sched: rt-group: deal with PI
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
44 }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50 return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55 return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_FAIR_GROUP_SCHED
59
60 static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
61 {
62 if (!rt_rq->tg)
63 return SCHED_RT_FRAC;
64
65 return rt_rq->tg->rt_ratio;
66 }
67
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72 {
73 return rt_rq->rq;
74 }
75
76 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77 {
78 return rt_se->rt_rq;
79 }
80
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85 {
86 return rt_se->my_q;
87 }
88
89 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
92 static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
93 {
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
99 enqueue_rt_entity(rt_se);
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
102 }
103 }
104
105 static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
106 {
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111 }
112
113 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
114 {
115 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
116 }
117
118 static int rt_se_boosted(struct sched_rt_entity *rt_se)
119 {
120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
121 struct task_struct *p;
122
123 if (rt_rq)
124 return !!rt_rq->rt_nr_boosted;
125
126 p = rt_task_of(rt_se);
127 return p->prio != p->normal_prio;
128 }
129
130 #else
131
132 static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
133 {
134 return sysctl_sched_rt_ratio;
135 }
136
137 #define for_each_leaf_rt_rq(rt_rq, rq) \
138 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
139
140 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
141 {
142 return container_of(rt_rq, struct rq, rt);
143 }
144
145 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
146 {
147 struct task_struct *p = rt_task_of(rt_se);
148 struct rq *rq = task_rq(p);
149
150 return &rq->rt;
151 }
152
153 #define for_each_sched_rt_entity(rt_se) \
154 for (; rt_se; rt_se = NULL)
155
156 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
157 {
158 return NULL;
159 }
160
161 static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
162 {
163 }
164
165 static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
166 {
167 }
168
169 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
170 {
171 return rt_rq->rt_throttled;
172 }
173 #endif
174
175 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
176 {
177 #ifdef CONFIG_FAIR_GROUP_SCHED
178 struct rt_rq *rt_rq = group_rt_rq(rt_se);
179
180 if (rt_rq)
181 return rt_rq->highest_prio;
182 #endif
183
184 return rt_task_of(rt_se)->prio;
185 }
186
187 static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
188 {
189 unsigned int rt_ratio = sched_rt_ratio(rt_rq);
190 u64 period, ratio;
191
192 if (rt_ratio == SCHED_RT_FRAC)
193 return 0;
194
195 if (rt_rq->rt_throttled)
196 return rt_rq_throttled(rt_rq);
197
198 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
199 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
200
201 if (rt_rq->rt_time > ratio) {
202 struct rq *rq = rq_of_rt_rq(rt_rq);
203
204 rq->rt_throttled = 1;
205 rt_rq->rt_throttled = 1;
206
207 if (rt_rq_throttled(rt_rq)) {
208 sched_rt_ratio_dequeue(rt_rq);
209 return 1;
210 }
211 }
212
213 return 0;
214 }
215
216 static void update_sched_rt_period(struct rq *rq)
217 {
218 struct rt_rq *rt_rq;
219 u64 period;
220
221 while (rq->clock > rq->rt_period_expire) {
222 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
223 rq->rt_period_expire += period;
224
225 for_each_leaf_rt_rq(rt_rq, rq) {
226 unsigned long rt_ratio = sched_rt_ratio(rt_rq);
227 u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
228
229 rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
230 if (rt_rq->rt_throttled) {
231 rt_rq->rt_throttled = 0;
232 sched_rt_ratio_enqueue(rt_rq);
233 }
234 }
235
236 rq->rt_throttled = 0;
237 }
238 }
239
240 /*
241 * Update the current task's runtime statistics. Skip current tasks that
242 * are not in our scheduling class.
243 */
244 static void update_curr_rt(struct rq *rq)
245 {
246 struct task_struct *curr = rq->curr;
247 struct sched_rt_entity *rt_se = &curr->rt;
248 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
249 u64 delta_exec;
250
251 if (!task_has_rt_policy(curr))
252 return;
253
254 delta_exec = rq->clock - curr->se.exec_start;
255 if (unlikely((s64)delta_exec < 0))
256 delta_exec = 0;
257
258 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
259
260 curr->se.sum_exec_runtime += delta_exec;
261 curr->se.exec_start = rq->clock;
262 cpuacct_charge(curr, delta_exec);
263
264 rt_rq->rt_time += delta_exec;
265 /*
266 * might make it a tad more accurate:
267 *
268 * update_sched_rt_period(rq);
269 */
270 if (sched_rt_ratio_exceeded(rt_rq))
271 resched_task(curr);
272 }
273
274 static inline
275 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
278 rt_rq->rt_nr_running++;
279 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
280 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
281 rt_rq->highest_prio = rt_se_prio(rt_se);
282 #endif
283 #ifdef CONFIG_SMP
284 if (rt_se->nr_cpus_allowed > 1) {
285 struct rq *rq = rq_of_rt_rq(rt_rq);
286 rq->rt.rt_nr_migratory++;
287 }
288
289 update_rt_migration(rq_of_rt_rq(rt_rq));
290 #endif
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 if (rt_se_boosted(rt_se))
293 rt_rq->rt_nr_boosted++;
294 #endif
295 }
296
297 static inline
298 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
299 {
300 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
301 WARN_ON(!rt_rq->rt_nr_running);
302 rt_rq->rt_nr_running--;
303 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
304 if (rt_rq->rt_nr_running) {
305 struct rt_prio_array *array;
306
307 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
308 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
309 /* recalculate */
310 array = &rt_rq->active;
311 rt_rq->highest_prio =
312 sched_find_first_bit(array->bitmap);
313 } /* otherwise leave rq->highest prio alone */
314 } else
315 rt_rq->highest_prio = MAX_RT_PRIO;
316 #endif
317 #ifdef CONFIG_SMP
318 if (rt_se->nr_cpus_allowed > 1) {
319 struct rq *rq = rq_of_rt_rq(rt_rq);
320 rq->rt.rt_nr_migratory--;
321 }
322
323 update_rt_migration(rq_of_rt_rq(rt_rq));
324 #endif /* CONFIG_SMP */
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 if (rt_se_boosted(rt_se))
327 rt_rq->rt_nr_boosted--;
328
329 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
330 #endif
331 }
332
333 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
334 {
335 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
336 struct rt_prio_array *array = &rt_rq->active;
337 struct rt_rq *group_rq = group_rt_rq(rt_se);
338
339 if (group_rq && rt_rq_throttled(group_rq))
340 return;
341
342 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
343 __set_bit(rt_se_prio(rt_se), array->bitmap);
344
345 inc_rt_tasks(rt_se, rt_rq);
346 }
347
348 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
349 {
350 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
351 struct rt_prio_array *array = &rt_rq->active;
352
353 list_del_init(&rt_se->run_list);
354 if (list_empty(array->queue + rt_se_prio(rt_se)))
355 __clear_bit(rt_se_prio(rt_se), array->bitmap);
356
357 dec_rt_tasks(rt_se, rt_rq);
358 }
359
360 /*
361 * Because the prio of an upper entry depends on the lower
362 * entries, we must remove entries top - down.
363 *
364 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
365 * doesn't matter much for now, as h=2 for GROUP_SCHED.
366 */
367 static void dequeue_rt_stack(struct task_struct *p)
368 {
369 struct sched_rt_entity *rt_se, *top_se;
370
371 /*
372 * dequeue all, top - down.
373 */
374 do {
375 rt_se = &p->rt;
376 top_se = NULL;
377 for_each_sched_rt_entity(rt_se) {
378 if (on_rt_rq(rt_se))
379 top_se = rt_se;
380 }
381 if (top_se)
382 dequeue_rt_entity(top_se);
383 } while (top_se);
384 }
385
386 /*
387 * Adding/removing a task to/from a priority array:
388 */
389 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
390 {
391 struct sched_rt_entity *rt_se = &p->rt;
392
393 if (wakeup)
394 rt_se->timeout = 0;
395
396 dequeue_rt_stack(p);
397
398 /*
399 * enqueue everybody, bottom - up.
400 */
401 for_each_sched_rt_entity(rt_se)
402 enqueue_rt_entity(rt_se);
403
404 inc_cpu_load(rq, p->se.load.weight);
405 }
406
407 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
408 {
409 struct sched_rt_entity *rt_se = &p->rt;
410 struct rt_rq *rt_rq;
411
412 update_curr_rt(rq);
413
414 dequeue_rt_stack(p);
415
416 /*
417 * re-enqueue all non-empty rt_rq entities.
418 */
419 for_each_sched_rt_entity(rt_se) {
420 rt_rq = group_rt_rq(rt_se);
421 if (rt_rq && rt_rq->rt_nr_running)
422 enqueue_rt_entity(rt_se);
423 }
424
425 dec_cpu_load(rq, p->se.load.weight);
426 }
427
428 /*
429 * Put task to the end of the run list without the overhead of dequeue
430 * followed by enqueue.
431 */
432 static
433 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
434 {
435 struct rt_prio_array *array = &rt_rq->active;
436
437 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
438 }
439
440 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
441 {
442 struct sched_rt_entity *rt_se = &p->rt;
443 struct rt_rq *rt_rq;
444
445 for_each_sched_rt_entity(rt_se) {
446 rt_rq = rt_rq_of_se(rt_se);
447 requeue_rt_entity(rt_rq, rt_se);
448 }
449 }
450
451 static void yield_task_rt(struct rq *rq)
452 {
453 requeue_task_rt(rq, rq->curr);
454 }
455
456 #ifdef CONFIG_SMP
457 static int find_lowest_rq(struct task_struct *task);
458
459 static int select_task_rq_rt(struct task_struct *p, int sync)
460 {
461 struct rq *rq = task_rq(p);
462
463 /*
464 * If the current task is an RT task, then
465 * try to see if we can wake this RT task up on another
466 * runqueue. Otherwise simply start this RT task
467 * on its current runqueue.
468 *
469 * We want to avoid overloading runqueues. Even if
470 * the RT task is of higher priority than the current RT task.
471 * RT tasks behave differently than other tasks. If
472 * one gets preempted, we try to push it off to another queue.
473 * So trying to keep a preempting RT task on the same
474 * cache hot CPU will force the running RT task to
475 * a cold CPU. So we waste all the cache for the lower
476 * RT task in hopes of saving some of a RT task
477 * that is just being woken and probably will have
478 * cold cache anyway.
479 */
480 if (unlikely(rt_task(rq->curr)) &&
481 (p->rt.nr_cpus_allowed > 1)) {
482 int cpu = find_lowest_rq(p);
483
484 return (cpu == -1) ? task_cpu(p) : cpu;
485 }
486
487 /*
488 * Otherwise, just let it ride on the affined RQ and the
489 * post-schedule router will push the preempted task away
490 */
491 return task_cpu(p);
492 }
493 #endif /* CONFIG_SMP */
494
495 /*
496 * Preempt the current task with a newly woken task if needed:
497 */
498 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
499 {
500 if (p->prio < rq->curr->prio)
501 resched_task(rq->curr);
502 }
503
504 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
505 struct rt_rq *rt_rq)
506 {
507 struct rt_prio_array *array = &rt_rq->active;
508 struct sched_rt_entity *next = NULL;
509 struct list_head *queue;
510 int idx;
511
512 idx = sched_find_first_bit(array->bitmap);
513 BUG_ON(idx >= MAX_RT_PRIO);
514
515 queue = array->queue + idx;
516 next = list_entry(queue->next, struct sched_rt_entity, run_list);
517
518 return next;
519 }
520
521 static struct task_struct *pick_next_task_rt(struct rq *rq)
522 {
523 struct sched_rt_entity *rt_se;
524 struct task_struct *p;
525 struct rt_rq *rt_rq;
526
527 rt_rq = &rq->rt;
528
529 if (unlikely(!rt_rq->rt_nr_running))
530 return NULL;
531
532 if (rt_rq_throttled(rt_rq))
533 return NULL;
534
535 do {
536 rt_se = pick_next_rt_entity(rq, rt_rq);
537 BUG_ON(!rt_se);
538 rt_rq = group_rt_rq(rt_se);
539 } while (rt_rq);
540
541 p = rt_task_of(rt_se);
542 p->se.exec_start = rq->clock;
543 return p;
544 }
545
546 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
547 {
548 update_curr_rt(rq);
549 p->se.exec_start = 0;
550 }
551
552 #ifdef CONFIG_SMP
553
554 /* Only try algorithms three times */
555 #define RT_MAX_TRIES 3
556
557 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
558 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
559
560 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
561 {
562 if (!task_running(rq, p) &&
563 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
564 (p->rt.nr_cpus_allowed > 1))
565 return 1;
566 return 0;
567 }
568
569 /* Return the second highest RT task, NULL otherwise */
570 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
571 {
572 struct task_struct *next = NULL;
573 struct sched_rt_entity *rt_se;
574 struct rt_prio_array *array;
575 struct rt_rq *rt_rq;
576 int idx;
577
578 for_each_leaf_rt_rq(rt_rq, rq) {
579 array = &rt_rq->active;
580 idx = sched_find_first_bit(array->bitmap);
581 next_idx:
582 if (idx >= MAX_RT_PRIO)
583 continue;
584 if (next && next->prio < idx)
585 continue;
586 list_for_each_entry(rt_se, array->queue + idx, run_list) {
587 struct task_struct *p = rt_task_of(rt_se);
588 if (pick_rt_task(rq, p, cpu)) {
589 next = p;
590 break;
591 }
592 }
593 if (!next) {
594 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
595 goto next_idx;
596 }
597 }
598
599 return next;
600 }
601
602 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
603
604 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
605 {
606 int lowest_prio = -1;
607 int lowest_cpu = -1;
608 int count = 0;
609 int cpu;
610
611 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
612
613 /*
614 * Scan each rq for the lowest prio.
615 */
616 for_each_cpu_mask(cpu, *lowest_mask) {
617 struct rq *rq = cpu_rq(cpu);
618
619 /* We look for lowest RT prio or non-rt CPU */
620 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
621 /*
622 * if we already found a low RT queue
623 * and now we found this non-rt queue
624 * clear the mask and set our bit.
625 * Otherwise just return the queue as is
626 * and the count==1 will cause the algorithm
627 * to use the first bit found.
628 */
629 if (lowest_cpu != -1) {
630 cpus_clear(*lowest_mask);
631 cpu_set(rq->cpu, *lowest_mask);
632 }
633 return 1;
634 }
635
636 /* no locking for now */
637 if ((rq->rt.highest_prio > task->prio)
638 && (rq->rt.highest_prio >= lowest_prio)) {
639 if (rq->rt.highest_prio > lowest_prio) {
640 /* new low - clear old data */
641 lowest_prio = rq->rt.highest_prio;
642 lowest_cpu = cpu;
643 count = 0;
644 }
645 count++;
646 } else
647 cpu_clear(cpu, *lowest_mask);
648 }
649
650 /*
651 * Clear out all the set bits that represent
652 * runqueues that were of higher prio than
653 * the lowest_prio.
654 */
655 if (lowest_cpu > 0) {
656 /*
657 * Perhaps we could add another cpumask op to
658 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
659 * Then that could be optimized to use memset and such.
660 */
661 for_each_cpu_mask(cpu, *lowest_mask) {
662 if (cpu >= lowest_cpu)
663 break;
664 cpu_clear(cpu, *lowest_mask);
665 }
666 }
667
668 return count;
669 }
670
671 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
672 {
673 int first;
674
675 /* "this_cpu" is cheaper to preempt than a remote processor */
676 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
677 return this_cpu;
678
679 first = first_cpu(*mask);
680 if (first != NR_CPUS)
681 return first;
682
683 return -1;
684 }
685
686 static int find_lowest_rq(struct task_struct *task)
687 {
688 struct sched_domain *sd;
689 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
690 int this_cpu = smp_processor_id();
691 int cpu = task_cpu(task);
692 int count = find_lowest_cpus(task, lowest_mask);
693
694 if (!count)
695 return -1; /* No targets found */
696
697 /*
698 * There is no sense in performing an optimal search if only one
699 * target is found.
700 */
701 if (count == 1)
702 return first_cpu(*lowest_mask);
703
704 /*
705 * At this point we have built a mask of cpus representing the
706 * lowest priority tasks in the system. Now we want to elect
707 * the best one based on our affinity and topology.
708 *
709 * We prioritize the last cpu that the task executed on since
710 * it is most likely cache-hot in that location.
711 */
712 if (cpu_isset(cpu, *lowest_mask))
713 return cpu;
714
715 /*
716 * Otherwise, we consult the sched_domains span maps to figure
717 * out which cpu is logically closest to our hot cache data.
718 */
719 if (this_cpu == cpu)
720 this_cpu = -1; /* Skip this_cpu opt if the same */
721
722 for_each_domain(cpu, sd) {
723 if (sd->flags & SD_WAKE_AFFINE) {
724 cpumask_t domain_mask;
725 int best_cpu;
726
727 cpus_and(domain_mask, sd->span, *lowest_mask);
728
729 best_cpu = pick_optimal_cpu(this_cpu,
730 &domain_mask);
731 if (best_cpu != -1)
732 return best_cpu;
733 }
734 }
735
736 /*
737 * And finally, if there were no matches within the domains
738 * just give the caller *something* to work with from the compatible
739 * locations.
740 */
741 return pick_optimal_cpu(this_cpu, lowest_mask);
742 }
743
744 /* Will lock the rq it finds */
745 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
746 {
747 struct rq *lowest_rq = NULL;
748 int tries;
749 int cpu;
750
751 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
752 cpu = find_lowest_rq(task);
753
754 if ((cpu == -1) || (cpu == rq->cpu))
755 break;
756
757 lowest_rq = cpu_rq(cpu);
758
759 /* if the prio of this runqueue changed, try again */
760 if (double_lock_balance(rq, lowest_rq)) {
761 /*
762 * We had to unlock the run queue. In
763 * the mean time, task could have
764 * migrated already or had its affinity changed.
765 * Also make sure that it wasn't scheduled on its rq.
766 */
767 if (unlikely(task_rq(task) != rq ||
768 !cpu_isset(lowest_rq->cpu,
769 task->cpus_allowed) ||
770 task_running(rq, task) ||
771 !task->se.on_rq)) {
772
773 spin_unlock(&lowest_rq->lock);
774 lowest_rq = NULL;
775 break;
776 }
777 }
778
779 /* If this rq is still suitable use it. */
780 if (lowest_rq->rt.highest_prio > task->prio)
781 break;
782
783 /* try again */
784 spin_unlock(&lowest_rq->lock);
785 lowest_rq = NULL;
786 }
787
788 return lowest_rq;
789 }
790
791 /*
792 * If the current CPU has more than one RT task, see if the non
793 * running task can migrate over to a CPU that is running a task
794 * of lesser priority.
795 */
796 static int push_rt_task(struct rq *rq)
797 {
798 struct task_struct *next_task;
799 struct rq *lowest_rq;
800 int ret = 0;
801 int paranoid = RT_MAX_TRIES;
802
803 if (!rq->rt.overloaded)
804 return 0;
805
806 next_task = pick_next_highest_task_rt(rq, -1);
807 if (!next_task)
808 return 0;
809
810 retry:
811 if (unlikely(next_task == rq->curr)) {
812 WARN_ON(1);
813 return 0;
814 }
815
816 /*
817 * It's possible that the next_task slipped in of
818 * higher priority than current. If that's the case
819 * just reschedule current.
820 */
821 if (unlikely(next_task->prio < rq->curr->prio)) {
822 resched_task(rq->curr);
823 return 0;
824 }
825
826 /* We might release rq lock */
827 get_task_struct(next_task);
828
829 /* find_lock_lowest_rq locks the rq if found */
830 lowest_rq = find_lock_lowest_rq(next_task, rq);
831 if (!lowest_rq) {
832 struct task_struct *task;
833 /*
834 * find lock_lowest_rq releases rq->lock
835 * so it is possible that next_task has changed.
836 * If it has, then try again.
837 */
838 task = pick_next_highest_task_rt(rq, -1);
839 if (unlikely(task != next_task) && task && paranoid--) {
840 put_task_struct(next_task);
841 next_task = task;
842 goto retry;
843 }
844 goto out;
845 }
846
847 deactivate_task(rq, next_task, 0);
848 set_task_cpu(next_task, lowest_rq->cpu);
849 activate_task(lowest_rq, next_task, 0);
850
851 resched_task(lowest_rq->curr);
852
853 spin_unlock(&lowest_rq->lock);
854
855 ret = 1;
856 out:
857 put_task_struct(next_task);
858
859 return ret;
860 }
861
862 /*
863 * TODO: Currently we just use the second highest prio task on
864 * the queue, and stop when it can't migrate (or there's
865 * no more RT tasks). There may be a case where a lower
866 * priority RT task has a different affinity than the
867 * higher RT task. In this case the lower RT task could
868 * possibly be able to migrate where as the higher priority
869 * RT task could not. We currently ignore this issue.
870 * Enhancements are welcome!
871 */
872 static void push_rt_tasks(struct rq *rq)
873 {
874 /* push_rt_task will return true if it moved an RT */
875 while (push_rt_task(rq))
876 ;
877 }
878
879 static int pull_rt_task(struct rq *this_rq)
880 {
881 int this_cpu = this_rq->cpu, ret = 0, cpu;
882 struct task_struct *p, *next;
883 struct rq *src_rq;
884
885 if (likely(!rt_overloaded(this_rq)))
886 return 0;
887
888 next = pick_next_task_rt(this_rq);
889
890 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
891 if (this_cpu == cpu)
892 continue;
893
894 src_rq = cpu_rq(cpu);
895 /*
896 * We can potentially drop this_rq's lock in
897 * double_lock_balance, and another CPU could
898 * steal our next task - hence we must cause
899 * the caller to recalculate the next task
900 * in that case:
901 */
902 if (double_lock_balance(this_rq, src_rq)) {
903 struct task_struct *old_next = next;
904
905 next = pick_next_task_rt(this_rq);
906 if (next != old_next)
907 ret = 1;
908 }
909
910 /*
911 * Are there still pullable RT tasks?
912 */
913 if (src_rq->rt.rt_nr_running <= 1)
914 goto skip;
915
916 p = pick_next_highest_task_rt(src_rq, this_cpu);
917
918 /*
919 * Do we have an RT task that preempts
920 * the to-be-scheduled task?
921 */
922 if (p && (!next || (p->prio < next->prio))) {
923 WARN_ON(p == src_rq->curr);
924 WARN_ON(!p->se.on_rq);
925
926 /*
927 * There's a chance that p is higher in priority
928 * than what's currently running on its cpu.
929 * This is just that p is wakeing up and hasn't
930 * had a chance to schedule. We only pull
931 * p if it is lower in priority than the
932 * current task on the run queue or
933 * this_rq next task is lower in prio than
934 * the current task on that rq.
935 */
936 if (p->prio < src_rq->curr->prio ||
937 (next && next->prio < src_rq->curr->prio))
938 goto skip;
939
940 ret = 1;
941
942 deactivate_task(src_rq, p, 0);
943 set_task_cpu(p, this_cpu);
944 activate_task(this_rq, p, 0);
945 /*
946 * We continue with the search, just in
947 * case there's an even higher prio task
948 * in another runqueue. (low likelyhood
949 * but possible)
950 *
951 * Update next so that we won't pick a task
952 * on another cpu with a priority lower (or equal)
953 * than the one we just picked.
954 */
955 next = p;
956
957 }
958 skip:
959 spin_unlock(&src_rq->lock);
960 }
961
962 return ret;
963 }
964
965 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
966 {
967 /* Try to pull RT tasks here if we lower this rq's prio */
968 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
969 pull_rt_task(rq);
970 }
971
972 static void post_schedule_rt(struct rq *rq)
973 {
974 /*
975 * If we have more than one rt_task queued, then
976 * see if we can push the other rt_tasks off to other CPUS.
977 * Note we may release the rq lock, and since
978 * the lock was owned by prev, we need to release it
979 * first via finish_lock_switch and then reaquire it here.
980 */
981 if (unlikely(rq->rt.overloaded)) {
982 spin_lock_irq(&rq->lock);
983 push_rt_tasks(rq);
984 spin_unlock_irq(&rq->lock);
985 }
986 }
987
988
989 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
990 {
991 if (!task_running(rq, p) &&
992 (p->prio >= rq->rt.highest_prio) &&
993 rq->rt.overloaded)
994 push_rt_tasks(rq);
995 }
996
997 static unsigned long
998 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
999 unsigned long max_load_move,
1000 struct sched_domain *sd, enum cpu_idle_type idle,
1001 int *all_pinned, int *this_best_prio)
1002 {
1003 /* don't touch RT tasks */
1004 return 0;
1005 }
1006
1007 static int
1008 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1009 struct sched_domain *sd, enum cpu_idle_type idle)
1010 {
1011 /* don't touch RT tasks */
1012 return 0;
1013 }
1014
1015 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
1016 {
1017 int weight = cpus_weight(*new_mask);
1018
1019 BUG_ON(!rt_task(p));
1020
1021 /*
1022 * Update the migration status of the RQ if we have an RT task
1023 * which is running AND changing its weight value.
1024 */
1025 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1026 struct rq *rq = task_rq(p);
1027
1028 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1029 rq->rt.rt_nr_migratory++;
1030 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1031 BUG_ON(!rq->rt.rt_nr_migratory);
1032 rq->rt.rt_nr_migratory--;
1033 }
1034
1035 update_rt_migration(rq);
1036 }
1037
1038 p->cpus_allowed = *new_mask;
1039 p->rt.nr_cpus_allowed = weight;
1040 }
1041
1042 /* Assumes rq->lock is held */
1043 static void join_domain_rt(struct rq *rq)
1044 {
1045 if (rq->rt.overloaded)
1046 rt_set_overload(rq);
1047 }
1048
1049 /* Assumes rq->lock is held */
1050 static void leave_domain_rt(struct rq *rq)
1051 {
1052 if (rq->rt.overloaded)
1053 rt_clear_overload(rq);
1054 }
1055
1056 /*
1057 * When switch from the rt queue, we bring ourselves to a position
1058 * that we might want to pull RT tasks from other runqueues.
1059 */
1060 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1061 int running)
1062 {
1063 /*
1064 * If there are other RT tasks then we will reschedule
1065 * and the scheduling of the other RT tasks will handle
1066 * the balancing. But if we are the last RT task
1067 * we may need to handle the pulling of RT tasks
1068 * now.
1069 */
1070 if (!rq->rt.rt_nr_running)
1071 pull_rt_task(rq);
1072 }
1073 #endif /* CONFIG_SMP */
1074
1075 /*
1076 * When switching a task to RT, we may overload the runqueue
1077 * with RT tasks. In this case we try to push them off to
1078 * other runqueues.
1079 */
1080 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1081 int running)
1082 {
1083 int check_resched = 1;
1084
1085 /*
1086 * If we are already running, then there's nothing
1087 * that needs to be done. But if we are not running
1088 * we may need to preempt the current running task.
1089 * If that current running task is also an RT task
1090 * then see if we can move to another run queue.
1091 */
1092 if (!running) {
1093 #ifdef CONFIG_SMP
1094 if (rq->rt.overloaded && push_rt_task(rq) &&
1095 /* Don't resched if we changed runqueues */
1096 rq != task_rq(p))
1097 check_resched = 0;
1098 #endif /* CONFIG_SMP */
1099 if (check_resched && p->prio < rq->curr->prio)
1100 resched_task(rq->curr);
1101 }
1102 }
1103
1104 /*
1105 * Priority of the task has changed. This may cause
1106 * us to initiate a push or pull.
1107 */
1108 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1109 int oldprio, int running)
1110 {
1111 if (running) {
1112 #ifdef CONFIG_SMP
1113 /*
1114 * If our priority decreases while running, we
1115 * may need to pull tasks to this runqueue.
1116 */
1117 if (oldprio < p->prio)
1118 pull_rt_task(rq);
1119 /*
1120 * If there's a higher priority task waiting to run
1121 * then reschedule.
1122 */
1123 if (p->prio > rq->rt.highest_prio)
1124 resched_task(p);
1125 #else
1126 /* For UP simply resched on drop of prio */
1127 if (oldprio < p->prio)
1128 resched_task(p);
1129 #endif /* CONFIG_SMP */
1130 } else {
1131 /*
1132 * This task is not running, but if it is
1133 * greater than the current running task
1134 * then reschedule.
1135 */
1136 if (p->prio < rq->curr->prio)
1137 resched_task(rq->curr);
1138 }
1139 }
1140
1141 static void watchdog(struct rq *rq, struct task_struct *p)
1142 {
1143 unsigned long soft, hard;
1144
1145 if (!p->signal)
1146 return;
1147
1148 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1149 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1150
1151 if (soft != RLIM_INFINITY) {
1152 unsigned long next;
1153
1154 p->rt.timeout++;
1155 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1156 if (p->rt.timeout > next)
1157 p->it_sched_expires = p->se.sum_exec_runtime;
1158 }
1159 }
1160
1161 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1162 {
1163 update_curr_rt(rq);
1164
1165 watchdog(rq, p);
1166
1167 /*
1168 * RR tasks need a special form of timeslice management.
1169 * FIFO tasks have no timeslices.
1170 */
1171 if (p->policy != SCHED_RR)
1172 return;
1173
1174 if (--p->rt.time_slice)
1175 return;
1176
1177 p->rt.time_slice = DEF_TIMESLICE;
1178
1179 /*
1180 * Requeue to the end of queue if we are not the only element
1181 * on the queue:
1182 */
1183 if (p->rt.run_list.prev != p->rt.run_list.next) {
1184 requeue_task_rt(rq, p);
1185 set_tsk_need_resched(p);
1186 }
1187 }
1188
1189 static void set_curr_task_rt(struct rq *rq)
1190 {
1191 struct task_struct *p = rq->curr;
1192
1193 p->se.exec_start = rq->clock;
1194 }
1195
1196 const struct sched_class rt_sched_class = {
1197 .next = &fair_sched_class,
1198 .enqueue_task = enqueue_task_rt,
1199 .dequeue_task = dequeue_task_rt,
1200 .yield_task = yield_task_rt,
1201 #ifdef CONFIG_SMP
1202 .select_task_rq = select_task_rq_rt,
1203 #endif /* CONFIG_SMP */
1204
1205 .check_preempt_curr = check_preempt_curr_rt,
1206
1207 .pick_next_task = pick_next_task_rt,
1208 .put_prev_task = put_prev_task_rt,
1209
1210 #ifdef CONFIG_SMP
1211 .load_balance = load_balance_rt,
1212 .move_one_task = move_one_task_rt,
1213 .set_cpus_allowed = set_cpus_allowed_rt,
1214 .join_domain = join_domain_rt,
1215 .leave_domain = leave_domain_rt,
1216 .pre_schedule = pre_schedule_rt,
1217 .post_schedule = post_schedule_rt,
1218 .task_wake_up = task_wake_up_rt,
1219 .switched_from = switched_from_rt,
1220 #endif
1221
1222 .set_curr_task = set_curr_task_rt,
1223 .task_tick = task_tick_rt,
1224
1225 .prio_changed = prio_changed_rt,
1226 .switched_to = switched_to_rt,
1227 };
This page took 0.08007 seconds and 5 git commands to generate.