sched: Change usage of rt_rq->rt_se to rt_rq->tg->rt_se[cpu]
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56 return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189 #define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193 {
194 return rt_se->my_q;
195 }
196
197 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 int this_cpu = smp_processor_id();
203 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
204 struct sched_rt_entity *rt_se;
205
206 rt_se = rt_rq->tg->rt_se[this_cpu];
207
208 if (rt_rq->rt_nr_running) {
209 if (rt_se && !on_rt_rq(rt_se))
210 enqueue_rt_entity(rt_se, false);
211 if (rt_rq->highest_prio.curr < curr->prio)
212 resched_task(curr);
213 }
214 }
215
216 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
217 {
218 int this_cpu = smp_processor_id();
219 struct sched_rt_entity *rt_se;
220
221 rt_se = rt_rq->tg->rt_se[this_cpu];
222
223 if (rt_se && on_rt_rq(rt_se))
224 dequeue_rt_entity(rt_se);
225 }
226
227 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
228 {
229 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
230 }
231
232 static int rt_se_boosted(struct sched_rt_entity *rt_se)
233 {
234 struct rt_rq *rt_rq = group_rt_rq(rt_se);
235 struct task_struct *p;
236
237 if (rt_rq)
238 return !!rt_rq->rt_nr_boosted;
239
240 p = rt_task_of(rt_se);
241 return p->prio != p->normal_prio;
242 }
243
244 #ifdef CONFIG_SMP
245 static inline const struct cpumask *sched_rt_period_mask(void)
246 {
247 return cpu_rq(smp_processor_id())->rd->span;
248 }
249 #else
250 static inline const struct cpumask *sched_rt_period_mask(void)
251 {
252 return cpu_online_mask;
253 }
254 #endif
255
256 static inline
257 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
258 {
259 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
260 }
261
262 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
263 {
264 return &rt_rq->tg->rt_bandwidth;
265 }
266
267 #else /* !CONFIG_RT_GROUP_SCHED */
268
269 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
270 {
271 return rt_rq->rt_runtime;
272 }
273
274 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
275 {
276 return ktime_to_ns(def_rt_bandwidth.rt_period);
277 }
278
279 #define for_each_leaf_rt_rq(rt_rq, rq) \
280 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
281
282 #define for_each_sched_rt_entity(rt_se) \
283 for (; rt_se; rt_se = NULL)
284
285 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
286 {
287 return NULL;
288 }
289
290 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
291 {
292 if (rt_rq->rt_nr_running)
293 resched_task(rq_of_rt_rq(rt_rq)->curr);
294 }
295
296 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
297 {
298 }
299
300 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
301 {
302 return rt_rq->rt_throttled;
303 }
304
305 static inline const struct cpumask *sched_rt_period_mask(void)
306 {
307 return cpu_online_mask;
308 }
309
310 static inline
311 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
312 {
313 return &cpu_rq(cpu)->rt;
314 }
315
316 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
317 {
318 return &def_rt_bandwidth;
319 }
320
321 #endif /* CONFIG_RT_GROUP_SCHED */
322
323 #ifdef CONFIG_SMP
324 /*
325 * We ran out of runtime, see if we can borrow some from our neighbours.
326 */
327 static int do_balance_runtime(struct rt_rq *rt_rq)
328 {
329 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
330 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
331 int i, weight, more = 0;
332 u64 rt_period;
333
334 weight = cpumask_weight(rd->span);
335
336 raw_spin_lock(&rt_b->rt_runtime_lock);
337 rt_period = ktime_to_ns(rt_b->rt_period);
338 for_each_cpu(i, rd->span) {
339 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
340 s64 diff;
341
342 if (iter == rt_rq)
343 continue;
344
345 raw_spin_lock(&iter->rt_runtime_lock);
346 /*
347 * Either all rqs have inf runtime and there's nothing to steal
348 * or __disable_runtime() below sets a specific rq to inf to
349 * indicate its been disabled and disalow stealing.
350 */
351 if (iter->rt_runtime == RUNTIME_INF)
352 goto next;
353
354 /*
355 * From runqueues with spare time, take 1/n part of their
356 * spare time, but no more than our period.
357 */
358 diff = iter->rt_runtime - iter->rt_time;
359 if (diff > 0) {
360 diff = div_u64((u64)diff, weight);
361 if (rt_rq->rt_runtime + diff > rt_period)
362 diff = rt_period - rt_rq->rt_runtime;
363 iter->rt_runtime -= diff;
364 rt_rq->rt_runtime += diff;
365 more = 1;
366 if (rt_rq->rt_runtime == rt_period) {
367 raw_spin_unlock(&iter->rt_runtime_lock);
368 break;
369 }
370 }
371 next:
372 raw_spin_unlock(&iter->rt_runtime_lock);
373 }
374 raw_spin_unlock(&rt_b->rt_runtime_lock);
375
376 return more;
377 }
378
379 /*
380 * Ensure this RQ takes back all the runtime it lend to its neighbours.
381 */
382 static void __disable_runtime(struct rq *rq)
383 {
384 struct root_domain *rd = rq->rd;
385 struct rt_rq *rt_rq;
386
387 if (unlikely(!scheduler_running))
388 return;
389
390 for_each_leaf_rt_rq(rt_rq, rq) {
391 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
392 s64 want;
393 int i;
394
395 raw_spin_lock(&rt_b->rt_runtime_lock);
396 raw_spin_lock(&rt_rq->rt_runtime_lock);
397 /*
398 * Either we're all inf and nobody needs to borrow, or we're
399 * already disabled and thus have nothing to do, or we have
400 * exactly the right amount of runtime to take out.
401 */
402 if (rt_rq->rt_runtime == RUNTIME_INF ||
403 rt_rq->rt_runtime == rt_b->rt_runtime)
404 goto balanced;
405 raw_spin_unlock(&rt_rq->rt_runtime_lock);
406
407 /*
408 * Calculate the difference between what we started out with
409 * and what we current have, that's the amount of runtime
410 * we lend and now have to reclaim.
411 */
412 want = rt_b->rt_runtime - rt_rq->rt_runtime;
413
414 /*
415 * Greedy reclaim, take back as much as we can.
416 */
417 for_each_cpu(i, rd->span) {
418 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
419 s64 diff;
420
421 /*
422 * Can't reclaim from ourselves or disabled runqueues.
423 */
424 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
425 continue;
426
427 raw_spin_lock(&iter->rt_runtime_lock);
428 if (want > 0) {
429 diff = min_t(s64, iter->rt_runtime, want);
430 iter->rt_runtime -= diff;
431 want -= diff;
432 } else {
433 iter->rt_runtime -= want;
434 want -= want;
435 }
436 raw_spin_unlock(&iter->rt_runtime_lock);
437
438 if (!want)
439 break;
440 }
441
442 raw_spin_lock(&rt_rq->rt_runtime_lock);
443 /*
444 * We cannot be left wanting - that would mean some runtime
445 * leaked out of the system.
446 */
447 BUG_ON(want);
448 balanced:
449 /*
450 * Disable all the borrow logic by pretending we have inf
451 * runtime - in which case borrowing doesn't make sense.
452 */
453 rt_rq->rt_runtime = RUNTIME_INF;
454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
455 raw_spin_unlock(&rt_b->rt_runtime_lock);
456 }
457 }
458
459 static void disable_runtime(struct rq *rq)
460 {
461 unsigned long flags;
462
463 raw_spin_lock_irqsave(&rq->lock, flags);
464 __disable_runtime(rq);
465 raw_spin_unlock_irqrestore(&rq->lock, flags);
466 }
467
468 static void __enable_runtime(struct rq *rq)
469 {
470 struct rt_rq *rt_rq;
471
472 if (unlikely(!scheduler_running))
473 return;
474
475 /*
476 * Reset each runqueue's bandwidth settings
477 */
478 for_each_leaf_rt_rq(rt_rq, rq) {
479 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
480
481 raw_spin_lock(&rt_b->rt_runtime_lock);
482 raw_spin_lock(&rt_rq->rt_runtime_lock);
483 rt_rq->rt_runtime = rt_b->rt_runtime;
484 rt_rq->rt_time = 0;
485 rt_rq->rt_throttled = 0;
486 raw_spin_unlock(&rt_rq->rt_runtime_lock);
487 raw_spin_unlock(&rt_b->rt_runtime_lock);
488 }
489 }
490
491 static void enable_runtime(struct rq *rq)
492 {
493 unsigned long flags;
494
495 raw_spin_lock_irqsave(&rq->lock, flags);
496 __enable_runtime(rq);
497 raw_spin_unlock_irqrestore(&rq->lock, flags);
498 }
499
500 static int balance_runtime(struct rt_rq *rt_rq)
501 {
502 int more = 0;
503
504 if (rt_rq->rt_time > rt_rq->rt_runtime) {
505 raw_spin_unlock(&rt_rq->rt_runtime_lock);
506 more = do_balance_runtime(rt_rq);
507 raw_spin_lock(&rt_rq->rt_runtime_lock);
508 }
509
510 return more;
511 }
512 #else /* !CONFIG_SMP */
513 static inline int balance_runtime(struct rt_rq *rt_rq)
514 {
515 return 0;
516 }
517 #endif /* CONFIG_SMP */
518
519 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
520 {
521 int i, idle = 1;
522 const struct cpumask *span;
523
524 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
525 return 1;
526
527 span = sched_rt_period_mask();
528 for_each_cpu(i, span) {
529 int enqueue = 0;
530 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
531 struct rq *rq = rq_of_rt_rq(rt_rq);
532
533 raw_spin_lock(&rq->lock);
534 if (rt_rq->rt_time) {
535 u64 runtime;
536
537 raw_spin_lock(&rt_rq->rt_runtime_lock);
538 if (rt_rq->rt_throttled)
539 balance_runtime(rt_rq);
540 runtime = rt_rq->rt_runtime;
541 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
542 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
543 rt_rq->rt_throttled = 0;
544 enqueue = 1;
545 }
546 if (rt_rq->rt_time || rt_rq->rt_nr_running)
547 idle = 0;
548 raw_spin_unlock(&rt_rq->rt_runtime_lock);
549 } else if (rt_rq->rt_nr_running)
550 idle = 0;
551
552 if (enqueue)
553 sched_rt_rq_enqueue(rt_rq);
554 raw_spin_unlock(&rq->lock);
555 }
556
557 return idle;
558 }
559
560 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
561 {
562 #ifdef CONFIG_RT_GROUP_SCHED
563 struct rt_rq *rt_rq = group_rt_rq(rt_se);
564
565 if (rt_rq)
566 return rt_rq->highest_prio.curr;
567 #endif
568
569 return rt_task_of(rt_se)->prio;
570 }
571
572 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
573 {
574 u64 runtime = sched_rt_runtime(rt_rq);
575
576 if (rt_rq->rt_throttled)
577 return rt_rq_throttled(rt_rq);
578
579 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
580 return 0;
581
582 balance_runtime(rt_rq);
583 runtime = sched_rt_runtime(rt_rq);
584 if (runtime == RUNTIME_INF)
585 return 0;
586
587 if (rt_rq->rt_time > runtime) {
588 rt_rq->rt_throttled = 1;
589 if (rt_rq_throttled(rt_rq)) {
590 sched_rt_rq_dequeue(rt_rq);
591 return 1;
592 }
593 }
594
595 return 0;
596 }
597
598 /*
599 * Update the current task's runtime statistics. Skip current tasks that
600 * are not in our scheduling class.
601 */
602 static void update_curr_rt(struct rq *rq)
603 {
604 struct task_struct *curr = rq->curr;
605 struct sched_rt_entity *rt_se = &curr->rt;
606 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
607 u64 delta_exec;
608
609 if (!task_has_rt_policy(curr))
610 return;
611
612 delta_exec = rq->clock - curr->se.exec_start;
613 if (unlikely((s64)delta_exec < 0))
614 delta_exec = 0;
615
616 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
617
618 curr->se.sum_exec_runtime += delta_exec;
619 account_group_exec_runtime(curr, delta_exec);
620
621 curr->se.exec_start = rq->clock;
622 cpuacct_charge(curr, delta_exec);
623
624 sched_rt_avg_update(rq, delta_exec);
625
626 if (!rt_bandwidth_enabled())
627 return;
628
629 for_each_sched_rt_entity(rt_se) {
630 rt_rq = rt_rq_of_se(rt_se);
631
632 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
633 raw_spin_lock(&rt_rq->rt_runtime_lock);
634 rt_rq->rt_time += delta_exec;
635 if (sched_rt_runtime_exceeded(rt_rq))
636 resched_task(curr);
637 raw_spin_unlock(&rt_rq->rt_runtime_lock);
638 }
639 }
640 }
641
642 #if defined CONFIG_SMP
643
644 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
645
646 static inline int next_prio(struct rq *rq)
647 {
648 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
649
650 if (next && rt_prio(next->prio))
651 return next->prio;
652 else
653 return MAX_RT_PRIO;
654 }
655
656 static void
657 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
658 {
659 struct rq *rq = rq_of_rt_rq(rt_rq);
660
661 if (prio < prev_prio) {
662
663 /*
664 * If the new task is higher in priority than anything on the
665 * run-queue, we know that the previous high becomes our
666 * next-highest.
667 */
668 rt_rq->highest_prio.next = prev_prio;
669
670 if (rq->online)
671 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
672
673 } else if (prio == rt_rq->highest_prio.curr)
674 /*
675 * If the next task is equal in priority to the highest on
676 * the run-queue, then we implicitly know that the next highest
677 * task cannot be any lower than current
678 */
679 rt_rq->highest_prio.next = prio;
680 else if (prio < rt_rq->highest_prio.next)
681 /*
682 * Otherwise, we need to recompute next-highest
683 */
684 rt_rq->highest_prio.next = next_prio(rq);
685 }
686
687 static void
688 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
689 {
690 struct rq *rq = rq_of_rt_rq(rt_rq);
691
692 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
693 rt_rq->highest_prio.next = next_prio(rq);
694
695 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
696 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
697 }
698
699 #else /* CONFIG_SMP */
700
701 static inline
702 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
703 static inline
704 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
705
706 #endif /* CONFIG_SMP */
707
708 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
709 static void
710 inc_rt_prio(struct rt_rq *rt_rq, int prio)
711 {
712 int prev_prio = rt_rq->highest_prio.curr;
713
714 if (prio < prev_prio)
715 rt_rq->highest_prio.curr = prio;
716
717 inc_rt_prio_smp(rt_rq, prio, prev_prio);
718 }
719
720 static void
721 dec_rt_prio(struct rt_rq *rt_rq, int prio)
722 {
723 int prev_prio = rt_rq->highest_prio.curr;
724
725 if (rt_rq->rt_nr_running) {
726
727 WARN_ON(prio < prev_prio);
728
729 /*
730 * This may have been our highest task, and therefore
731 * we may have some recomputation to do
732 */
733 if (prio == prev_prio) {
734 struct rt_prio_array *array = &rt_rq->active;
735
736 rt_rq->highest_prio.curr =
737 sched_find_first_bit(array->bitmap);
738 }
739
740 } else
741 rt_rq->highest_prio.curr = MAX_RT_PRIO;
742
743 dec_rt_prio_smp(rt_rq, prio, prev_prio);
744 }
745
746 #else
747
748 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
749 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
750
751 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
752
753 #ifdef CONFIG_RT_GROUP_SCHED
754
755 static void
756 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
757 {
758 if (rt_se_boosted(rt_se))
759 rt_rq->rt_nr_boosted++;
760
761 if (rt_rq->tg)
762 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
763 }
764
765 static void
766 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
767 {
768 if (rt_se_boosted(rt_se))
769 rt_rq->rt_nr_boosted--;
770
771 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
772 }
773
774 #else /* CONFIG_RT_GROUP_SCHED */
775
776 static void
777 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
778 {
779 start_rt_bandwidth(&def_rt_bandwidth);
780 }
781
782 static inline
783 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
784
785 #endif /* CONFIG_RT_GROUP_SCHED */
786
787 static inline
788 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
789 {
790 int prio = rt_se_prio(rt_se);
791
792 WARN_ON(!rt_prio(prio));
793 rt_rq->rt_nr_running++;
794
795 inc_rt_prio(rt_rq, prio);
796 inc_rt_migration(rt_se, rt_rq);
797 inc_rt_group(rt_se, rt_rq);
798 }
799
800 static inline
801 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
802 {
803 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
804 WARN_ON(!rt_rq->rt_nr_running);
805 rt_rq->rt_nr_running--;
806
807 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
808 dec_rt_migration(rt_se, rt_rq);
809 dec_rt_group(rt_se, rt_rq);
810 }
811
812 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
813 {
814 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
815 struct rt_prio_array *array = &rt_rq->active;
816 struct rt_rq *group_rq = group_rt_rq(rt_se);
817 struct list_head *queue = array->queue + rt_se_prio(rt_se);
818
819 /*
820 * Don't enqueue the group if its throttled, or when empty.
821 * The latter is a consequence of the former when a child group
822 * get throttled and the current group doesn't have any other
823 * active members.
824 */
825 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
826 return;
827
828 if (head)
829 list_add(&rt_se->run_list, queue);
830 else
831 list_add_tail(&rt_se->run_list, queue);
832 __set_bit(rt_se_prio(rt_se), array->bitmap);
833
834 inc_rt_tasks(rt_se, rt_rq);
835 }
836
837 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
838 {
839 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
840 struct rt_prio_array *array = &rt_rq->active;
841
842 list_del_init(&rt_se->run_list);
843 if (list_empty(array->queue + rt_se_prio(rt_se)))
844 __clear_bit(rt_se_prio(rt_se), array->bitmap);
845
846 dec_rt_tasks(rt_se, rt_rq);
847 }
848
849 /*
850 * Because the prio of an upper entry depends on the lower
851 * entries, we must remove entries top - down.
852 */
853 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
854 {
855 struct sched_rt_entity *back = NULL;
856
857 for_each_sched_rt_entity(rt_se) {
858 rt_se->back = back;
859 back = rt_se;
860 }
861
862 for (rt_se = back; rt_se; rt_se = rt_se->back) {
863 if (on_rt_rq(rt_se))
864 __dequeue_rt_entity(rt_se);
865 }
866 }
867
868 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
869 {
870 dequeue_rt_stack(rt_se);
871 for_each_sched_rt_entity(rt_se)
872 __enqueue_rt_entity(rt_se, head);
873 }
874
875 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
876 {
877 dequeue_rt_stack(rt_se);
878
879 for_each_sched_rt_entity(rt_se) {
880 struct rt_rq *rt_rq = group_rt_rq(rt_se);
881
882 if (rt_rq && rt_rq->rt_nr_running)
883 __enqueue_rt_entity(rt_se, false);
884 }
885 }
886
887 /*
888 * Adding/removing a task to/from a priority array:
889 */
890 static void
891 enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
892 {
893 struct sched_rt_entity *rt_se = &p->rt;
894
895 if (wakeup)
896 rt_se->timeout = 0;
897
898 enqueue_rt_entity(rt_se, head);
899
900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
901 enqueue_pushable_task(rq, p);
902 }
903
904 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
905 {
906 struct sched_rt_entity *rt_se = &p->rt;
907
908 update_curr_rt(rq);
909 dequeue_rt_entity(rt_se);
910
911 dequeue_pushable_task(rq, p);
912 }
913
914 /*
915 * Put task to the end of the run list without the overhead of dequeue
916 * followed by enqueue.
917 */
918 static void
919 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
920 {
921 if (on_rt_rq(rt_se)) {
922 struct rt_prio_array *array = &rt_rq->active;
923 struct list_head *queue = array->queue + rt_se_prio(rt_se);
924
925 if (head)
926 list_move(&rt_se->run_list, queue);
927 else
928 list_move_tail(&rt_se->run_list, queue);
929 }
930 }
931
932 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
933 {
934 struct sched_rt_entity *rt_se = &p->rt;
935 struct rt_rq *rt_rq;
936
937 for_each_sched_rt_entity(rt_se) {
938 rt_rq = rt_rq_of_se(rt_se);
939 requeue_rt_entity(rt_rq, rt_se, head);
940 }
941 }
942
943 static void yield_task_rt(struct rq *rq)
944 {
945 requeue_task_rt(rq, rq->curr, 0);
946 }
947
948 #ifdef CONFIG_SMP
949 static int find_lowest_rq(struct task_struct *task);
950
951 static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
952 {
953 struct rq *rq = task_rq(p);
954
955 if (sd_flag != SD_BALANCE_WAKE)
956 return smp_processor_id();
957
958 /*
959 * If the current task is an RT task, then
960 * try to see if we can wake this RT task up on another
961 * runqueue. Otherwise simply start this RT task
962 * on its current runqueue.
963 *
964 * We want to avoid overloading runqueues. Even if
965 * the RT task is of higher priority than the current RT task.
966 * RT tasks behave differently than other tasks. If
967 * one gets preempted, we try to push it off to another queue.
968 * So trying to keep a preempting RT task on the same
969 * cache hot CPU will force the running RT task to
970 * a cold CPU. So we waste all the cache for the lower
971 * RT task in hopes of saving some of a RT task
972 * that is just being woken and probably will have
973 * cold cache anyway.
974 */
975 if (unlikely(rt_task(rq->curr)) &&
976 (p->rt.nr_cpus_allowed > 1)) {
977 int cpu = find_lowest_rq(p);
978
979 return (cpu == -1) ? task_cpu(p) : cpu;
980 }
981
982 /*
983 * Otherwise, just let it ride on the affined RQ and the
984 * post-schedule router will push the preempted task away
985 */
986 return task_cpu(p);
987 }
988
989 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
990 {
991 if (rq->curr->rt.nr_cpus_allowed == 1)
992 return;
993
994 if (p->rt.nr_cpus_allowed != 1
995 && cpupri_find(&rq->rd->cpupri, p, NULL))
996 return;
997
998 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
999 return;
1000
1001 /*
1002 * There appears to be other cpus that can accept
1003 * current and none to run 'p', so lets reschedule
1004 * to try and push current away:
1005 */
1006 requeue_task_rt(rq, p, 1);
1007 resched_task(rq->curr);
1008 }
1009
1010 #endif /* CONFIG_SMP */
1011
1012 /*
1013 * Preempt the current task with a newly woken task if needed:
1014 */
1015 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1016 {
1017 if (p->prio < rq->curr->prio) {
1018 resched_task(rq->curr);
1019 return;
1020 }
1021
1022 #ifdef CONFIG_SMP
1023 /*
1024 * If:
1025 *
1026 * - the newly woken task is of equal priority to the current task
1027 * - the newly woken task is non-migratable while current is migratable
1028 * - current will be preempted on the next reschedule
1029 *
1030 * we should check to see if current can readily move to a different
1031 * cpu. If so, we will reschedule to allow the push logic to try
1032 * to move current somewhere else, making room for our non-migratable
1033 * task.
1034 */
1035 if (p->prio == rq->curr->prio && !need_resched())
1036 check_preempt_equal_prio(rq, p);
1037 #endif
1038 }
1039
1040 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1041 struct rt_rq *rt_rq)
1042 {
1043 struct rt_prio_array *array = &rt_rq->active;
1044 struct sched_rt_entity *next = NULL;
1045 struct list_head *queue;
1046 int idx;
1047
1048 idx = sched_find_first_bit(array->bitmap);
1049 BUG_ON(idx >= MAX_RT_PRIO);
1050
1051 queue = array->queue + idx;
1052 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1053
1054 return next;
1055 }
1056
1057 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1058 {
1059 struct sched_rt_entity *rt_se;
1060 struct task_struct *p;
1061 struct rt_rq *rt_rq;
1062
1063 rt_rq = &rq->rt;
1064
1065 if (unlikely(!rt_rq->rt_nr_running))
1066 return NULL;
1067
1068 if (rt_rq_throttled(rt_rq))
1069 return NULL;
1070
1071 do {
1072 rt_se = pick_next_rt_entity(rq, rt_rq);
1073 BUG_ON(!rt_se);
1074 rt_rq = group_rt_rq(rt_se);
1075 } while (rt_rq);
1076
1077 p = rt_task_of(rt_se);
1078 p->se.exec_start = rq->clock;
1079
1080 return p;
1081 }
1082
1083 static struct task_struct *pick_next_task_rt(struct rq *rq)
1084 {
1085 struct task_struct *p = _pick_next_task_rt(rq);
1086
1087 /* The running task is never eligible for pushing */
1088 if (p)
1089 dequeue_pushable_task(rq, p);
1090
1091 #ifdef CONFIG_SMP
1092 /*
1093 * We detect this state here so that we can avoid taking the RQ
1094 * lock again later if there is no need to push
1095 */
1096 rq->post_schedule = has_pushable_tasks(rq);
1097 #endif
1098
1099 return p;
1100 }
1101
1102 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1103 {
1104 update_curr_rt(rq);
1105 p->se.exec_start = 0;
1106
1107 /*
1108 * The previous task needs to be made eligible for pushing
1109 * if it is still active
1110 */
1111 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1112 enqueue_pushable_task(rq, p);
1113 }
1114
1115 #ifdef CONFIG_SMP
1116
1117 /* Only try algorithms three times */
1118 #define RT_MAX_TRIES 3
1119
1120 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1121
1122 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1123 {
1124 if (!task_running(rq, p) &&
1125 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1126 (p->rt.nr_cpus_allowed > 1))
1127 return 1;
1128 return 0;
1129 }
1130
1131 /* Return the second highest RT task, NULL otherwise */
1132 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1133 {
1134 struct task_struct *next = NULL;
1135 struct sched_rt_entity *rt_se;
1136 struct rt_prio_array *array;
1137 struct rt_rq *rt_rq;
1138 int idx;
1139
1140 for_each_leaf_rt_rq(rt_rq, rq) {
1141 array = &rt_rq->active;
1142 idx = sched_find_first_bit(array->bitmap);
1143 next_idx:
1144 if (idx >= MAX_RT_PRIO)
1145 continue;
1146 if (next && next->prio < idx)
1147 continue;
1148 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1149 struct task_struct *p = rt_task_of(rt_se);
1150 if (pick_rt_task(rq, p, cpu)) {
1151 next = p;
1152 break;
1153 }
1154 }
1155 if (!next) {
1156 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1157 goto next_idx;
1158 }
1159 }
1160
1161 return next;
1162 }
1163
1164 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1165
1166 static int find_lowest_rq(struct task_struct *task)
1167 {
1168 struct sched_domain *sd;
1169 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1170 int this_cpu = smp_processor_id();
1171 int cpu = task_cpu(task);
1172
1173 if (task->rt.nr_cpus_allowed == 1)
1174 return -1; /* No other targets possible */
1175
1176 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1177 return -1; /* No targets found */
1178
1179 /*
1180 * At this point we have built a mask of cpus representing the
1181 * lowest priority tasks in the system. Now we want to elect
1182 * the best one based on our affinity and topology.
1183 *
1184 * We prioritize the last cpu that the task executed on since
1185 * it is most likely cache-hot in that location.
1186 */
1187 if (cpumask_test_cpu(cpu, lowest_mask))
1188 return cpu;
1189
1190 /*
1191 * Otherwise, we consult the sched_domains span maps to figure
1192 * out which cpu is logically closest to our hot cache data.
1193 */
1194 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1195 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1196
1197 for_each_domain(cpu, sd) {
1198 if (sd->flags & SD_WAKE_AFFINE) {
1199 int best_cpu;
1200
1201 /*
1202 * "this_cpu" is cheaper to preempt than a
1203 * remote processor.
1204 */
1205 if (this_cpu != -1 &&
1206 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1207 return this_cpu;
1208
1209 best_cpu = cpumask_first_and(lowest_mask,
1210 sched_domain_span(sd));
1211 if (best_cpu < nr_cpu_ids)
1212 return best_cpu;
1213 }
1214 }
1215
1216 /*
1217 * And finally, if there were no matches within the domains
1218 * just give the caller *something* to work with from the compatible
1219 * locations.
1220 */
1221 if (this_cpu != -1)
1222 return this_cpu;
1223
1224 cpu = cpumask_any(lowest_mask);
1225 if (cpu < nr_cpu_ids)
1226 return cpu;
1227 return -1;
1228 }
1229
1230 /* Will lock the rq it finds */
1231 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1232 {
1233 struct rq *lowest_rq = NULL;
1234 int tries;
1235 int cpu;
1236
1237 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1238 cpu = find_lowest_rq(task);
1239
1240 if ((cpu == -1) || (cpu == rq->cpu))
1241 break;
1242
1243 lowest_rq = cpu_rq(cpu);
1244
1245 /* if the prio of this runqueue changed, try again */
1246 if (double_lock_balance(rq, lowest_rq)) {
1247 /*
1248 * We had to unlock the run queue. In
1249 * the mean time, task could have
1250 * migrated already or had its affinity changed.
1251 * Also make sure that it wasn't scheduled on its rq.
1252 */
1253 if (unlikely(task_rq(task) != rq ||
1254 !cpumask_test_cpu(lowest_rq->cpu,
1255 &task->cpus_allowed) ||
1256 task_running(rq, task) ||
1257 !task->se.on_rq)) {
1258
1259 raw_spin_unlock(&lowest_rq->lock);
1260 lowest_rq = NULL;
1261 break;
1262 }
1263 }
1264
1265 /* If this rq is still suitable use it. */
1266 if (lowest_rq->rt.highest_prio.curr > task->prio)
1267 break;
1268
1269 /* try again */
1270 double_unlock_balance(rq, lowest_rq);
1271 lowest_rq = NULL;
1272 }
1273
1274 return lowest_rq;
1275 }
1276
1277 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1278 {
1279 struct task_struct *p;
1280
1281 if (!has_pushable_tasks(rq))
1282 return NULL;
1283
1284 p = plist_first_entry(&rq->rt.pushable_tasks,
1285 struct task_struct, pushable_tasks);
1286
1287 BUG_ON(rq->cpu != task_cpu(p));
1288 BUG_ON(task_current(rq, p));
1289 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1290
1291 BUG_ON(!p->se.on_rq);
1292 BUG_ON(!rt_task(p));
1293
1294 return p;
1295 }
1296
1297 /*
1298 * If the current CPU has more than one RT task, see if the non
1299 * running task can migrate over to a CPU that is running a task
1300 * of lesser priority.
1301 */
1302 static int push_rt_task(struct rq *rq)
1303 {
1304 struct task_struct *next_task;
1305 struct rq *lowest_rq;
1306
1307 if (!rq->rt.overloaded)
1308 return 0;
1309
1310 next_task = pick_next_pushable_task(rq);
1311 if (!next_task)
1312 return 0;
1313
1314 retry:
1315 if (unlikely(next_task == rq->curr)) {
1316 WARN_ON(1);
1317 return 0;
1318 }
1319
1320 /*
1321 * It's possible that the next_task slipped in of
1322 * higher priority than current. If that's the case
1323 * just reschedule current.
1324 */
1325 if (unlikely(next_task->prio < rq->curr->prio)) {
1326 resched_task(rq->curr);
1327 return 0;
1328 }
1329
1330 /* We might release rq lock */
1331 get_task_struct(next_task);
1332
1333 /* find_lock_lowest_rq locks the rq if found */
1334 lowest_rq = find_lock_lowest_rq(next_task, rq);
1335 if (!lowest_rq) {
1336 struct task_struct *task;
1337 /*
1338 * find lock_lowest_rq releases rq->lock
1339 * so it is possible that next_task has migrated.
1340 *
1341 * We need to make sure that the task is still on the same
1342 * run-queue and is also still the next task eligible for
1343 * pushing.
1344 */
1345 task = pick_next_pushable_task(rq);
1346 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1347 /*
1348 * If we get here, the task hasnt moved at all, but
1349 * it has failed to push. We will not try again,
1350 * since the other cpus will pull from us when they
1351 * are ready.
1352 */
1353 dequeue_pushable_task(rq, next_task);
1354 goto out;
1355 }
1356
1357 if (!task)
1358 /* No more tasks, just exit */
1359 goto out;
1360
1361 /*
1362 * Something has shifted, try again.
1363 */
1364 put_task_struct(next_task);
1365 next_task = task;
1366 goto retry;
1367 }
1368
1369 deactivate_task(rq, next_task, 0);
1370 set_task_cpu(next_task, lowest_rq->cpu);
1371 activate_task(lowest_rq, next_task, 0);
1372
1373 resched_task(lowest_rq->curr);
1374
1375 double_unlock_balance(rq, lowest_rq);
1376
1377 out:
1378 put_task_struct(next_task);
1379
1380 return 1;
1381 }
1382
1383 static void push_rt_tasks(struct rq *rq)
1384 {
1385 /* push_rt_task will return true if it moved an RT */
1386 while (push_rt_task(rq))
1387 ;
1388 }
1389
1390 static int pull_rt_task(struct rq *this_rq)
1391 {
1392 int this_cpu = this_rq->cpu, ret = 0, cpu;
1393 struct task_struct *p;
1394 struct rq *src_rq;
1395
1396 if (likely(!rt_overloaded(this_rq)))
1397 return 0;
1398
1399 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1400 if (this_cpu == cpu)
1401 continue;
1402
1403 src_rq = cpu_rq(cpu);
1404
1405 /*
1406 * Don't bother taking the src_rq->lock if the next highest
1407 * task is known to be lower-priority than our current task.
1408 * This may look racy, but if this value is about to go
1409 * logically higher, the src_rq will push this task away.
1410 * And if its going logically lower, we do not care
1411 */
1412 if (src_rq->rt.highest_prio.next >=
1413 this_rq->rt.highest_prio.curr)
1414 continue;
1415
1416 /*
1417 * We can potentially drop this_rq's lock in
1418 * double_lock_balance, and another CPU could
1419 * alter this_rq
1420 */
1421 double_lock_balance(this_rq, src_rq);
1422
1423 /*
1424 * Are there still pullable RT tasks?
1425 */
1426 if (src_rq->rt.rt_nr_running <= 1)
1427 goto skip;
1428
1429 p = pick_next_highest_task_rt(src_rq, this_cpu);
1430
1431 /*
1432 * Do we have an RT task that preempts
1433 * the to-be-scheduled task?
1434 */
1435 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1436 WARN_ON(p == src_rq->curr);
1437 WARN_ON(!p->se.on_rq);
1438
1439 /*
1440 * There's a chance that p is higher in priority
1441 * than what's currently running on its cpu.
1442 * This is just that p is wakeing up and hasn't
1443 * had a chance to schedule. We only pull
1444 * p if it is lower in priority than the
1445 * current task on the run queue
1446 */
1447 if (p->prio < src_rq->curr->prio)
1448 goto skip;
1449
1450 ret = 1;
1451
1452 deactivate_task(src_rq, p, 0);
1453 set_task_cpu(p, this_cpu);
1454 activate_task(this_rq, p, 0);
1455 /*
1456 * We continue with the search, just in
1457 * case there's an even higher prio task
1458 * in another runqueue. (low likelyhood
1459 * but possible)
1460 */
1461 }
1462 skip:
1463 double_unlock_balance(this_rq, src_rq);
1464 }
1465
1466 return ret;
1467 }
1468
1469 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1470 {
1471 /* Try to pull RT tasks here if we lower this rq's prio */
1472 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1473 pull_rt_task(rq);
1474 }
1475
1476 static void post_schedule_rt(struct rq *rq)
1477 {
1478 push_rt_tasks(rq);
1479 }
1480
1481 /*
1482 * If we are not running and we are not going to reschedule soon, we should
1483 * try to push tasks away now
1484 */
1485 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1486 {
1487 if (!task_running(rq, p) &&
1488 !test_tsk_need_resched(rq->curr) &&
1489 has_pushable_tasks(rq) &&
1490 p->rt.nr_cpus_allowed > 1)
1491 push_rt_tasks(rq);
1492 }
1493
1494 static void set_cpus_allowed_rt(struct task_struct *p,
1495 const struct cpumask *new_mask)
1496 {
1497 int weight = cpumask_weight(new_mask);
1498
1499 BUG_ON(!rt_task(p));
1500
1501 /*
1502 * Update the migration status of the RQ if we have an RT task
1503 * which is running AND changing its weight value.
1504 */
1505 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1506 struct rq *rq = task_rq(p);
1507
1508 if (!task_current(rq, p)) {
1509 /*
1510 * Make sure we dequeue this task from the pushable list
1511 * before going further. It will either remain off of
1512 * the list because we are no longer pushable, or it
1513 * will be requeued.
1514 */
1515 if (p->rt.nr_cpus_allowed > 1)
1516 dequeue_pushable_task(rq, p);
1517
1518 /*
1519 * Requeue if our weight is changing and still > 1
1520 */
1521 if (weight > 1)
1522 enqueue_pushable_task(rq, p);
1523
1524 }
1525
1526 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1527 rq->rt.rt_nr_migratory++;
1528 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1529 BUG_ON(!rq->rt.rt_nr_migratory);
1530 rq->rt.rt_nr_migratory--;
1531 }
1532
1533 update_rt_migration(&rq->rt);
1534 }
1535
1536 cpumask_copy(&p->cpus_allowed, new_mask);
1537 p->rt.nr_cpus_allowed = weight;
1538 }
1539
1540 /* Assumes rq->lock is held */
1541 static void rq_online_rt(struct rq *rq)
1542 {
1543 if (rq->rt.overloaded)
1544 rt_set_overload(rq);
1545
1546 __enable_runtime(rq);
1547
1548 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1549 }
1550
1551 /* Assumes rq->lock is held */
1552 static void rq_offline_rt(struct rq *rq)
1553 {
1554 if (rq->rt.overloaded)
1555 rt_clear_overload(rq);
1556
1557 __disable_runtime(rq);
1558
1559 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1560 }
1561
1562 /*
1563 * When switch from the rt queue, we bring ourselves to a position
1564 * that we might want to pull RT tasks from other runqueues.
1565 */
1566 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1567 int running)
1568 {
1569 /*
1570 * If there are other RT tasks then we will reschedule
1571 * and the scheduling of the other RT tasks will handle
1572 * the balancing. But if we are the last RT task
1573 * we may need to handle the pulling of RT tasks
1574 * now.
1575 */
1576 if (!rq->rt.rt_nr_running)
1577 pull_rt_task(rq);
1578 }
1579
1580 static inline void init_sched_rt_class(void)
1581 {
1582 unsigned int i;
1583
1584 for_each_possible_cpu(i)
1585 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1586 GFP_KERNEL, cpu_to_node(i));
1587 }
1588 #endif /* CONFIG_SMP */
1589
1590 /*
1591 * When switching a task to RT, we may overload the runqueue
1592 * with RT tasks. In this case we try to push them off to
1593 * other runqueues.
1594 */
1595 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1596 int running)
1597 {
1598 int check_resched = 1;
1599
1600 /*
1601 * If we are already running, then there's nothing
1602 * that needs to be done. But if we are not running
1603 * we may need to preempt the current running task.
1604 * If that current running task is also an RT task
1605 * then see if we can move to another run queue.
1606 */
1607 if (!running) {
1608 #ifdef CONFIG_SMP
1609 if (rq->rt.overloaded && push_rt_task(rq) &&
1610 /* Don't resched if we changed runqueues */
1611 rq != task_rq(p))
1612 check_resched = 0;
1613 #endif /* CONFIG_SMP */
1614 if (check_resched && p->prio < rq->curr->prio)
1615 resched_task(rq->curr);
1616 }
1617 }
1618
1619 /*
1620 * Priority of the task has changed. This may cause
1621 * us to initiate a push or pull.
1622 */
1623 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1624 int oldprio, int running)
1625 {
1626 if (running) {
1627 #ifdef CONFIG_SMP
1628 /*
1629 * If our priority decreases while running, we
1630 * may need to pull tasks to this runqueue.
1631 */
1632 if (oldprio < p->prio)
1633 pull_rt_task(rq);
1634 /*
1635 * If there's a higher priority task waiting to run
1636 * then reschedule. Note, the above pull_rt_task
1637 * can release the rq lock and p could migrate.
1638 * Only reschedule if p is still on the same runqueue.
1639 */
1640 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1641 resched_task(p);
1642 #else
1643 /* For UP simply resched on drop of prio */
1644 if (oldprio < p->prio)
1645 resched_task(p);
1646 #endif /* CONFIG_SMP */
1647 } else {
1648 /*
1649 * This task is not running, but if it is
1650 * greater than the current running task
1651 * then reschedule.
1652 */
1653 if (p->prio < rq->curr->prio)
1654 resched_task(rq->curr);
1655 }
1656 }
1657
1658 static void watchdog(struct rq *rq, struct task_struct *p)
1659 {
1660 unsigned long soft, hard;
1661
1662 if (!p->signal)
1663 return;
1664
1665 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1666 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1667
1668 if (soft != RLIM_INFINITY) {
1669 unsigned long next;
1670
1671 p->rt.timeout++;
1672 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1673 if (p->rt.timeout > next)
1674 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1675 }
1676 }
1677
1678 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1679 {
1680 update_curr_rt(rq);
1681
1682 watchdog(rq, p);
1683
1684 /*
1685 * RR tasks need a special form of timeslice management.
1686 * FIFO tasks have no timeslices.
1687 */
1688 if (p->policy != SCHED_RR)
1689 return;
1690
1691 if (--p->rt.time_slice)
1692 return;
1693
1694 p->rt.time_slice = DEF_TIMESLICE;
1695
1696 /*
1697 * Requeue to the end of queue if we are not the only element
1698 * on the queue:
1699 */
1700 if (p->rt.run_list.prev != p->rt.run_list.next) {
1701 requeue_task_rt(rq, p, 0);
1702 set_tsk_need_resched(p);
1703 }
1704 }
1705
1706 static void set_curr_task_rt(struct rq *rq)
1707 {
1708 struct task_struct *p = rq->curr;
1709
1710 p->se.exec_start = rq->clock;
1711
1712 /* The running task is never eligible for pushing */
1713 dequeue_pushable_task(rq, p);
1714 }
1715
1716 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1717 {
1718 /*
1719 * Time slice is 0 for SCHED_FIFO tasks
1720 */
1721 if (task->policy == SCHED_RR)
1722 return DEF_TIMESLICE;
1723 else
1724 return 0;
1725 }
1726
1727 static const struct sched_class rt_sched_class = {
1728 .next = &fair_sched_class,
1729 .enqueue_task = enqueue_task_rt,
1730 .dequeue_task = dequeue_task_rt,
1731 .yield_task = yield_task_rt,
1732
1733 .check_preempt_curr = check_preempt_curr_rt,
1734
1735 .pick_next_task = pick_next_task_rt,
1736 .put_prev_task = put_prev_task_rt,
1737
1738 #ifdef CONFIG_SMP
1739 .select_task_rq = select_task_rq_rt,
1740
1741 .set_cpus_allowed = set_cpus_allowed_rt,
1742 .rq_online = rq_online_rt,
1743 .rq_offline = rq_offline_rt,
1744 .pre_schedule = pre_schedule_rt,
1745 .post_schedule = post_schedule_rt,
1746 .task_woken = task_woken_rt,
1747 .switched_from = switched_from_rt,
1748 #endif
1749
1750 .set_curr_task = set_curr_task_rt,
1751 .task_tick = task_tick_rt,
1752
1753 .get_rr_interval = get_rr_interval_rt,
1754
1755 .prio_changed = prio_changed_rt,
1756 .switched_to = switched_to_rt,
1757 };
1758
1759 #ifdef CONFIG_SCHED_DEBUG
1760 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1761
1762 static void print_rt_stats(struct seq_file *m, int cpu)
1763 {
1764 struct rt_rq *rt_rq;
1765
1766 rcu_read_lock();
1767 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1768 print_rt_rq(m, cpu, rt_rq);
1769 rcu_read_unlock();
1770 }
1771 #endif /* CONFIG_SCHED_DEBUG */
1772
This page took 0.070063 seconds and 5 git commands to generate.