sched: clean up find_lock_lowest_rq()
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7 static cpumask_t rt_overload_mask;
8 static atomic_t rto_count;
9 static inline int rt_overloaded(void)
10 {
11 return atomic_read(&rto_count);
12 }
13 static inline cpumask_t *rt_overload(void)
14 {
15 return &rt_overload_mask;
16 }
17 static inline void rt_set_overload(struct rq *rq)
18 {
19 rq->rt.overloaded = 1;
20 cpu_set(rq->cpu, rt_overload_mask);
21 /*
22 * Make sure the mask is visible before we set
23 * the overload count. That is checked to determine
24 * if we should look at the mask. It would be a shame
25 * if we looked at the mask, but the mask was not
26 * updated yet.
27 */
28 wmb();
29 atomic_inc(&rto_count);
30 }
31 static inline void rt_clear_overload(struct rq *rq)
32 {
33 /* the order here really doesn't matter */
34 atomic_dec(&rto_count);
35 cpu_clear(rq->cpu, rt_overload_mask);
36 rq->rt.overloaded = 0;
37 }
38
39 static void update_rt_migration(struct rq *rq)
40 {
41 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
42 rt_set_overload(rq);
43 else
44 rt_clear_overload(rq);
45 }
46 #endif /* CONFIG_SMP */
47
48 /*
49 * Update the current task's runtime statistics. Skip current tasks that
50 * are not in our scheduling class.
51 */
52 static void update_curr_rt(struct rq *rq)
53 {
54 struct task_struct *curr = rq->curr;
55 u64 delta_exec;
56
57 if (!task_has_rt_policy(curr))
58 return;
59
60 delta_exec = rq->clock - curr->se.exec_start;
61 if (unlikely((s64)delta_exec < 0))
62 delta_exec = 0;
63
64 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
65
66 curr->se.sum_exec_runtime += delta_exec;
67 curr->se.exec_start = rq->clock;
68 cpuacct_charge(curr, delta_exec);
69 }
70
71 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
72 {
73 WARN_ON(!rt_task(p));
74 rq->rt.rt_nr_running++;
75 #ifdef CONFIG_SMP
76 if (p->prio < rq->rt.highest_prio)
77 rq->rt.highest_prio = p->prio;
78 if (p->nr_cpus_allowed > 1)
79 rq->rt.rt_nr_migratory++;
80
81 update_rt_migration(rq);
82 #endif /* CONFIG_SMP */
83 }
84
85 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
86 {
87 WARN_ON(!rt_task(p));
88 WARN_ON(!rq->rt.rt_nr_running);
89 rq->rt.rt_nr_running--;
90 #ifdef CONFIG_SMP
91 if (rq->rt.rt_nr_running) {
92 struct rt_prio_array *array;
93
94 WARN_ON(p->prio < rq->rt.highest_prio);
95 if (p->prio == rq->rt.highest_prio) {
96 /* recalculate */
97 array = &rq->rt.active;
98 rq->rt.highest_prio =
99 sched_find_first_bit(array->bitmap);
100 } /* otherwise leave rq->highest prio alone */
101 } else
102 rq->rt.highest_prio = MAX_RT_PRIO;
103 if (p->nr_cpus_allowed > 1)
104 rq->rt.rt_nr_migratory--;
105
106 update_rt_migration(rq);
107 #endif /* CONFIG_SMP */
108 }
109
110 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
111 {
112 struct rt_prio_array *array = &rq->rt.active;
113
114 list_add_tail(&p->run_list, array->queue + p->prio);
115 __set_bit(p->prio, array->bitmap);
116 inc_cpu_load(rq, p->se.load.weight);
117
118 inc_rt_tasks(p, rq);
119 }
120
121 /*
122 * Adding/removing a task to/from a priority array:
123 */
124 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
125 {
126 struct rt_prio_array *array = &rq->rt.active;
127
128 update_curr_rt(rq);
129
130 list_del(&p->run_list);
131 if (list_empty(array->queue + p->prio))
132 __clear_bit(p->prio, array->bitmap);
133 dec_cpu_load(rq, p->se.load.weight);
134
135 dec_rt_tasks(p, rq);
136 }
137
138 /*
139 * Put task to the end of the run list without the overhead of dequeue
140 * followed by enqueue.
141 */
142 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
143 {
144 struct rt_prio_array *array = &rq->rt.active;
145
146 list_move_tail(&p->run_list, array->queue + p->prio);
147 }
148
149 static void
150 yield_task_rt(struct rq *rq)
151 {
152 requeue_task_rt(rq, rq->curr);
153 }
154
155 #ifdef CONFIG_SMP
156 static int find_lowest_rq(struct task_struct *task);
157
158 static int select_task_rq_rt(struct task_struct *p, int sync)
159 {
160 struct rq *rq = task_rq(p);
161
162 /*
163 * If the current task is an RT task, then
164 * try to see if we can wake this RT task up on another
165 * runqueue. Otherwise simply start this RT task
166 * on its current runqueue.
167 *
168 * We want to avoid overloading runqueues. Even if
169 * the RT task is of higher priority than the current RT task.
170 * RT tasks behave differently than other tasks. If
171 * one gets preempted, we try to push it off to another queue.
172 * So trying to keep a preempting RT task on the same
173 * cache hot CPU will force the running RT task to
174 * a cold CPU. So we waste all the cache for the lower
175 * RT task in hopes of saving some of a RT task
176 * that is just being woken and probably will have
177 * cold cache anyway.
178 */
179 if (unlikely(rt_task(rq->curr)) &&
180 (p->nr_cpus_allowed > 1)) {
181 int cpu = find_lowest_rq(p);
182
183 return (cpu == -1) ? task_cpu(p) : cpu;
184 }
185
186 /*
187 * Otherwise, just let it ride on the affined RQ and the
188 * post-schedule router will push the preempted task away
189 */
190 return task_cpu(p);
191 }
192 #endif /* CONFIG_SMP */
193
194 /*
195 * Preempt the current task with a newly woken task if needed:
196 */
197 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
198 {
199 if (p->prio < rq->curr->prio)
200 resched_task(rq->curr);
201 }
202
203 static struct task_struct *pick_next_task_rt(struct rq *rq)
204 {
205 struct rt_prio_array *array = &rq->rt.active;
206 struct task_struct *next;
207 struct list_head *queue;
208 int idx;
209
210 idx = sched_find_first_bit(array->bitmap);
211 if (idx >= MAX_RT_PRIO)
212 return NULL;
213
214 queue = array->queue + idx;
215 next = list_entry(queue->next, struct task_struct, run_list);
216
217 next->se.exec_start = rq->clock;
218
219 return next;
220 }
221
222 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
223 {
224 update_curr_rt(rq);
225 p->se.exec_start = 0;
226 }
227
228 #ifdef CONFIG_SMP
229 /* Only try algorithms three times */
230 #define RT_MAX_TRIES 3
231
232 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
233 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
234
235 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
236 {
237 if (!task_running(rq, p) &&
238 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
239 (p->nr_cpus_allowed > 1))
240 return 1;
241 return 0;
242 }
243
244 /* Return the second highest RT task, NULL otherwise */
245 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
246 {
247 struct rt_prio_array *array = &rq->rt.active;
248 struct task_struct *next;
249 struct list_head *queue;
250 int idx;
251
252 assert_spin_locked(&rq->lock);
253
254 if (likely(rq->rt.rt_nr_running < 2))
255 return NULL;
256
257 idx = sched_find_first_bit(array->bitmap);
258 if (unlikely(idx >= MAX_RT_PRIO)) {
259 WARN_ON(1); /* rt_nr_running is bad */
260 return NULL;
261 }
262
263 queue = array->queue + idx;
264 BUG_ON(list_empty(queue));
265
266 next = list_entry(queue->next, struct task_struct, run_list);
267 if (unlikely(pick_rt_task(rq, next, cpu)))
268 goto out;
269
270 if (queue->next->next != queue) {
271 /* same prio task */
272 next = list_entry(queue->next->next, struct task_struct,
273 run_list);
274 if (pick_rt_task(rq, next, cpu))
275 goto out;
276 }
277
278 retry:
279 /* slower, but more flexible */
280 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
281 if (unlikely(idx >= MAX_RT_PRIO))
282 return NULL;
283
284 queue = array->queue + idx;
285 BUG_ON(list_empty(queue));
286
287 list_for_each_entry(next, queue, run_list) {
288 if (pick_rt_task(rq, next, cpu))
289 goto out;
290 }
291
292 goto retry;
293
294 out:
295 return next;
296 }
297
298 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
299
300 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
301 {
302 int lowest_prio = -1;
303 int lowest_cpu = -1;
304 int count = 0;
305 int cpu;
306
307 cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
308
309 /*
310 * Scan each rq for the lowest prio.
311 */
312 for_each_cpu_mask(cpu, *lowest_mask) {
313 struct rq *rq = cpu_rq(cpu);
314
315 /* We look for lowest RT prio or non-rt CPU */
316 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
317 /*
318 * if we already found a low RT queue
319 * and now we found this non-rt queue
320 * clear the mask and set our bit.
321 * Otherwise just return the queue as is
322 * and the count==1 will cause the algorithm
323 * to use the first bit found.
324 */
325 if (lowest_cpu != -1) {
326 cpus_clear(*lowest_mask);
327 cpu_set(rq->cpu, *lowest_mask);
328 }
329 return 1;
330 }
331
332 /* no locking for now */
333 if ((rq->rt.highest_prio > task->prio)
334 && (rq->rt.highest_prio >= lowest_prio)) {
335 if (rq->rt.highest_prio > lowest_prio) {
336 /* new low - clear old data */
337 lowest_prio = rq->rt.highest_prio;
338 lowest_cpu = cpu;
339 count = 0;
340 }
341 count++;
342 } else
343 cpu_clear(cpu, *lowest_mask);
344 }
345
346 /*
347 * Clear out all the set bits that represent
348 * runqueues that were of higher prio than
349 * the lowest_prio.
350 */
351 if (lowest_cpu > 0) {
352 /*
353 * Perhaps we could add another cpumask op to
354 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
355 * Then that could be optimized to use memset and such.
356 */
357 for_each_cpu_mask(cpu, *lowest_mask) {
358 if (cpu >= lowest_cpu)
359 break;
360 cpu_clear(cpu, *lowest_mask);
361 }
362 }
363
364 return count;
365 }
366
367 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
368 {
369 int first;
370
371 /* "this_cpu" is cheaper to preempt than a remote processor */
372 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
373 return this_cpu;
374
375 first = first_cpu(*mask);
376 if (first != NR_CPUS)
377 return first;
378
379 return -1;
380 }
381
382 static int find_lowest_rq(struct task_struct *task)
383 {
384 struct sched_domain *sd;
385 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
386 int this_cpu = smp_processor_id();
387 int cpu = task_cpu(task);
388 int count = find_lowest_cpus(task, lowest_mask);
389
390 if (!count)
391 return -1; /* No targets found */
392
393 /*
394 * There is no sense in performing an optimal search if only one
395 * target is found.
396 */
397 if (count == 1)
398 return first_cpu(*lowest_mask);
399
400 /*
401 * At this point we have built a mask of cpus representing the
402 * lowest priority tasks in the system. Now we want to elect
403 * the best one based on our affinity and topology.
404 *
405 * We prioritize the last cpu that the task executed on since
406 * it is most likely cache-hot in that location.
407 */
408 if (cpu_isset(cpu, *lowest_mask))
409 return cpu;
410
411 /*
412 * Otherwise, we consult the sched_domains span maps to figure
413 * out which cpu is logically closest to our hot cache data.
414 */
415 if (this_cpu == cpu)
416 this_cpu = -1; /* Skip this_cpu opt if the same */
417
418 for_each_domain(cpu, sd) {
419 if (sd->flags & SD_WAKE_AFFINE) {
420 cpumask_t domain_mask;
421 int best_cpu;
422
423 cpus_and(domain_mask, sd->span, *lowest_mask);
424
425 best_cpu = pick_optimal_cpu(this_cpu,
426 &domain_mask);
427 if (best_cpu != -1)
428 return best_cpu;
429 }
430 }
431
432 /*
433 * And finally, if there were no matches within the domains
434 * just give the caller *something* to work with from the compatible
435 * locations.
436 */
437 return pick_optimal_cpu(this_cpu, lowest_mask);
438 }
439
440 /* Will lock the rq it finds */
441 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
442 {
443 struct rq *lowest_rq = NULL;
444 int tries;
445 int cpu;
446
447 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
448 cpu = find_lowest_rq(task);
449
450 if ((cpu == -1) || (cpu == rq->cpu))
451 break;
452
453 lowest_rq = cpu_rq(cpu);
454
455 /* if the prio of this runqueue changed, try again */
456 if (double_lock_balance(rq, lowest_rq)) {
457 /*
458 * We had to unlock the run queue. In
459 * the mean time, task could have
460 * migrated already or had its affinity changed.
461 * Also make sure that it wasn't scheduled on its rq.
462 */
463 if (unlikely(task_rq(task) != rq ||
464 !cpu_isset(lowest_rq->cpu,
465 task->cpus_allowed) ||
466 task_running(rq, task) ||
467 !task->se.on_rq)) {
468
469 spin_unlock(&lowest_rq->lock);
470 lowest_rq = NULL;
471 break;
472 }
473 }
474
475 /* If this rq is still suitable use it. */
476 if (lowest_rq->rt.highest_prio > task->prio)
477 break;
478
479 /* try again */
480 spin_unlock(&lowest_rq->lock);
481 lowest_rq = NULL;
482 }
483
484 return lowest_rq;
485 }
486
487 /*
488 * If the current CPU has more than one RT task, see if the non
489 * running task can migrate over to a CPU that is running a task
490 * of lesser priority.
491 */
492 static int push_rt_task(struct rq *rq)
493 {
494 struct task_struct *next_task;
495 struct rq *lowest_rq;
496 int ret = 0;
497 int paranoid = RT_MAX_TRIES;
498
499 assert_spin_locked(&rq->lock);
500
501 if (!rq->rt.overloaded)
502 return 0;
503
504 next_task = pick_next_highest_task_rt(rq, -1);
505 if (!next_task)
506 return 0;
507
508 retry:
509 if (unlikely(next_task == rq->curr)) {
510 WARN_ON(1);
511 return 0;
512 }
513
514 /*
515 * It's possible that the next_task slipped in of
516 * higher priority than current. If that's the case
517 * just reschedule current.
518 */
519 if (unlikely(next_task->prio < rq->curr->prio)) {
520 resched_task(rq->curr);
521 return 0;
522 }
523
524 /* We might release rq lock */
525 get_task_struct(next_task);
526
527 /* find_lock_lowest_rq locks the rq if found */
528 lowest_rq = find_lock_lowest_rq(next_task, rq);
529 if (!lowest_rq) {
530 struct task_struct *task;
531 /*
532 * find lock_lowest_rq releases rq->lock
533 * so it is possible that next_task has changed.
534 * If it has, then try again.
535 */
536 task = pick_next_highest_task_rt(rq, -1);
537 if (unlikely(task != next_task) && task && paranoid--) {
538 put_task_struct(next_task);
539 next_task = task;
540 goto retry;
541 }
542 goto out;
543 }
544
545 assert_spin_locked(&lowest_rq->lock);
546
547 deactivate_task(rq, next_task, 0);
548 set_task_cpu(next_task, lowest_rq->cpu);
549 activate_task(lowest_rq, next_task, 0);
550
551 resched_task(lowest_rq->curr);
552
553 spin_unlock(&lowest_rq->lock);
554
555 ret = 1;
556 out:
557 put_task_struct(next_task);
558
559 return ret;
560 }
561
562 /*
563 * TODO: Currently we just use the second highest prio task on
564 * the queue, and stop when it can't migrate (or there's
565 * no more RT tasks). There may be a case where a lower
566 * priority RT task has a different affinity than the
567 * higher RT task. In this case the lower RT task could
568 * possibly be able to migrate where as the higher priority
569 * RT task could not. We currently ignore this issue.
570 * Enhancements are welcome!
571 */
572 static void push_rt_tasks(struct rq *rq)
573 {
574 /* push_rt_task will return true if it moved an RT */
575 while (push_rt_task(rq))
576 ;
577 }
578
579 static int pull_rt_task(struct rq *this_rq)
580 {
581 struct task_struct *next;
582 struct task_struct *p;
583 struct rq *src_rq;
584 cpumask_t *rto_cpumask;
585 int this_cpu = this_rq->cpu;
586 int cpu;
587 int ret = 0;
588
589 assert_spin_locked(&this_rq->lock);
590
591 /*
592 * If cpusets are used, and we have overlapping
593 * run queue cpusets, then this algorithm may not catch all.
594 * This is just the price you pay on trying to keep
595 * dirtying caches down on large SMP machines.
596 */
597 if (likely(!rt_overloaded()))
598 return 0;
599
600 next = pick_next_task_rt(this_rq);
601
602 rto_cpumask = rt_overload();
603
604 for_each_cpu_mask(cpu, *rto_cpumask) {
605 if (this_cpu == cpu)
606 continue;
607
608 src_rq = cpu_rq(cpu);
609 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
610 /*
611 * It is possible that overlapping cpusets
612 * will miss clearing a non overloaded runqueue.
613 * Clear it now.
614 */
615 if (double_lock_balance(this_rq, src_rq)) {
616 /* unlocked our runqueue lock */
617 struct task_struct *old_next = next;
618 next = pick_next_task_rt(this_rq);
619 if (next != old_next)
620 ret = 1;
621 }
622 if (likely(src_rq->rt.rt_nr_running <= 1))
623 /*
624 * Small chance that this_rq->curr changed
625 * but it's really harmless here.
626 */
627 rt_clear_overload(this_rq);
628 else
629 /*
630 * Heh, the src_rq is now overloaded, since
631 * we already have the src_rq lock, go straight
632 * to pulling tasks from it.
633 */
634 goto try_pulling;
635 spin_unlock(&src_rq->lock);
636 continue;
637 }
638
639 /*
640 * We can potentially drop this_rq's lock in
641 * double_lock_balance, and another CPU could
642 * steal our next task - hence we must cause
643 * the caller to recalculate the next task
644 * in that case:
645 */
646 if (double_lock_balance(this_rq, src_rq)) {
647 struct task_struct *old_next = next;
648 next = pick_next_task_rt(this_rq);
649 if (next != old_next)
650 ret = 1;
651 }
652
653 /*
654 * Are there still pullable RT tasks?
655 */
656 if (src_rq->rt.rt_nr_running <= 1) {
657 spin_unlock(&src_rq->lock);
658 continue;
659 }
660
661 try_pulling:
662 p = pick_next_highest_task_rt(src_rq, this_cpu);
663
664 /*
665 * Do we have an RT task that preempts
666 * the to-be-scheduled task?
667 */
668 if (p && (!next || (p->prio < next->prio))) {
669 WARN_ON(p == src_rq->curr);
670 WARN_ON(!p->se.on_rq);
671
672 /*
673 * There's a chance that p is higher in priority
674 * than what's currently running on its cpu.
675 * This is just that p is wakeing up and hasn't
676 * had a chance to schedule. We only pull
677 * p if it is lower in priority than the
678 * current task on the run queue or
679 * this_rq next task is lower in prio than
680 * the current task on that rq.
681 */
682 if (p->prio < src_rq->curr->prio ||
683 (next && next->prio < src_rq->curr->prio))
684 goto bail;
685
686 ret = 1;
687
688 deactivate_task(src_rq, p, 0);
689 set_task_cpu(p, this_cpu);
690 activate_task(this_rq, p, 0);
691 /*
692 * We continue with the search, just in
693 * case there's an even higher prio task
694 * in another runqueue. (low likelyhood
695 * but possible)
696 */
697
698 /*
699 * Update next so that we won't pick a task
700 * on another cpu with a priority lower (or equal)
701 * than the one we just picked.
702 */
703 next = p;
704
705 }
706 bail:
707 spin_unlock(&src_rq->lock);
708 }
709
710 return ret;
711 }
712
713 static void schedule_balance_rt(struct rq *rq,
714 struct task_struct *prev)
715 {
716 /* Try to pull RT tasks here if we lower this rq's prio */
717 if (unlikely(rt_task(prev)) &&
718 rq->rt.highest_prio > prev->prio)
719 pull_rt_task(rq);
720 }
721
722 static void schedule_tail_balance_rt(struct rq *rq)
723 {
724 /*
725 * If we have more than one rt_task queued, then
726 * see if we can push the other rt_tasks off to other CPUS.
727 * Note we may release the rq lock, and since
728 * the lock was owned by prev, we need to release it
729 * first via finish_lock_switch and then reaquire it here.
730 */
731 if (unlikely(rq->rt.overloaded)) {
732 spin_lock_irq(&rq->lock);
733 push_rt_tasks(rq);
734 spin_unlock_irq(&rq->lock);
735 }
736 }
737
738
739 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
740 {
741 if (unlikely(rt_task(p)) &&
742 !task_running(rq, p) &&
743 (p->prio >= rq->rt.highest_prio) &&
744 rq->rt.overloaded)
745 push_rt_tasks(rq);
746 }
747
748 static unsigned long
749 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
750 unsigned long max_load_move,
751 struct sched_domain *sd, enum cpu_idle_type idle,
752 int *all_pinned, int *this_best_prio)
753 {
754 /* don't touch RT tasks */
755 return 0;
756 }
757
758 static int
759 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
760 struct sched_domain *sd, enum cpu_idle_type idle)
761 {
762 /* don't touch RT tasks */
763 return 0;
764 }
765 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
766 {
767 int weight = cpus_weight(*new_mask);
768
769 BUG_ON(!rt_task(p));
770
771 /*
772 * Update the migration status of the RQ if we have an RT task
773 * which is running AND changing its weight value.
774 */
775 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
776 struct rq *rq = task_rq(p);
777
778 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
779 rq->rt.rt_nr_migratory++;
780 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
781 BUG_ON(!rq->rt.rt_nr_migratory);
782 rq->rt.rt_nr_migratory--;
783 }
784
785 update_rt_migration(rq);
786 }
787
788 p->cpus_allowed = *new_mask;
789 p->nr_cpus_allowed = weight;
790 }
791 #else /* CONFIG_SMP */
792 # define schedule_tail_balance_rt(rq) do { } while (0)
793 # define schedule_balance_rt(rq, prev) do { } while (0)
794 # define wakeup_balance_rt(rq, p) do { } while (0)
795 #endif /* CONFIG_SMP */
796
797 static void task_tick_rt(struct rq *rq, struct task_struct *p)
798 {
799 update_curr_rt(rq);
800
801 /*
802 * RR tasks need a special form of timeslice management.
803 * FIFO tasks have no timeslices.
804 */
805 if (p->policy != SCHED_RR)
806 return;
807
808 if (--p->time_slice)
809 return;
810
811 p->time_slice = DEF_TIMESLICE;
812
813 /*
814 * Requeue to the end of queue if we are not the only element
815 * on the queue:
816 */
817 if (p->run_list.prev != p->run_list.next) {
818 requeue_task_rt(rq, p);
819 set_tsk_need_resched(p);
820 }
821 }
822
823 static void set_curr_task_rt(struct rq *rq)
824 {
825 struct task_struct *p = rq->curr;
826
827 p->se.exec_start = rq->clock;
828 }
829
830 const struct sched_class rt_sched_class = {
831 .next = &fair_sched_class,
832 .enqueue_task = enqueue_task_rt,
833 .dequeue_task = dequeue_task_rt,
834 .yield_task = yield_task_rt,
835 #ifdef CONFIG_SMP
836 .select_task_rq = select_task_rq_rt,
837 #endif /* CONFIG_SMP */
838
839 .check_preempt_curr = check_preempt_curr_rt,
840
841 .pick_next_task = pick_next_task_rt,
842 .put_prev_task = put_prev_task_rt,
843
844 #ifdef CONFIG_SMP
845 .load_balance = load_balance_rt,
846 .move_one_task = move_one_task_rt,
847 .set_cpus_allowed = set_cpus_allowed_rt,
848 #endif
849
850 .set_curr_task = set_curr_task_rt,
851 .task_tick = task_tick_rt,
852 };
This page took 0.072571 seconds and 6 git commands to generate.