timers: fix itimer/many thread hang
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 if (!rq->online)
16 return;
17
18 cpu_set(rq->cpu, rq->rd->rto_mask);
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 if (!rq->online)
33 return;
34
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
50 }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56 return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61 return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
70
71 return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84 return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89 return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97 return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
113 }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144 return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149 return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161 return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168 return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197 return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
204 }
205
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
207 {
208 }
209
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211 {
212 return rt_rq->rt_throttled;
213 }
214
215 static inline cpumask_t sched_rt_period_mask(void)
216 {
217 return cpu_online_map;
218 }
219
220 static inline
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222 {
223 return &cpu_rq(cpu)->rt;
224 }
225
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227 {
228 return &def_rt_bandwidth;
229 }
230
231 #endif /* CONFIG_RT_GROUP_SCHED */
232
233 #ifdef CONFIG_SMP
234 static int do_balance_runtime(struct rt_rq *rt_rq)
235 {
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
240
241 weight = cpus_weight(rd->span);
242
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
245 for_each_cpu_mask_nr(i, rd->span) {
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
248
249 if (iter == rt_rq)
250 continue;
251
252 spin_lock(&iter->rt_runtime_lock);
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
255
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
258 diff = div_u64((u64)diff, weight);
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
267 }
268 }
269 next:
270 spin_unlock(&iter->rt_runtime_lock);
271 }
272 spin_unlock(&rt_b->rt_runtime_lock);
273
274 return more;
275 }
276
277 static void __disable_runtime(struct rq *rq)
278 {
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
281
282 if (unlikely(!scheduler_running))
283 return;
284
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
289
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
296
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
302
303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
304 continue;
305
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
314 }
315 spin_unlock(&iter->rt_runtime_lock);
316
317 if (!want)
318 break;
319 }
320
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323 balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
327 }
328 }
329
330 static void disable_runtime(struct rq *rq)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
337 }
338
339 static void __enable_runtime(struct rq *rq)
340 {
341 struct rt_rq *rt_rq;
342
343 if (unlikely(!scheduler_running))
344 return;
345
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
353 spin_unlock(&rt_rq->rt_runtime_lock);
354 spin_unlock(&rt_b->rt_runtime_lock);
355 }
356 }
357
358 static void enable_runtime(struct rq *rq)
359 {
360 unsigned long flags;
361
362 spin_lock_irqsave(&rq->lock, flags);
363 __enable_runtime(rq);
364 spin_unlock_irqrestore(&rq->lock, flags);
365 }
366
367 static int balance_runtime(struct rt_rq *rt_rq)
368 {
369 int more = 0;
370
371 if (rt_rq->rt_time > rt_rq->rt_runtime) {
372 spin_unlock(&rt_rq->rt_runtime_lock);
373 more = do_balance_runtime(rt_rq);
374 spin_lock(&rt_rq->rt_runtime_lock);
375 }
376
377 return more;
378 }
379 #else /* !CONFIG_SMP */
380 static inline int balance_runtime(struct rt_rq *rt_rq)
381 {
382 return 0;
383 }
384 #endif /* CONFIG_SMP */
385
386 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
387 {
388 int i, idle = 1;
389 cpumask_t span;
390
391 if (rt_b->rt_runtime == RUNTIME_INF)
392 return 1;
393
394 span = sched_rt_period_mask();
395 for_each_cpu_mask(i, span) {
396 int enqueue = 0;
397 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
398 struct rq *rq = rq_of_rt_rq(rt_rq);
399
400 spin_lock(&rq->lock);
401 if (rt_rq->rt_time) {
402 u64 runtime;
403
404 spin_lock(&rt_rq->rt_runtime_lock);
405 if (rt_rq->rt_throttled)
406 balance_runtime(rt_rq);
407 runtime = rt_rq->rt_runtime;
408 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
409 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
410 rt_rq->rt_throttled = 0;
411 enqueue = 1;
412 }
413 if (rt_rq->rt_time || rt_rq->rt_nr_running)
414 idle = 0;
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 } else if (rt_rq->rt_nr_running)
417 idle = 0;
418
419 if (enqueue)
420 sched_rt_rq_enqueue(rt_rq);
421 spin_unlock(&rq->lock);
422 }
423
424 return idle;
425 }
426
427 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
428 {
429 #ifdef CONFIG_RT_GROUP_SCHED
430 struct rt_rq *rt_rq = group_rt_rq(rt_se);
431
432 if (rt_rq)
433 return rt_rq->highest_prio;
434 #endif
435
436 return rt_task_of(rt_se)->prio;
437 }
438
439 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
440 {
441 u64 runtime = sched_rt_runtime(rt_rq);
442
443 if (rt_rq->rt_throttled)
444 return rt_rq_throttled(rt_rq);
445
446 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
447 return 0;
448
449 balance_runtime(rt_rq);
450 runtime = sched_rt_runtime(rt_rq);
451 if (runtime == RUNTIME_INF)
452 return 0;
453
454 if (rt_rq->rt_time > runtime) {
455 rt_rq->rt_throttled = 1;
456 if (rt_rq_throttled(rt_rq)) {
457 sched_rt_rq_dequeue(rt_rq);
458 return 1;
459 }
460 }
461
462 return 0;
463 }
464
465 /*
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
468 */
469 static void update_curr_rt(struct rq *rq)
470 {
471 struct task_struct *curr = rq->curr;
472 struct sched_rt_entity *rt_se = &curr->rt;
473 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
474 u64 delta_exec;
475
476 if (!task_has_rt_policy(curr))
477 return;
478
479 delta_exec = rq->clock - curr->se.exec_start;
480 if (unlikely((s64)delta_exec < 0))
481 delta_exec = 0;
482
483 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
484
485 curr->se.sum_exec_runtime += delta_exec;
486 account_group_exec_runtime(curr, delta_exec);
487
488 curr->se.exec_start = rq->clock;
489 cpuacct_charge(curr, delta_exec);
490
491 for_each_sched_rt_entity(rt_se) {
492 rt_rq = rt_rq_of_se(rt_se);
493
494 spin_lock(&rt_rq->rt_runtime_lock);
495 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
496 rt_rq->rt_time += delta_exec;
497 if (sched_rt_runtime_exceeded(rt_rq))
498 resched_task(curr);
499 }
500 spin_unlock(&rt_rq->rt_runtime_lock);
501 }
502 }
503
504 static inline
505 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
506 {
507 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
508 rt_rq->rt_nr_running++;
509 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
510 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
511 #ifdef CONFIG_SMP
512 struct rq *rq = rq_of_rt_rq(rt_rq);
513 #endif
514
515 rt_rq->highest_prio = rt_se_prio(rt_se);
516 #ifdef CONFIG_SMP
517 if (rq->online)
518 cpupri_set(&rq->rd->cpupri, rq->cpu,
519 rt_se_prio(rt_se));
520 #endif
521 }
522 #endif
523 #ifdef CONFIG_SMP
524 if (rt_se->nr_cpus_allowed > 1) {
525 struct rq *rq = rq_of_rt_rq(rt_rq);
526
527 rq->rt.rt_nr_migratory++;
528 }
529
530 update_rt_migration(rq_of_rt_rq(rt_rq));
531 #endif
532 #ifdef CONFIG_RT_GROUP_SCHED
533 if (rt_se_boosted(rt_se))
534 rt_rq->rt_nr_boosted++;
535
536 if (rt_rq->tg)
537 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
538 #else
539 start_rt_bandwidth(&def_rt_bandwidth);
540 #endif
541 }
542
543 static inline
544 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
545 {
546 #ifdef CONFIG_SMP
547 int highest_prio = rt_rq->highest_prio;
548 #endif
549
550 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
551 WARN_ON(!rt_rq->rt_nr_running);
552 rt_rq->rt_nr_running--;
553 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
554 if (rt_rq->rt_nr_running) {
555 struct rt_prio_array *array;
556
557 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
558 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
559 /* recalculate */
560 array = &rt_rq->active;
561 rt_rq->highest_prio =
562 sched_find_first_bit(array->bitmap);
563 } /* otherwise leave rq->highest prio alone */
564 } else
565 rt_rq->highest_prio = MAX_RT_PRIO;
566 #endif
567 #ifdef CONFIG_SMP
568 if (rt_se->nr_cpus_allowed > 1) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
570 rq->rt.rt_nr_migratory--;
571 }
572
573 if (rt_rq->highest_prio != highest_prio) {
574 struct rq *rq = rq_of_rt_rq(rt_rq);
575
576 if (rq->online)
577 cpupri_set(&rq->rd->cpupri, rq->cpu,
578 rt_rq->highest_prio);
579 }
580
581 update_rt_migration(rq_of_rt_rq(rt_rq));
582 #endif /* CONFIG_SMP */
583 #ifdef CONFIG_RT_GROUP_SCHED
584 if (rt_se_boosted(rt_se))
585 rt_rq->rt_nr_boosted--;
586
587 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
588 #endif
589 }
590
591 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
592 {
593 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
594 struct rt_prio_array *array = &rt_rq->active;
595 struct rt_rq *group_rq = group_rt_rq(rt_se);
596 struct list_head *queue = array->queue + rt_se_prio(rt_se);
597
598 /*
599 * Don't enqueue the group if its throttled, or when empty.
600 * The latter is a consequence of the former when a child group
601 * get throttled and the current group doesn't have any other
602 * active members.
603 */
604 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
605 return;
606
607 list_add_tail(&rt_se->run_list, queue);
608 __set_bit(rt_se_prio(rt_se), array->bitmap);
609
610 inc_rt_tasks(rt_se, rt_rq);
611 }
612
613 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
614 {
615 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
616 struct rt_prio_array *array = &rt_rq->active;
617
618 list_del_init(&rt_se->run_list);
619 if (list_empty(array->queue + rt_se_prio(rt_se)))
620 __clear_bit(rt_se_prio(rt_se), array->bitmap);
621
622 dec_rt_tasks(rt_se, rt_rq);
623 }
624
625 /*
626 * Because the prio of an upper entry depends on the lower
627 * entries, we must remove entries top - down.
628 */
629 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
630 {
631 struct sched_rt_entity *back = NULL;
632
633 for_each_sched_rt_entity(rt_se) {
634 rt_se->back = back;
635 back = rt_se;
636 }
637
638 for (rt_se = back; rt_se; rt_se = rt_se->back) {
639 if (on_rt_rq(rt_se))
640 __dequeue_rt_entity(rt_se);
641 }
642 }
643
644 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
645 {
646 dequeue_rt_stack(rt_se);
647 for_each_sched_rt_entity(rt_se)
648 __enqueue_rt_entity(rt_se);
649 }
650
651 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
652 {
653 dequeue_rt_stack(rt_se);
654
655 for_each_sched_rt_entity(rt_se) {
656 struct rt_rq *rt_rq = group_rt_rq(rt_se);
657
658 if (rt_rq && rt_rq->rt_nr_running)
659 __enqueue_rt_entity(rt_se);
660 }
661 }
662
663 /*
664 * Adding/removing a task to/from a priority array:
665 */
666 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
667 {
668 struct sched_rt_entity *rt_se = &p->rt;
669
670 if (wakeup)
671 rt_se->timeout = 0;
672
673 enqueue_rt_entity(rt_se);
674
675 inc_cpu_load(rq, p->se.load.weight);
676 }
677
678 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
679 {
680 struct sched_rt_entity *rt_se = &p->rt;
681
682 update_curr_rt(rq);
683 dequeue_rt_entity(rt_se);
684
685 dec_cpu_load(rq, p->se.load.weight);
686 }
687
688 /*
689 * Put task to the end of the run list without the overhead of dequeue
690 * followed by enqueue.
691 */
692 static void
693 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
694 {
695 if (on_rt_rq(rt_se)) {
696 struct rt_prio_array *array = &rt_rq->active;
697 struct list_head *queue = array->queue + rt_se_prio(rt_se);
698
699 if (head)
700 list_move(&rt_se->run_list, queue);
701 else
702 list_move_tail(&rt_se->run_list, queue);
703 }
704 }
705
706 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
707 {
708 struct sched_rt_entity *rt_se = &p->rt;
709 struct rt_rq *rt_rq;
710
711 for_each_sched_rt_entity(rt_se) {
712 rt_rq = rt_rq_of_se(rt_se);
713 requeue_rt_entity(rt_rq, rt_se, head);
714 }
715 }
716
717 static void yield_task_rt(struct rq *rq)
718 {
719 requeue_task_rt(rq, rq->curr, 0);
720 }
721
722 #ifdef CONFIG_SMP
723 static int find_lowest_rq(struct task_struct *task);
724
725 static int select_task_rq_rt(struct task_struct *p, int sync)
726 {
727 struct rq *rq = task_rq(p);
728
729 /*
730 * If the current task is an RT task, then
731 * try to see if we can wake this RT task up on another
732 * runqueue. Otherwise simply start this RT task
733 * on its current runqueue.
734 *
735 * We want to avoid overloading runqueues. Even if
736 * the RT task is of higher priority than the current RT task.
737 * RT tasks behave differently than other tasks. If
738 * one gets preempted, we try to push it off to another queue.
739 * So trying to keep a preempting RT task on the same
740 * cache hot CPU will force the running RT task to
741 * a cold CPU. So we waste all the cache for the lower
742 * RT task in hopes of saving some of a RT task
743 * that is just being woken and probably will have
744 * cold cache anyway.
745 */
746 if (unlikely(rt_task(rq->curr)) &&
747 (p->rt.nr_cpus_allowed > 1)) {
748 int cpu = find_lowest_rq(p);
749
750 return (cpu == -1) ? task_cpu(p) : cpu;
751 }
752
753 /*
754 * Otherwise, just let it ride on the affined RQ and the
755 * post-schedule router will push the preempted task away
756 */
757 return task_cpu(p);
758 }
759
760 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
761 {
762 cpumask_t mask;
763
764 if (rq->curr->rt.nr_cpus_allowed == 1)
765 return;
766
767 if (p->rt.nr_cpus_allowed != 1
768 && cpupri_find(&rq->rd->cpupri, p, &mask))
769 return;
770
771 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
772 return;
773
774 /*
775 * There appears to be other cpus that can accept
776 * current and none to run 'p', so lets reschedule
777 * to try and push current away:
778 */
779 requeue_task_rt(rq, p, 1);
780 resched_task(rq->curr);
781 }
782
783 #endif /* CONFIG_SMP */
784
785 /*
786 * Preempt the current task with a newly woken task if needed:
787 */
788 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
789 {
790 if (p->prio < rq->curr->prio) {
791 resched_task(rq->curr);
792 return;
793 }
794
795 #ifdef CONFIG_SMP
796 /*
797 * If:
798 *
799 * - the newly woken task is of equal priority to the current task
800 * - the newly woken task is non-migratable while current is migratable
801 * - current will be preempted on the next reschedule
802 *
803 * we should check to see if current can readily move to a different
804 * cpu. If so, we will reschedule to allow the push logic to try
805 * to move current somewhere else, making room for our non-migratable
806 * task.
807 */
808 if (p->prio == rq->curr->prio && !need_resched())
809 check_preempt_equal_prio(rq, p);
810 #endif
811 }
812
813 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
814 struct rt_rq *rt_rq)
815 {
816 struct rt_prio_array *array = &rt_rq->active;
817 struct sched_rt_entity *next = NULL;
818 struct list_head *queue;
819 int idx;
820
821 idx = sched_find_first_bit(array->bitmap);
822 BUG_ON(idx >= MAX_RT_PRIO);
823
824 queue = array->queue + idx;
825 next = list_entry(queue->next, struct sched_rt_entity, run_list);
826
827 return next;
828 }
829
830 static struct task_struct *pick_next_task_rt(struct rq *rq)
831 {
832 struct sched_rt_entity *rt_se;
833 struct task_struct *p;
834 struct rt_rq *rt_rq;
835
836 rt_rq = &rq->rt;
837
838 if (unlikely(!rt_rq->rt_nr_running))
839 return NULL;
840
841 if (rt_rq_throttled(rt_rq))
842 return NULL;
843
844 do {
845 rt_se = pick_next_rt_entity(rq, rt_rq);
846 BUG_ON(!rt_se);
847 rt_rq = group_rt_rq(rt_se);
848 } while (rt_rq);
849
850 p = rt_task_of(rt_se);
851 p->se.exec_start = rq->clock;
852 return p;
853 }
854
855 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
856 {
857 update_curr_rt(rq);
858 p->se.exec_start = 0;
859 }
860
861 #ifdef CONFIG_SMP
862
863 /* Only try algorithms three times */
864 #define RT_MAX_TRIES 3
865
866 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
867 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
868
869 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
870
871 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
872 {
873 if (!task_running(rq, p) &&
874 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
875 (p->rt.nr_cpus_allowed > 1))
876 return 1;
877 return 0;
878 }
879
880 /* Return the second highest RT task, NULL otherwise */
881 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
882 {
883 struct task_struct *next = NULL;
884 struct sched_rt_entity *rt_se;
885 struct rt_prio_array *array;
886 struct rt_rq *rt_rq;
887 int idx;
888
889 for_each_leaf_rt_rq(rt_rq, rq) {
890 array = &rt_rq->active;
891 idx = sched_find_first_bit(array->bitmap);
892 next_idx:
893 if (idx >= MAX_RT_PRIO)
894 continue;
895 if (next && next->prio < idx)
896 continue;
897 list_for_each_entry(rt_se, array->queue + idx, run_list) {
898 struct task_struct *p = rt_task_of(rt_se);
899 if (pick_rt_task(rq, p, cpu)) {
900 next = p;
901 break;
902 }
903 }
904 if (!next) {
905 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
906 goto next_idx;
907 }
908 }
909
910 return next;
911 }
912
913 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
914
915 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
916 {
917 int first;
918
919 /* "this_cpu" is cheaper to preempt than a remote processor */
920 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
921 return this_cpu;
922
923 first = first_cpu(*mask);
924 if (first != NR_CPUS)
925 return first;
926
927 return -1;
928 }
929
930 static int find_lowest_rq(struct task_struct *task)
931 {
932 struct sched_domain *sd;
933 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
934 int this_cpu = smp_processor_id();
935 int cpu = task_cpu(task);
936
937 if (task->rt.nr_cpus_allowed == 1)
938 return -1; /* No other targets possible */
939
940 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
941 return -1; /* No targets found */
942
943 /*
944 * Only consider CPUs that are usable for migration.
945 * I guess we might want to change cpupri_find() to ignore those
946 * in the first place.
947 */
948 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
949
950 /*
951 * At this point we have built a mask of cpus representing the
952 * lowest priority tasks in the system. Now we want to elect
953 * the best one based on our affinity and topology.
954 *
955 * We prioritize the last cpu that the task executed on since
956 * it is most likely cache-hot in that location.
957 */
958 if (cpu_isset(cpu, *lowest_mask))
959 return cpu;
960
961 /*
962 * Otherwise, we consult the sched_domains span maps to figure
963 * out which cpu is logically closest to our hot cache data.
964 */
965 if (this_cpu == cpu)
966 this_cpu = -1; /* Skip this_cpu opt if the same */
967
968 for_each_domain(cpu, sd) {
969 if (sd->flags & SD_WAKE_AFFINE) {
970 cpumask_t domain_mask;
971 int best_cpu;
972
973 cpus_and(domain_mask, sd->span, *lowest_mask);
974
975 best_cpu = pick_optimal_cpu(this_cpu,
976 &domain_mask);
977 if (best_cpu != -1)
978 return best_cpu;
979 }
980 }
981
982 /*
983 * And finally, if there were no matches within the domains
984 * just give the caller *something* to work with from the compatible
985 * locations.
986 */
987 return pick_optimal_cpu(this_cpu, lowest_mask);
988 }
989
990 /* Will lock the rq it finds */
991 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
992 {
993 struct rq *lowest_rq = NULL;
994 int tries;
995 int cpu;
996
997 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
998 cpu = find_lowest_rq(task);
999
1000 if ((cpu == -1) || (cpu == rq->cpu))
1001 break;
1002
1003 lowest_rq = cpu_rq(cpu);
1004
1005 /* if the prio of this runqueue changed, try again */
1006 if (double_lock_balance(rq, lowest_rq)) {
1007 /*
1008 * We had to unlock the run queue. In
1009 * the mean time, task could have
1010 * migrated already or had its affinity changed.
1011 * Also make sure that it wasn't scheduled on its rq.
1012 */
1013 if (unlikely(task_rq(task) != rq ||
1014 !cpu_isset(lowest_rq->cpu,
1015 task->cpus_allowed) ||
1016 task_running(rq, task) ||
1017 !task->se.on_rq)) {
1018
1019 spin_unlock(&lowest_rq->lock);
1020 lowest_rq = NULL;
1021 break;
1022 }
1023 }
1024
1025 /* If this rq is still suitable use it. */
1026 if (lowest_rq->rt.highest_prio > task->prio)
1027 break;
1028
1029 /* try again */
1030 double_unlock_balance(rq, lowest_rq);
1031 lowest_rq = NULL;
1032 }
1033
1034 return lowest_rq;
1035 }
1036
1037 /*
1038 * If the current CPU has more than one RT task, see if the non
1039 * running task can migrate over to a CPU that is running a task
1040 * of lesser priority.
1041 */
1042 static int push_rt_task(struct rq *rq)
1043 {
1044 struct task_struct *next_task;
1045 struct rq *lowest_rq;
1046 int ret = 0;
1047 int paranoid = RT_MAX_TRIES;
1048
1049 if (!rq->rt.overloaded)
1050 return 0;
1051
1052 next_task = pick_next_highest_task_rt(rq, -1);
1053 if (!next_task)
1054 return 0;
1055
1056 retry:
1057 if (unlikely(next_task == rq->curr)) {
1058 WARN_ON(1);
1059 return 0;
1060 }
1061
1062 /*
1063 * It's possible that the next_task slipped in of
1064 * higher priority than current. If that's the case
1065 * just reschedule current.
1066 */
1067 if (unlikely(next_task->prio < rq->curr->prio)) {
1068 resched_task(rq->curr);
1069 return 0;
1070 }
1071
1072 /* We might release rq lock */
1073 get_task_struct(next_task);
1074
1075 /* find_lock_lowest_rq locks the rq if found */
1076 lowest_rq = find_lock_lowest_rq(next_task, rq);
1077 if (!lowest_rq) {
1078 struct task_struct *task;
1079 /*
1080 * find lock_lowest_rq releases rq->lock
1081 * so it is possible that next_task has changed.
1082 * If it has, then try again.
1083 */
1084 task = pick_next_highest_task_rt(rq, -1);
1085 if (unlikely(task != next_task) && task && paranoid--) {
1086 put_task_struct(next_task);
1087 next_task = task;
1088 goto retry;
1089 }
1090 goto out;
1091 }
1092
1093 deactivate_task(rq, next_task, 0);
1094 set_task_cpu(next_task, lowest_rq->cpu);
1095 activate_task(lowest_rq, next_task, 0);
1096
1097 resched_task(lowest_rq->curr);
1098
1099 double_unlock_balance(rq, lowest_rq);
1100
1101 ret = 1;
1102 out:
1103 put_task_struct(next_task);
1104
1105 return ret;
1106 }
1107
1108 /*
1109 * TODO: Currently we just use the second highest prio task on
1110 * the queue, and stop when it can't migrate (or there's
1111 * no more RT tasks). There may be a case where a lower
1112 * priority RT task has a different affinity than the
1113 * higher RT task. In this case the lower RT task could
1114 * possibly be able to migrate where as the higher priority
1115 * RT task could not. We currently ignore this issue.
1116 * Enhancements are welcome!
1117 */
1118 static void push_rt_tasks(struct rq *rq)
1119 {
1120 /* push_rt_task will return true if it moved an RT */
1121 while (push_rt_task(rq))
1122 ;
1123 }
1124
1125 static int pull_rt_task(struct rq *this_rq)
1126 {
1127 int this_cpu = this_rq->cpu, ret = 0, cpu;
1128 struct task_struct *p, *next;
1129 struct rq *src_rq;
1130
1131 if (likely(!rt_overloaded(this_rq)))
1132 return 0;
1133
1134 next = pick_next_task_rt(this_rq);
1135
1136 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1137 if (this_cpu == cpu)
1138 continue;
1139
1140 src_rq = cpu_rq(cpu);
1141 /*
1142 * We can potentially drop this_rq's lock in
1143 * double_lock_balance, and another CPU could
1144 * steal our next task - hence we must cause
1145 * the caller to recalculate the next task
1146 * in that case:
1147 */
1148 if (double_lock_balance(this_rq, src_rq)) {
1149 struct task_struct *old_next = next;
1150
1151 next = pick_next_task_rt(this_rq);
1152 if (next != old_next)
1153 ret = 1;
1154 }
1155
1156 /*
1157 * Are there still pullable RT tasks?
1158 */
1159 if (src_rq->rt.rt_nr_running <= 1)
1160 goto skip;
1161
1162 p = pick_next_highest_task_rt(src_rq, this_cpu);
1163
1164 /*
1165 * Do we have an RT task that preempts
1166 * the to-be-scheduled task?
1167 */
1168 if (p && (!next || (p->prio < next->prio))) {
1169 WARN_ON(p == src_rq->curr);
1170 WARN_ON(!p->se.on_rq);
1171
1172 /*
1173 * There's a chance that p is higher in priority
1174 * than what's currently running on its cpu.
1175 * This is just that p is wakeing up and hasn't
1176 * had a chance to schedule. We only pull
1177 * p if it is lower in priority than the
1178 * current task on the run queue or
1179 * this_rq next task is lower in prio than
1180 * the current task on that rq.
1181 */
1182 if (p->prio < src_rq->curr->prio ||
1183 (next && next->prio < src_rq->curr->prio))
1184 goto skip;
1185
1186 ret = 1;
1187
1188 deactivate_task(src_rq, p, 0);
1189 set_task_cpu(p, this_cpu);
1190 activate_task(this_rq, p, 0);
1191 /*
1192 * We continue with the search, just in
1193 * case there's an even higher prio task
1194 * in another runqueue. (low likelyhood
1195 * but possible)
1196 *
1197 * Update next so that we won't pick a task
1198 * on another cpu with a priority lower (or equal)
1199 * than the one we just picked.
1200 */
1201 next = p;
1202
1203 }
1204 skip:
1205 double_unlock_balance(this_rq, src_rq);
1206 }
1207
1208 return ret;
1209 }
1210
1211 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1212 {
1213 /* Try to pull RT tasks here if we lower this rq's prio */
1214 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1215 pull_rt_task(rq);
1216 }
1217
1218 static void post_schedule_rt(struct rq *rq)
1219 {
1220 /*
1221 * If we have more than one rt_task queued, then
1222 * see if we can push the other rt_tasks off to other CPUS.
1223 * Note we may release the rq lock, and since
1224 * the lock was owned by prev, we need to release it
1225 * first via finish_lock_switch and then reaquire it here.
1226 */
1227 if (unlikely(rq->rt.overloaded)) {
1228 spin_lock_irq(&rq->lock);
1229 push_rt_tasks(rq);
1230 spin_unlock_irq(&rq->lock);
1231 }
1232 }
1233
1234 /*
1235 * If we are not running and we are not going to reschedule soon, we should
1236 * try to push tasks away now
1237 */
1238 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1239 {
1240 if (!task_running(rq, p) &&
1241 !test_tsk_need_resched(rq->curr) &&
1242 rq->rt.overloaded)
1243 push_rt_tasks(rq);
1244 }
1245
1246 static unsigned long
1247 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1248 unsigned long max_load_move,
1249 struct sched_domain *sd, enum cpu_idle_type idle,
1250 int *all_pinned, int *this_best_prio)
1251 {
1252 /* don't touch RT tasks */
1253 return 0;
1254 }
1255
1256 static int
1257 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1258 struct sched_domain *sd, enum cpu_idle_type idle)
1259 {
1260 /* don't touch RT tasks */
1261 return 0;
1262 }
1263
1264 static void set_cpus_allowed_rt(struct task_struct *p,
1265 const cpumask_t *new_mask)
1266 {
1267 int weight = cpus_weight(*new_mask);
1268
1269 BUG_ON(!rt_task(p));
1270
1271 /*
1272 * Update the migration status of the RQ if we have an RT task
1273 * which is running AND changing its weight value.
1274 */
1275 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1276 struct rq *rq = task_rq(p);
1277
1278 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1279 rq->rt.rt_nr_migratory++;
1280 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1281 BUG_ON(!rq->rt.rt_nr_migratory);
1282 rq->rt.rt_nr_migratory--;
1283 }
1284
1285 update_rt_migration(rq);
1286 }
1287
1288 p->cpus_allowed = *new_mask;
1289 p->rt.nr_cpus_allowed = weight;
1290 }
1291
1292 /* Assumes rq->lock is held */
1293 static void rq_online_rt(struct rq *rq)
1294 {
1295 if (rq->rt.overloaded)
1296 rt_set_overload(rq);
1297
1298 __enable_runtime(rq);
1299
1300 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1301 }
1302
1303 /* Assumes rq->lock is held */
1304 static void rq_offline_rt(struct rq *rq)
1305 {
1306 if (rq->rt.overloaded)
1307 rt_clear_overload(rq);
1308
1309 __disable_runtime(rq);
1310
1311 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1312 }
1313
1314 /*
1315 * When switch from the rt queue, we bring ourselves to a position
1316 * that we might want to pull RT tasks from other runqueues.
1317 */
1318 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1319 int running)
1320 {
1321 /*
1322 * If there are other RT tasks then we will reschedule
1323 * and the scheduling of the other RT tasks will handle
1324 * the balancing. But if we are the last RT task
1325 * we may need to handle the pulling of RT tasks
1326 * now.
1327 */
1328 if (!rq->rt.rt_nr_running)
1329 pull_rt_task(rq);
1330 }
1331 #endif /* CONFIG_SMP */
1332
1333 /*
1334 * When switching a task to RT, we may overload the runqueue
1335 * with RT tasks. In this case we try to push them off to
1336 * other runqueues.
1337 */
1338 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1339 int running)
1340 {
1341 int check_resched = 1;
1342
1343 /*
1344 * If we are already running, then there's nothing
1345 * that needs to be done. But if we are not running
1346 * we may need to preempt the current running task.
1347 * If that current running task is also an RT task
1348 * then see if we can move to another run queue.
1349 */
1350 if (!running) {
1351 #ifdef CONFIG_SMP
1352 if (rq->rt.overloaded && push_rt_task(rq) &&
1353 /* Don't resched if we changed runqueues */
1354 rq != task_rq(p))
1355 check_resched = 0;
1356 #endif /* CONFIG_SMP */
1357 if (check_resched && p->prio < rq->curr->prio)
1358 resched_task(rq->curr);
1359 }
1360 }
1361
1362 /*
1363 * Priority of the task has changed. This may cause
1364 * us to initiate a push or pull.
1365 */
1366 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1367 int oldprio, int running)
1368 {
1369 if (running) {
1370 #ifdef CONFIG_SMP
1371 /*
1372 * If our priority decreases while running, we
1373 * may need to pull tasks to this runqueue.
1374 */
1375 if (oldprio < p->prio)
1376 pull_rt_task(rq);
1377 /*
1378 * If there's a higher priority task waiting to run
1379 * then reschedule. Note, the above pull_rt_task
1380 * can release the rq lock and p could migrate.
1381 * Only reschedule if p is still on the same runqueue.
1382 */
1383 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1384 resched_task(p);
1385 #else
1386 /* For UP simply resched on drop of prio */
1387 if (oldprio < p->prio)
1388 resched_task(p);
1389 #endif /* CONFIG_SMP */
1390 } else {
1391 /*
1392 * This task is not running, but if it is
1393 * greater than the current running task
1394 * then reschedule.
1395 */
1396 if (p->prio < rq->curr->prio)
1397 resched_task(rq->curr);
1398 }
1399 }
1400
1401 static void watchdog(struct rq *rq, struct task_struct *p)
1402 {
1403 unsigned long soft, hard;
1404
1405 if (!p->signal)
1406 return;
1407
1408 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1409 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1410
1411 if (soft != RLIM_INFINITY) {
1412 unsigned long next;
1413
1414 p->rt.timeout++;
1415 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1416 if (p->rt.timeout > next)
1417 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1418 }
1419 }
1420
1421 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1422 {
1423 update_curr_rt(rq);
1424
1425 watchdog(rq, p);
1426
1427 /*
1428 * RR tasks need a special form of timeslice management.
1429 * FIFO tasks have no timeslices.
1430 */
1431 if (p->policy != SCHED_RR)
1432 return;
1433
1434 if (--p->rt.time_slice)
1435 return;
1436
1437 p->rt.time_slice = DEF_TIMESLICE;
1438
1439 /*
1440 * Requeue to the end of queue if we are not the only element
1441 * on the queue:
1442 */
1443 if (p->rt.run_list.prev != p->rt.run_list.next) {
1444 requeue_task_rt(rq, p, 0);
1445 set_tsk_need_resched(p);
1446 }
1447 }
1448
1449 static void set_curr_task_rt(struct rq *rq)
1450 {
1451 struct task_struct *p = rq->curr;
1452
1453 p->se.exec_start = rq->clock;
1454 }
1455
1456 static const struct sched_class rt_sched_class = {
1457 .next = &fair_sched_class,
1458 .enqueue_task = enqueue_task_rt,
1459 .dequeue_task = dequeue_task_rt,
1460 .yield_task = yield_task_rt,
1461 #ifdef CONFIG_SMP
1462 .select_task_rq = select_task_rq_rt,
1463 #endif /* CONFIG_SMP */
1464
1465 .check_preempt_curr = check_preempt_curr_rt,
1466
1467 .pick_next_task = pick_next_task_rt,
1468 .put_prev_task = put_prev_task_rt,
1469
1470 #ifdef CONFIG_SMP
1471 .load_balance = load_balance_rt,
1472 .move_one_task = move_one_task_rt,
1473 .set_cpus_allowed = set_cpus_allowed_rt,
1474 .rq_online = rq_online_rt,
1475 .rq_offline = rq_offline_rt,
1476 .pre_schedule = pre_schedule_rt,
1477 .post_schedule = post_schedule_rt,
1478 .task_wake_up = task_wake_up_rt,
1479 .switched_from = switched_from_rt,
1480 #endif
1481
1482 .set_curr_task = set_curr_task_rt,
1483 .task_tick = task_tick_rt,
1484
1485 .prio_changed = prio_changed_rt,
1486 .switched_to = switched_to_rt,
1487 };
1488
1489 #ifdef CONFIG_SCHED_DEBUG
1490 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1491
1492 static void print_rt_stats(struct seq_file *m, int cpu)
1493 {
1494 struct rt_rq *rt_rq;
1495
1496 rcu_read_lock();
1497 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1498 print_rt_rq(m, cpu, rt_rq);
1499 rcu_read_unlock();
1500 }
1501 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.079338 seconds and 5 git commands to generate.