_end(cfs_rq, se);
615 __dequeue_entity(cfs_rq, se);
616 }
617
618 update_stats_curr_start(cfs_rq, se);
619 cfs_rq->curr = se;
620 #ifdef CONFIG_SCHEDSTATS
621 /*
622 * Track our maximum slice length, if the CPU's load is at
623 * least twice that of our own weight (i.e. dont track it
624 * when there are only lesser-weight tasks around):
625 */
626 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
627 se->slice_max = max(se->slice_max,
628 se->sum_exec_runtime - se->prev_sum_exec_runtime);
629 }
630 #endif
631 se->prev_sum_exec_runtime = se->sum_exec_runtime;
632 }
633
634 static struct sched_entity *
635 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 s64 diff, gran;
638
639 if (!cfs_rq->next)
640 return se;
641
642 diff = cfs_rq->next->vruntime - se->vruntime;
643 if (diff < 0)
644 return se;
645
646 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
647 if (diff > gran)
648 return se;
649
650 return cfs_rq->next;
651 }
652
653 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
654 {
655 struct sched_entity *se = NULL;
656
657 if (first_fair(cfs_rq)) {
658 se = __pick_next_entity(cfs_rq);
659 se = pick_next(cfs_rq, se);
660 set_next_entity(cfs_rq, se);
661 }
662
663 return se;
664 }
665
666 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
667 {
668 /*
669 * If still on the runqueue then deactivate_task()
670 * was not called and update_curr() has to be done:
671 */
672 if (prev->on_rq)
673 update_curr(cfs_rq);
674
675 check_spread(cfs_rq, prev);
676 if (prev->on_rq) {
677 update_stats_wait_start(cfs_rq, prev);
678 /* Put 'current' back into the tree. */
679 __enqueue_entity(cfs_rq, prev);
680 }
681 cfs_rq->curr = NULL;
682 }
683
684 static void
685 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
686 {
687 /*
688 * Update run-time statistics of the 'current'.
689 */
690 update_curr(cfs_rq);
691
692 #ifdef CONFIG_SCHED_HRTICK
693 /*
694 * queued ticks are scheduled to match the slice, so don't bother
695 * validating it and just reschedule.
696 */
697 if (queued)
698 return resched_task(rq_of(cfs_rq)->curr);
699 /*
700 * don't let the period tick interfere with the hrtick preemption
701 */
702 if (!sched_feat(DOUBLE_TICK) &&
703 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
704 return;
705 #endif
706
707 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
708 check_preempt_tick(cfs_rq, curr);
709 }
710
711 /**************************************************
712 * CFS operations on tasks:
713 */
714
715 #ifdef CONFIG_FAIR_GROUP_SCHED
716
717 /* Walk up scheduling entities hierarchy */
718 #define for_each_sched_entity(se) \
719 for (; se; se = se->parent)
720
721 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
722 {
723 return p->se.cfs_rq;
724 }
725
726 /* runqueue on which this entity is (to be) queued */
727 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
728 {
729 return se->cfs_rq;
730 }
731
732 /* runqueue "owned" by this group */
733 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
734 {
735 return grp->my_q;
736 }
737
738 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
739 * another cpu ('this_cpu')
740 */
741 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
742 {
743 return cfs_rq->tg->cfs_rq[this_cpu];
744 }
745
746 /* Iterate thr' all leaf cfs_rq's on a runqueue */
747 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
748 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
749
750 /* Do the two (enqueued) entities belong to the same group ? */
751 static inline int
752 is_same_group(struct sched_entity *se, struct sched_entity *pse)
753 {
754 if (se->cfs_rq == pse->cfs_rq)
755 return 1;
756
757 return 0;
758 }
759
760 static inline struct sched_entity *parent_entity(struct sched_entity *se)
761 {
762 return se->parent;
763 }
764
765 #else /* CONFIG_FAIR_GROUP_SCHED */
766
767 #define for_each_sched_entity(se) \
768 for (; se; se = NULL)
769
770 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
771 {
772 return &task_rq(p)->cfs;
773 }
774
775 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
776 {
777 struct task_struct *p = task_of(se);
778 struct rq *rq = task_rq(p);
779
780 return &rq->cfs;
781 }
782
783 /* runqueue "owned" by this group */
784 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
785 {
786 return NULL;
787 }
788
789 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
790 {
791 return &cpu_rq(this_cpu)->cfs;
792 }
793
794 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
795 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
796
797 static inline int
798 is_same_group(struct sched_entity *se, struct sched_entity *pse)
799 {
800 return 1;
801 }
802
803 static inline struct sched_entity *parent_entity(struct sched_entity *se)
804 {
805 return NULL;
806 }
807
808 #endif /* CONFIG_FAIR_GROUP_SCHED */
809
810 #ifdef CONFIG_SCHED_HRTICK
811 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
812 {
813 int requeue = rq->curr == p;
814 struct sched_entity *se = &p->se;
815 struct cfs_rq *cfs_rq = cfs_rq_of(se);
816
817 WARN_ON(task_rq(p) != rq);
818
819 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
820 u64 slice = sched_slice(cfs_rq, se);
821 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
822 s64 delta = slice - ran;
823
824 if (delta < 0) {
825 if (rq->curr == p)
826 resched_task(p);
827 return;
828 }
829
830 /*
831 * Don't schedule slices shorter than 10000ns, that just
832 * doesn't make sense. Rely on vruntime for fairness.
833 */
834 if (!requeue)
835 delta = max(10000LL, delta);
836
837 hrtick_start(rq, delta, requeue);
838 }
839 }
840 #else
841 static inline void
842 hrtick_start_fair(struct rq *rq, struct task_struct *p)
843 {
844 }
845 #endif
846
847 /*
848 * The enqueue_task method is called before nr_running is
849 * increased. Here we update the fair scheduling stats and
850 * then put the task into the rbtree:
851 */
852 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
853 {
854 struct cfs_rq *cfs_rq;
855 struct sched_entity *se = &p->se;
856
857 for_each_sched_entity(se) {
858 if (se->on_rq)
859 break;
860 cfs_rq = cfs_rq_of(se);
861 enqueue_entity(cfs_rq, se, wakeup);
862 wakeup = 1;
863 }
864
865 hrtick_start_fair(rq, rq->curr);
866 }
867
868 /*
869 * The dequeue_task method is called before nr_running is
870 * decreased. We remove the task from the rbtree and
871 * update the fair scheduling stats:
872 */
873 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
874 {
875 struct cfs_rq *cfs_rq;
876 struct sched_entity *se = &p->se;
877
878 for_each_sched_entity(se) {
879 cfs_rq = cfs_rq_of(se);
880 dequeue_entity(cfs_rq, se, sleep);
881 /* Don't dequeue parent if it has other entities besides us */
882 if (cfs_rq->load.weight)
883 break;
884 sleep = 1;
885 }
886
887 hrtick_start_fair(rq, rq->curr);
888 }
889
890 /*
891 * sched_yield() support is very simple - we dequeue and enqueue.
892 *
893 * If compat_yield is turned on then we requeue to the end of the tree.
894 */
895 static void yield_task_fair(struct rq *rq)
896 {
897 struct task_struct *curr = rq->curr;
898 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
899 struct sched_entity *rightmost, *se = &curr->se;
900
901 /*
902 * Are we the only task in the tree?
903 */
904 if (unlikely(cfs_rq->nr_running == 1))
905 return;
906
907 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
908 __update_rq_clock(rq);
909 /*
910 * Update run-time statistics of the 'current'.
911 */
912 update_curr(cfs_rq);
913
914 return;
915 }
916 /*
917 * Find the rightmost entry in the rbtree:
918 */
919 rightmost = __pick_last_entity(cfs_rq);
920 /*
921 * Already in the rightmost position?
922 */
923 if (unlikely(rightmost->vruntime < se->vruntime))
924 return;
925
926 /*
927 * Minimally necessary key value to be last in the tree:
928 * Upon rescheduling, sched_class::put_prev_task() will place
929 * 'current' within the tree based on its new key value.
930 */
931 se->vruntime = rightmost->vruntime + 1;
932 }
933
934 /*
935 * wake_idle() will wake a task on an idle cpu if task->cpu is
936 * not idle and an idle cpu is available. The span of cpus to
937 * search starts with cpus closest then further out as needed,
938 * so we always favor a closer, idle cpu.
939 *
940 * Returns the CPU we should wake onto.
941 */
942 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
943 static int wake_idle(int cpu, struct task_struct *p)
944 {
945 cpumask_t tmp;
946 struct sched_domain *sd;
947 int i;
948
949 /*
950 * If it is idle, then it is the best cpu to run this task.
951 *
952 * This cpu is also the best, if it has more than one task already.
953 * Siblings must be also busy(in most cases) as they didn't already
954 * pickup the extra load from this cpu and hence we need not check
955 * sibling runqueue info. This will avoid the checks and cache miss
956 * penalities associated with that.
957 */
958 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
959 return cpu;
960
961 for_each_domain(cpu, sd) {
962 if (sd->flags & SD_WAKE_IDLE) {
963 cpus_and(tmp, sd->span, p->cpus_allowed);
964 for_each_cpu_mask(i, tmp) {
965 if (idle_cpu(i)) {
966 if (i != task_cpu(p)) {
967 schedstat_inc(p,
968 se.nr_wakeups_idle);
969 }
970 return i;
971 }
972 }
973 } else {
974 break;
975 }
976 }
977 return cpu;
978 }
979 #else
980 static inline int wake_idle(int cpu, struct task_struct *p)
981 {
982 return cpu;
983 }
984 #endif
985
986 #ifdef CONFIG_SMP
987 static int select_task_rq_fair(struct task_struct *p, int sync)
988 {
989 int cpu, this_cpu;
990 struct rq *rq;
991 struct sched_domain *sd, *this_sd = NULL;
992 int new_cpu;
993
994 cpu = task_cpu(p);
995 rq = task_rq(p);
996 this_cpu = smp_processor_id();
997 new_cpu = cpu;
998
999 if (cpu == this_cpu)
1000 goto out_set_cpu;
1001
1002 for_each_domain(this_cpu, sd) {
1003 if (cpu_isset(cpu, sd->span)) {
1004 this_sd = sd;
1005 break;
1006 }
1007 }
1008
1009 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1010 goto out_set_cpu;
1011
1012 /*
1013 * Check for affine wakeup and passive balancing possibilities.
1014 */
1015 if (this_sd) {
1016 int idx = this_sd->wake_idx;
1017 unsigned int imbalance;
1018 unsigned long load, this_load;
1019
1020 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1021
1022 load = source_load(cpu, idx);
1023 this_load = target_load(this_cpu, idx);
1024
1025 new_cpu = this_cpu; /* Wake to this CPU if we can */
1026
1027 if (this_sd->flags & SD_WAKE_AFFINE) {
1028 unsigned long tl = this_load;
1029 unsigned long tl_per_task;
1030
1031 /*
1032 * Attract cache-cold tasks on sync wakeups:
1033 */
1034 if (sync && !task_hot(p, rq->clock, this_sd))
1035 goto out_set_cpu;
1036
1037 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1038 tl_per_task = cpu_avg_load_per_task(this_cpu);
1039
1040 /*
1041 * If sync wakeup then subtract the (maximum possible)
1042 * effect of the currently running task from the load
1043 * of the current CPU:
1044 */
1045 if (sync)
1046 tl -= current->se.load.weight;
1047
1048 if ((tl <= load &&
1049 tl + target_load(cpu, idx) <= tl_per_task) ||
1050 100*(tl + p->se.load.weight) <= imbalance*load) {
1051 /*
1052 * This domain has SD_WAKE_AFFINE and
1053 * p is cache cold in this domain, and
1054 * there is no bad imbalance.
1055 */
1056 schedstat_inc(this_sd, ttwu_move_affine);
1057 schedstat_inc(p, se.nr_wakeups_affine);
1058 goto out_set_cpu;
1059 }
1060 }
1061
1062 /*
1063 * Start passive balancing when half the imbalance_pct
1064 * limit is reached.
1065 */
1066 if (this_sd->flags & SD_WAKE_BALANCE) {
1067 if (imbalance*this_load <= 100*load) {
1068 schedstat_inc(this_sd, ttwu_move_balance);
1069 schedstat_inc(p, se.nr_wakeups_passive);
1070 goto out_set_cpu;
1071 }
1072 }
1073 }
1074
1075 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1076 out_set_cpu:
1077 return wake_idle(new_cpu, p);
1078 }
1079 #endif /* CONFIG_SMP */
1080
1081
1082 /*
1083 * Preempt the current task with a newly woken task if needed:
1084 */
1085 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1086 {
1087 struct task_struct *curr = rq->curr;
1088 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1089 struct sched_entity *se = &curr->se, *pse = &p->se;
1090 unsigned long gran;
1091
1092 if (unlikely(rt_prio(p->prio))) {
1093 update_rq_clock(rq);
1094 update_curr(cfs_rq);
1095 resched_task(curr);
1096 return;
1097 }
1098
1099 cfs_rq_of(pse)->next = pse;
1100
1101 /*
1102 * Batch tasks do not preempt (their preemption is driven by
1103 * the tick):
1104 */
1105 if (unlikely(p->policy == SCHED_BATCH))
1106 return;
1107
1108 if (!sched_feat(WAKEUP_PREEMPT))
1109 return;
1110
1111 while (!is_same_group(se, pse)) {
1112 se = parent_entity(se);
1113 pse = parent_entity(pse);
1114 }
1115
1116 gran = sysctl_sched_wakeup_granularity;
1117 /*
1118 * More easily preempt - nice tasks, while not making
1119 * it harder for + nice tasks.
1120 */
1121 if (unlikely(se->load.weight > NICE_0_LOAD))
1122 gran = calc_delta_fair(gran, &se->load);
1123
1124 if (pse->vruntime + gran < se->vruntime)
1125 resched_task(curr);
1126 }
1127
1128 static struct task_struct *pick_next_task_fair(struct rq *rq)
1129 {
1130 struct task_struct *p;
1131 struct cfs_rq *cfs_rq = &rq->cfs;
1132 struct sched_entity *se;
1133
1134 if (unlikely(!cfs_rq->nr_running))
1135 return NULL;
1136
1137 do {
1138 se = pick_next_entity(cfs_rq);
1139 cfs_rq = group_cfs_rq(se);
1140 } while (cfs_rq);
1141
1142 p = task_of(se);
1143 hrtick_start_fair(rq, p);
1144
1145 return p;
1146 }
1147
1148 /*
1149 * Account for a descheduled task:
1150 */
1151 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1152 {
1153 struct sched_entity *se = &prev->se;
1154 struct cfs_rq *cfs_rq;
1155
1156 for_each_sched_entity(se) {
1157 cfs_rq = cfs_rq_of(se);
1158 put_prev_entity(cfs_rq, se);
1159 }
1160 }
1161
1162 #ifdef CONFIG_SMP
1163 /**************************************************
1164 * Fair scheduling class load-balancing methods:
1165 */
1166
1167 /*
1168 * Load-balancing iterator. Note: while the runqueue stays locked
1169 * during the whole iteration, the current task might be
1170 * dequeued so the iterator has to be dequeue-safe. Here we
1171 * achieve that by always pre-iterating before returning
1172 * the current task:
1173 */
1174 static struct task_struct *
1175 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1176 {
1177 struct task_struct *p;
1178
1179 if (!curr)
1180 return NULL;
1181
1182 p = rb_entry(curr, struct task_struct, se.run_node);
1183 cfs_rq->rb_load_balance_curr = rb_next(curr);
1184
1185 return p;
1186 }
1187
1188 static struct task_struct *load_balance_start_fair(void *arg)
1189 {
1190 struct cfs_rq *cfs_rq = arg;
1191
1192 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1193 }
1194
1195 static struct task_struct *load_balance_next_fair(void *arg)
1196 {
1197 struct cfs_rq *cfs_rq = arg;
1198
1199 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1200 }
1201
1202 #ifdef CONFIG_FAIR_GROUP_SCHED
1203 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1204 {
1205 struct sched_entity *curr;
1206 struct task_struct *p;
1207
1208 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1209 return MAX_PRIO;
1210
1211 curr = cfs_rq->curr;
1212 if (!curr)
1213 curr = __pick_next_entity(cfs_rq);
1214
1215 p = task_of(curr);
1216
1217 return p->prio;
1218 }
1219 #endif
1220
1221 static unsigned long
1222 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1223 unsigned long max_load_move,
1224 struct sched_domain *sd, enum cpu_idle_type idle,
1225 int *all_pinned, int *this_best_prio)
1226 {
1227 struct cfs_rq *busy_cfs_rq;
1228 long rem_load_move = max_load_move;
1229 struct rq_iterator cfs_rq_iterator;
1230
1231 cfs_rq_iterator.start = load_balance_start_fair;
1232 cfs_rq_iterator.next = load_balance_next_fair;
1233
1234 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1235 #ifdef CONFIG_FAIR_GROUP_SCHED
1236 struct cfs_rq *this_cfs_rq;
1237 long imbalance;
1238 unsigned long maxload;
1239
1240 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1241
1242 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1243 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1244 if (imbalance <= 0)
1245 continue;
1246
1247 /* Don't pull more than imbalance/2 */
1248 imbalance /= 2;
1249 maxload = min(rem_load_move, imbalance);
1250
1251 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1252 #else
1253 # define maxload rem_load_move
1254 #endif
1255 /*
1256 * pass busy_cfs_rq argument into
1257 * load_balance_[start|next]_fair iterators
1258 */
1259 cfs_rq_iterator.arg = busy_cfs_rq;
1260 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1261 maxload, sd, idle, all_pinned,
1262 this_best_prio,
1263 &cfs_rq_iterator);
1264
1265 if (rem_load_move <= 0)
1266 break;
1267 }
1268
1269 return max_load_move - rem_load_move;
1270 }
1271
1272 static int
1273 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1274 struct sched_domain *sd, enum cpu_idle_type idle)
1275 {
1276 struct cfs_rq *busy_cfs_rq;
1277 struct rq_iterator cfs_rq_iterator;
1278
1279 cfs_rq_iterator.start = load_balance_start_fair;
1280 cfs_rq_iterator.next = load_balance_next_fair;
1281
1282 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1283 /*
1284 * pass busy_cfs_rq argument into
1285 * load_balance_[start|next]_fair iterators
1286 */
1287 cfs_rq_iterator.arg = busy_cfs_rq;
1288 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1289 &cfs_rq_iterator))
1290 return 1;
1291 }
1292
1293 return 0;
1294 }
1295 #endif
1296
1297 /*
1298 * scheduler tick hitting a task of our scheduling class:
1299 */
1300 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1301 {
1302 struct cfs_rq *cfs_rq;
1303 struct sched_entity *se = &curr->se;
1304
1305 for_each_sched_entity(se) {
1306 cfs_rq = cfs_rq_of(se);
1307 entity_tick(cfs_rq, se, queued);
1308 }
1309 }
1310
1311 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1312
1313 /*
1314 * Share the fairness runtime between parent and child, thus the
1315 * total amount of pressure for CPU stays equal - new tasks
1316 * get a chance to run but frequent forkers are not allowed to
1317 * monopolize the CPU. Note: the parent runqueue is locked,
1318 * the child is not running yet.
1319 */
1320 static void task_new_fair(struct rq *rq, struct task_struct *p)
1321 {
1322 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1323 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1324 int this_cpu = smp_processor_id();
1325
1326 sched_info_queued(p);
1327
1328 update_curr(cfs_rq);
1329 place_entity(cfs_rq, se, 1);
1330
1331 /* 'curr' will be NULL if the child belongs to a different group */
1332 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1333 curr && curr->vruntime < se->vruntime) {
1334 /*
1335 * Upon rescheduling, sched_class::put_prev_task() will place
1336 * 'current' within the tree based on its new key value.
1337 */
1338 swap(curr->vruntime, se->vruntime);
1339 }
1340
1341 enqueue_task_fair(rq, p, 0);
1342 resched_task(rq->curr);
1343 }
1344
1345 /*
1346 * Priority of the task has changed. Check to see if we preempt
1347 * the current task.
1348 */
1349 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1350 int oldprio, int running)
1351 {
1352 /*
1353 * Reschedule if we are currently running on this runqueue and
1354 * our priority decreased, or if we are not currently running on
1355 * this runqueue and our priority is higher than the current's
1356 */
1357 if (running) {
1358 if (p->prio > oldprio)
1359 resched_task(rq->curr);
1360 } else
1361 check_preempt_curr(rq, p);
1362 }
1363
1364 /*
1365 * We switched to the sched_fair class.
1366 */
1367 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1368 int running)
1369 {
1370 /*
1371 * We were most likely switched from sched_rt, so
1372 * kick off the schedule if running, otherwise just see
1373 * if we can still preempt the current task.
1374 */
1375 if (running)
1376 resched_task(rq->curr);
1377 else
1378 check_preempt_curr(rq, p);
1379 }
1380
1381 /* Account for a task changing its policy or group.
1382 *
1383 * This routine is mostly called to set cfs_rq->curr field when a task
1384 * migrates between groups/classes.
1385 */
1386 static void set_curr_task_fair(struct rq *rq)
1387 {
1388 struct sched_entity *se = &rq->curr->se;
1389
1390 for_each_sched_entity(se)
1391 set_next_entity(cfs_rq_of(se), se);
1392 }
1393
1394 #ifdef CONFIG_FAIR_GROUP_SCHED
1395 static void moved_group_fair(struct task_struct *p)
1396 {
1397 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1398
1399 update_curr(cfs_rq);
1400 place_entity(cfs_rq, &p->se, 1);
1401 }
1402 #endif
1403
1404 /*
1405 * All the scheduling class methods:
1406 */
1407 static const struct sched_class fair_sched_class = {
1408 .next = &idle_sched_class,
1409 .enqueue_task = enqueue_task_fair,
1410 .dequeue_task = dequeue_task_fair,
1411 .yield_task = yield_task_fair,
1412 #ifdef CONFIG_SMP
1413 .select_task_rq = select_task_rq_fair,
1414 #endif /* CONFIG_SMP */
1415
1416 .check_preempt_curr = check_preempt_wakeup,
1417
1418 .pick_next_task = pick_next_task_fair,
1419 .put_prev_task = put_prev_task_fair,
1420
1421 #ifdef CONFIG_SMP
1422 .load_balance = load_balance_fair,
1423 .move_one_task = move_one_task_fair,
1424 #endif
1425
1426 .set_curr_task = set_curr_task_fair,
1427 .task_tick = task_tick_fair,
1428 .task_new = task_new_fair,
1429
1430 .prio_changed = prio_changed_fair,
1431 .switched_to = switched_to_fair,
1432
1433 #ifdef CONFIG_FAIR_GROUP_SCHED
1434 .moved_group = moved_group_fair,
1435 #endif
1436 };
1437
1438 #ifdef CONFIG_SCHED_DEBUG
1439 static void print_cfs_stats(struct seq_file *m, int cpu)
1440 {
1441 struct cfs_rq *cfs_rq;
1442
1443 #ifdef CONFIG_FAIR_GROUP_SCHED
1444 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1445 #endif
1446 rcu_read_lock();
1447 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1448 print_cfs_rq(m, cpu, cfs_rq);
1449 rcu_read_unlock();
1450 }
1451 #endif
This page took 0.08977 seconds and 6 git commands to generate.