sched: pre-route RT tasks on wakeup
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7 static cpumask_t rt_overload_mask;
8 static atomic_t rto_count;
9 static inline int rt_overloaded(void)
10 {
11 return atomic_read(&rto_count);
12 }
13 static inline cpumask_t *rt_overload(void)
14 {
15 return &rt_overload_mask;
16 }
17 static inline void rt_set_overload(struct rq *rq)
18 {
19 cpu_set(rq->cpu, rt_overload_mask);
20 /*
21 * Make sure the mask is visible before we set
22 * the overload count. That is checked to determine
23 * if we should look at the mask. It would be a shame
24 * if we looked at the mask, but the mask was not
25 * updated yet.
26 */
27 wmb();
28 atomic_inc(&rto_count);
29 }
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 /* the order here really doesn't matter */
33 atomic_dec(&rto_count);
34 cpu_clear(rq->cpu, rt_overload_mask);
35 }
36
37 static void update_rt_migration(struct rq *rq)
38 {
39 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
40 rt_set_overload(rq);
41 else
42 rt_clear_overload(rq);
43 }
44 #endif /* CONFIG_SMP */
45
46 /*
47 * Update the current task's runtime statistics. Skip current tasks that
48 * are not in our scheduling class.
49 */
50 static void update_curr_rt(struct rq *rq)
51 {
52 struct task_struct *curr = rq->curr;
53 u64 delta_exec;
54
55 if (!task_has_rt_policy(curr))
56 return;
57
58 delta_exec = rq->clock - curr->se.exec_start;
59 if (unlikely((s64)delta_exec < 0))
60 delta_exec = 0;
61
62 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
63
64 curr->se.sum_exec_runtime += delta_exec;
65 curr->se.exec_start = rq->clock;
66 cpuacct_charge(curr, delta_exec);
67 }
68
69 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
70 {
71 WARN_ON(!rt_task(p));
72 rq->rt.rt_nr_running++;
73 #ifdef CONFIG_SMP
74 if (p->prio < rq->rt.highest_prio)
75 rq->rt.highest_prio = p->prio;
76 if (p->nr_cpus_allowed > 1)
77 rq->rt.rt_nr_migratory++;
78
79 update_rt_migration(rq);
80 #endif /* CONFIG_SMP */
81 }
82
83 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
84 {
85 WARN_ON(!rt_task(p));
86 WARN_ON(!rq->rt.rt_nr_running);
87 rq->rt.rt_nr_running--;
88 #ifdef CONFIG_SMP
89 if (rq->rt.rt_nr_running) {
90 struct rt_prio_array *array;
91
92 WARN_ON(p->prio < rq->rt.highest_prio);
93 if (p->prio == rq->rt.highest_prio) {
94 /* recalculate */
95 array = &rq->rt.active;
96 rq->rt.highest_prio =
97 sched_find_first_bit(array->bitmap);
98 } /* otherwise leave rq->highest prio alone */
99 } else
100 rq->rt.highest_prio = MAX_RT_PRIO;
101 if (p->nr_cpus_allowed > 1)
102 rq->rt.rt_nr_migratory--;
103
104 update_rt_migration(rq);
105 #endif /* CONFIG_SMP */
106 }
107
108 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
109 {
110 struct rt_prio_array *array = &rq->rt.active;
111
112 list_add_tail(&p->run_list, array->queue + p->prio);
113 __set_bit(p->prio, array->bitmap);
114 inc_cpu_load(rq, p->se.load.weight);
115
116 inc_rt_tasks(p, rq);
117 }
118
119 /*
120 * Adding/removing a task to/from a priority array:
121 */
122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
123 {
124 struct rt_prio_array *array = &rq->rt.active;
125
126 update_curr_rt(rq);
127
128 list_del(&p->run_list);
129 if (list_empty(array->queue + p->prio))
130 __clear_bit(p->prio, array->bitmap);
131 dec_cpu_load(rq, p->se.load.weight);
132
133 dec_rt_tasks(p, rq);
134 }
135
136 /*
137 * Put task to the end of the run list without the overhead of dequeue
138 * followed by enqueue.
139 */
140 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
141 {
142 struct rt_prio_array *array = &rq->rt.active;
143
144 list_move_tail(&p->run_list, array->queue + p->prio);
145 }
146
147 static void
148 yield_task_rt(struct rq *rq)
149 {
150 requeue_task_rt(rq, rq->curr);
151 }
152
153 #ifdef CONFIG_SMP
154 static int find_lowest_rq(struct task_struct *task);
155
156 static int select_task_rq_rt(struct task_struct *p, int sync)
157 {
158 struct rq *rq = task_rq(p);
159
160 /*
161 * If the task will not preempt the RQ, try to find a better RQ
162 * before we even activate the task
163 */
164 if ((p->prio >= rq->rt.highest_prio)
165 && (p->nr_cpus_allowed > 1)) {
166 int cpu = find_lowest_rq(p);
167
168 return (cpu == -1) ? task_cpu(p) : cpu;
169 }
170
171 /*
172 * Otherwise, just let it ride on the affined RQ and the
173 * post-schedule router will push the preempted task away
174 */
175 return task_cpu(p);
176 }
177 #endif /* CONFIG_SMP */
178
179 /*
180 * Preempt the current task with a newly woken task if needed:
181 */
182 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
183 {
184 if (p->prio < rq->curr->prio)
185 resched_task(rq->curr);
186 }
187
188 static struct task_struct *pick_next_task_rt(struct rq *rq)
189 {
190 struct rt_prio_array *array = &rq->rt.active;
191 struct task_struct *next;
192 struct list_head *queue;
193 int idx;
194
195 idx = sched_find_first_bit(array->bitmap);
196 if (idx >= MAX_RT_PRIO)
197 return NULL;
198
199 queue = array->queue + idx;
200 next = list_entry(queue->next, struct task_struct, run_list);
201
202 next->se.exec_start = rq->clock;
203
204 return next;
205 }
206
207 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
208 {
209 update_curr_rt(rq);
210 p->se.exec_start = 0;
211 }
212
213 #ifdef CONFIG_SMP
214 /* Only try algorithms three times */
215 #define RT_MAX_TRIES 3
216
217 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
218 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
219
220 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
221 {
222 if (!task_running(rq, p) &&
223 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
224 (p->nr_cpus_allowed > 1))
225 return 1;
226 return 0;
227 }
228
229 /* Return the second highest RT task, NULL otherwise */
230 static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
231 int cpu)
232 {
233 struct rt_prio_array *array = &rq->rt.active;
234 struct task_struct *next;
235 struct list_head *queue;
236 int idx;
237
238 assert_spin_locked(&rq->lock);
239
240 if (likely(rq->rt.rt_nr_running < 2))
241 return NULL;
242
243 idx = sched_find_first_bit(array->bitmap);
244 if (unlikely(idx >= MAX_RT_PRIO)) {
245 WARN_ON(1); /* rt_nr_running is bad */
246 return NULL;
247 }
248
249 queue = array->queue + idx;
250 BUG_ON(list_empty(queue));
251
252 next = list_entry(queue->next, struct task_struct, run_list);
253 if (unlikely(pick_rt_task(rq, next, cpu)))
254 goto out;
255
256 if (queue->next->next != queue) {
257 /* same prio task */
258 next = list_entry(queue->next->next, struct task_struct, run_list);
259 if (pick_rt_task(rq, next, cpu))
260 goto out;
261 }
262
263 retry:
264 /* slower, but more flexible */
265 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
266 if (unlikely(idx >= MAX_RT_PRIO))
267 return NULL;
268
269 queue = array->queue + idx;
270 BUG_ON(list_empty(queue));
271
272 list_for_each_entry(next, queue, run_list) {
273 if (pick_rt_task(rq, next, cpu))
274 goto out;
275 }
276
277 goto retry;
278
279 out:
280 return next;
281 }
282
283 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
284
285 static int find_lowest_rq(struct task_struct *task)
286 {
287 int cpu;
288 cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
289 struct rq *lowest_rq = NULL;
290
291 cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
292
293 /*
294 * Scan each rq for the lowest prio.
295 */
296 for_each_cpu_mask(cpu, *cpu_mask) {
297 struct rq *rq = cpu_rq(cpu);
298
299 /* We look for lowest RT prio or non-rt CPU */
300 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
301 lowest_rq = rq;
302 break;
303 }
304
305 /* no locking for now */
306 if (rq->rt.highest_prio > task->prio &&
307 (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
308 lowest_rq = rq;
309 }
310 }
311
312 return lowest_rq ? lowest_rq->cpu : -1;
313 }
314
315 /* Will lock the rq it finds */
316 static struct rq *find_lock_lowest_rq(struct task_struct *task,
317 struct rq *rq)
318 {
319 struct rq *lowest_rq = NULL;
320 int cpu;
321 int tries;
322
323 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
324 cpu = find_lowest_rq(task);
325
326 if ((cpu == -1) || (cpu == rq->cpu))
327 break;
328
329 lowest_rq = cpu_rq(cpu);
330
331 /* if the prio of this runqueue changed, try again */
332 if (double_lock_balance(rq, lowest_rq)) {
333 /*
334 * We had to unlock the run queue. In
335 * the mean time, task could have
336 * migrated already or had its affinity changed.
337 * Also make sure that it wasn't scheduled on its rq.
338 */
339 if (unlikely(task_rq(task) != rq ||
340 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
341 task_running(rq, task) ||
342 !task->se.on_rq)) {
343 spin_unlock(&lowest_rq->lock);
344 lowest_rq = NULL;
345 break;
346 }
347 }
348
349 /* If this rq is still suitable use it. */
350 if (lowest_rq->rt.highest_prio > task->prio)
351 break;
352
353 /* try again */
354 spin_unlock(&lowest_rq->lock);
355 lowest_rq = NULL;
356 }
357
358 return lowest_rq;
359 }
360
361 /*
362 * If the current CPU has more than one RT task, see if the non
363 * running task can migrate over to a CPU that is running a task
364 * of lesser priority.
365 */
366 static int push_rt_task(struct rq *rq)
367 {
368 struct task_struct *next_task;
369 struct rq *lowest_rq;
370 int ret = 0;
371 int paranoid = RT_MAX_TRIES;
372
373 assert_spin_locked(&rq->lock);
374
375 next_task = pick_next_highest_task_rt(rq, -1);
376 if (!next_task)
377 return 0;
378
379 retry:
380 if (unlikely(next_task == rq->curr)) {
381 WARN_ON(1);
382 return 0;
383 }
384
385 /*
386 * It's possible that the next_task slipped in of
387 * higher priority than current. If that's the case
388 * just reschedule current.
389 */
390 if (unlikely(next_task->prio < rq->curr->prio)) {
391 resched_task(rq->curr);
392 return 0;
393 }
394
395 /* We might release rq lock */
396 get_task_struct(next_task);
397
398 /* find_lock_lowest_rq locks the rq if found */
399 lowest_rq = find_lock_lowest_rq(next_task, rq);
400 if (!lowest_rq) {
401 struct task_struct *task;
402 /*
403 * find lock_lowest_rq releases rq->lock
404 * so it is possible that next_task has changed.
405 * If it has, then try again.
406 */
407 task = pick_next_highest_task_rt(rq, -1);
408 if (unlikely(task != next_task) && task && paranoid--) {
409 put_task_struct(next_task);
410 next_task = task;
411 goto retry;
412 }
413 goto out;
414 }
415
416 assert_spin_locked(&lowest_rq->lock);
417
418 deactivate_task(rq, next_task, 0);
419 set_task_cpu(next_task, lowest_rq->cpu);
420 activate_task(lowest_rq, next_task, 0);
421
422 resched_task(lowest_rq->curr);
423
424 spin_unlock(&lowest_rq->lock);
425
426 ret = 1;
427 out:
428 put_task_struct(next_task);
429
430 return ret;
431 }
432
433 /*
434 * TODO: Currently we just use the second highest prio task on
435 * the queue, and stop when it can't migrate (or there's
436 * no more RT tasks). There may be a case where a lower
437 * priority RT task has a different affinity than the
438 * higher RT task. In this case the lower RT task could
439 * possibly be able to migrate where as the higher priority
440 * RT task could not. We currently ignore this issue.
441 * Enhancements are welcome!
442 */
443 static void push_rt_tasks(struct rq *rq)
444 {
445 /* push_rt_task will return true if it moved an RT */
446 while (push_rt_task(rq))
447 ;
448 }
449
450 static int pull_rt_task(struct rq *this_rq)
451 {
452 struct task_struct *next;
453 struct task_struct *p;
454 struct rq *src_rq;
455 cpumask_t *rto_cpumask;
456 int this_cpu = this_rq->cpu;
457 int cpu;
458 int ret = 0;
459
460 assert_spin_locked(&this_rq->lock);
461
462 /*
463 * If cpusets are used, and we have overlapping
464 * run queue cpusets, then this algorithm may not catch all.
465 * This is just the price you pay on trying to keep
466 * dirtying caches down on large SMP machines.
467 */
468 if (likely(!rt_overloaded()))
469 return 0;
470
471 next = pick_next_task_rt(this_rq);
472
473 rto_cpumask = rt_overload();
474
475 for_each_cpu_mask(cpu, *rto_cpumask) {
476 if (this_cpu == cpu)
477 continue;
478
479 src_rq = cpu_rq(cpu);
480 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
481 /*
482 * It is possible that overlapping cpusets
483 * will miss clearing a non overloaded runqueue.
484 * Clear it now.
485 */
486 if (double_lock_balance(this_rq, src_rq)) {
487 /* unlocked our runqueue lock */
488 struct task_struct *old_next = next;
489 next = pick_next_task_rt(this_rq);
490 if (next != old_next)
491 ret = 1;
492 }
493 if (likely(src_rq->rt.rt_nr_running <= 1))
494 /*
495 * Small chance that this_rq->curr changed
496 * but it's really harmless here.
497 */
498 rt_clear_overload(this_rq);
499 else
500 /*
501 * Heh, the src_rq is now overloaded, since
502 * we already have the src_rq lock, go straight
503 * to pulling tasks from it.
504 */
505 goto try_pulling;
506 spin_unlock(&src_rq->lock);
507 continue;
508 }
509
510 /*
511 * We can potentially drop this_rq's lock in
512 * double_lock_balance, and another CPU could
513 * steal our next task - hence we must cause
514 * the caller to recalculate the next task
515 * in that case:
516 */
517 if (double_lock_balance(this_rq, src_rq)) {
518 struct task_struct *old_next = next;
519 next = pick_next_task_rt(this_rq);
520 if (next != old_next)
521 ret = 1;
522 }
523
524 /*
525 * Are there still pullable RT tasks?
526 */
527 if (src_rq->rt.rt_nr_running <= 1) {
528 spin_unlock(&src_rq->lock);
529 continue;
530 }
531
532 try_pulling:
533 p = pick_next_highest_task_rt(src_rq, this_cpu);
534
535 /*
536 * Do we have an RT task that preempts
537 * the to-be-scheduled task?
538 */
539 if (p && (!next || (p->prio < next->prio))) {
540 WARN_ON(p == src_rq->curr);
541 WARN_ON(!p->se.on_rq);
542
543 /*
544 * There's a chance that p is higher in priority
545 * than what's currently running on its cpu.
546 * This is just that p is wakeing up and hasn't
547 * had a chance to schedule. We only pull
548 * p if it is lower in priority than the
549 * current task on the run queue or
550 * this_rq next task is lower in prio than
551 * the current task on that rq.
552 */
553 if (p->prio < src_rq->curr->prio ||
554 (next && next->prio < src_rq->curr->prio))
555 goto bail;
556
557 ret = 1;
558
559 deactivate_task(src_rq, p, 0);
560 set_task_cpu(p, this_cpu);
561 activate_task(this_rq, p, 0);
562 /*
563 * We continue with the search, just in
564 * case there's an even higher prio task
565 * in another runqueue. (low likelyhood
566 * but possible)
567 */
568
569 /*
570 * Update next so that we won't pick a task
571 * on another cpu with a priority lower (or equal)
572 * than the one we just picked.
573 */
574 next = p;
575
576 }
577 bail:
578 spin_unlock(&src_rq->lock);
579 }
580
581 return ret;
582 }
583
584 static void schedule_balance_rt(struct rq *rq,
585 struct task_struct *prev)
586 {
587 /* Try to pull RT tasks here if we lower this rq's prio */
588 if (unlikely(rt_task(prev)) &&
589 rq->rt.highest_prio > prev->prio)
590 pull_rt_task(rq);
591 }
592
593 static void schedule_tail_balance_rt(struct rq *rq)
594 {
595 /*
596 * If we have more than one rt_task queued, then
597 * see if we can push the other rt_tasks off to other CPUS.
598 * Note we may release the rq lock, and since
599 * the lock was owned by prev, we need to release it
600 * first via finish_lock_switch and then reaquire it here.
601 */
602 if (unlikely(rq->rt.rt_nr_running > 1)) {
603 spin_lock_irq(&rq->lock);
604 push_rt_tasks(rq);
605 spin_unlock_irq(&rq->lock);
606 }
607 }
608
609
610 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
611 {
612 if (unlikely(rt_task(p)) &&
613 !task_running(rq, p) &&
614 (p->prio >= rq->curr->prio))
615 push_rt_tasks(rq);
616 }
617
618 static unsigned long
619 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
620 unsigned long max_load_move,
621 struct sched_domain *sd, enum cpu_idle_type idle,
622 int *all_pinned, int *this_best_prio)
623 {
624 /* don't touch RT tasks */
625 return 0;
626 }
627
628 static int
629 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
630 struct sched_domain *sd, enum cpu_idle_type idle)
631 {
632 /* don't touch RT tasks */
633 return 0;
634 }
635 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
636 {
637 int weight = cpus_weight(*new_mask);
638
639 BUG_ON(!rt_task(p));
640
641 /*
642 * Update the migration status of the RQ if we have an RT task
643 * which is running AND changing its weight value.
644 */
645 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
646 struct rq *rq = task_rq(p);
647
648 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
649 rq->rt.rt_nr_migratory++;
650 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
651 BUG_ON(!rq->rt.rt_nr_migratory);
652 rq->rt.rt_nr_migratory--;
653 }
654
655 update_rt_migration(rq);
656 }
657
658 p->cpus_allowed = *new_mask;
659 p->nr_cpus_allowed = weight;
660 }
661 #else /* CONFIG_SMP */
662 # define schedule_tail_balance_rt(rq) do { } while (0)
663 # define schedule_balance_rt(rq, prev) do { } while (0)
664 # define wakeup_balance_rt(rq, p) do { } while (0)
665 #endif /* CONFIG_SMP */
666
667 static void task_tick_rt(struct rq *rq, struct task_struct *p)
668 {
669 update_curr_rt(rq);
670
671 /*
672 * RR tasks need a special form of timeslice management.
673 * FIFO tasks have no timeslices.
674 */
675 if (p->policy != SCHED_RR)
676 return;
677
678 if (--p->time_slice)
679 return;
680
681 p->time_slice = DEF_TIMESLICE;
682
683 /*
684 * Requeue to the end of queue if we are not the only element
685 * on the queue:
686 */
687 if (p->run_list.prev != p->run_list.next) {
688 requeue_task_rt(rq, p);
689 set_tsk_need_resched(p);
690 }
691 }
692
693 static void set_curr_task_rt(struct rq *rq)
694 {
695 struct task_struct *p = rq->curr;
696
697 p->se.exec_start = rq->clock;
698 }
699
700 const struct sched_class rt_sched_class = {
701 .next = &fair_sched_class,
702 .enqueue_task = enqueue_task_rt,
703 .dequeue_task = dequeue_task_rt,
704 .yield_task = yield_task_rt,
705 #ifdef CONFIG_SMP
706 .select_task_rq = select_task_rq_rt,
707 #endif /* CONFIG_SMP */
708
709 .check_preempt_curr = check_preempt_curr_rt,
710
711 .pick_next_task = pick_next_task_rt,
712 .put_prev_task = put_prev_task_rt,
713
714 #ifdef CONFIG_SMP
715 .load_balance = load_balance_rt,
716 .move_one_task = move_one_task_rt,
717 .set_cpus_allowed = set_cpus_allowed_rt,
718 #endif
719
720 .set_curr_task = set_curr_task_rt,
721 .task_tick = task_tick_rt,
722 };
This page took 0.046302 seconds and 6 git commands to generate.