sched: track highest prio task queued
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 /*
7 * Update the current task's runtime statistics. Skip current tasks that
8 * are not in our scheduling class.
9 */
10 static void update_curr_rt(struct rq *rq)
11 {
12 struct task_struct *curr = rq->curr;
13 u64 delta_exec;
14
15 if (!task_has_rt_policy(curr))
16 return;
17
18 delta_exec = rq->clock - curr->se.exec_start;
19 if (unlikely((s64)delta_exec < 0))
20 delta_exec = 0;
21
22 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
23
24 curr->se.sum_exec_runtime += delta_exec;
25 curr->se.exec_start = rq->clock;
26 cpuacct_charge(curr, delta_exec);
27 }
28
29 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
30 {
31 WARN_ON(!rt_task(p));
32 rq->rt.rt_nr_running++;
33 #ifdef CONFIG_SMP
34 if (p->prio < rq->rt.highest_prio)
35 rq->rt.highest_prio = p->prio;
36 #endif /* CONFIG_SMP */
37 }
38
39 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
40 {
41 WARN_ON(!rt_task(p));
42 WARN_ON(!rq->rt.rt_nr_running);
43 rq->rt.rt_nr_running--;
44 #ifdef CONFIG_SMP
45 if (rq->rt.rt_nr_running) {
46 struct rt_prio_array *array;
47
48 WARN_ON(p->prio < rq->rt.highest_prio);
49 if (p->prio == rq->rt.highest_prio) {
50 /* recalculate */
51 array = &rq->rt.active;
52 rq->rt.highest_prio =
53 sched_find_first_bit(array->bitmap);
54 } /* otherwise leave rq->highest prio alone */
55 } else
56 rq->rt.highest_prio = MAX_RT_PRIO;
57 #endif /* CONFIG_SMP */
58 }
59
60 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
61 {
62 struct rt_prio_array *array = &rq->rt.active;
63
64 list_add_tail(&p->run_list, array->queue + p->prio);
65 __set_bit(p->prio, array->bitmap);
66 inc_cpu_load(rq, p->se.load.weight);
67
68 inc_rt_tasks(p, rq);
69 }
70
71 /*
72 * Adding/removing a task to/from a priority array:
73 */
74 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
75 {
76 struct rt_prio_array *array = &rq->rt.active;
77
78 update_curr_rt(rq);
79
80 list_del(&p->run_list);
81 if (list_empty(array->queue + p->prio))
82 __clear_bit(p->prio, array->bitmap);
83 dec_cpu_load(rq, p->se.load.weight);
84
85 dec_rt_tasks(p, rq);
86 }
87
88 /*
89 * Put task to the end of the run list without the overhead of dequeue
90 * followed by enqueue.
91 */
92 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
93 {
94 struct rt_prio_array *array = &rq->rt.active;
95
96 list_move_tail(&p->run_list, array->queue + p->prio);
97 }
98
99 static void
100 yield_task_rt(struct rq *rq)
101 {
102 requeue_task_rt(rq, rq->curr);
103 }
104
105 /*
106 * Preempt the current task with a newly woken task if needed:
107 */
108 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
109 {
110 if (p->prio < rq->curr->prio)
111 resched_task(rq->curr);
112 }
113
114 static struct task_struct *pick_next_task_rt(struct rq *rq)
115 {
116 struct rt_prio_array *array = &rq->rt.active;
117 struct task_struct *next;
118 struct list_head *queue;
119 int idx;
120
121 idx = sched_find_first_bit(array->bitmap);
122 if (idx >= MAX_RT_PRIO)
123 return NULL;
124
125 queue = array->queue + idx;
126 next = list_entry(queue->next, struct task_struct, run_list);
127
128 next->se.exec_start = rq->clock;
129
130 return next;
131 }
132
133 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
134 {
135 update_curr_rt(rq);
136 p->se.exec_start = 0;
137 }
138
139 #ifdef CONFIG_SMP
140 /*
141 * Load-balancing iterator. Note: while the runqueue stays locked
142 * during the whole iteration, the current task might be
143 * dequeued so the iterator has to be dequeue-safe. Here we
144 * achieve that by always pre-iterating before returning
145 * the current task:
146 */
147 static struct task_struct *load_balance_start_rt(void *arg)
148 {
149 struct rq *rq = arg;
150 struct rt_prio_array *array = &rq->rt.active;
151 struct list_head *head, *curr;
152 struct task_struct *p;
153 int idx;
154
155 idx = sched_find_first_bit(array->bitmap);
156 if (idx >= MAX_RT_PRIO)
157 return NULL;
158
159 head = array->queue + idx;
160 curr = head->prev;
161
162 p = list_entry(curr, struct task_struct, run_list);
163
164 curr = curr->prev;
165
166 rq->rt.rt_load_balance_idx = idx;
167 rq->rt.rt_load_balance_head = head;
168 rq->rt.rt_load_balance_curr = curr;
169
170 return p;
171 }
172
173 static struct task_struct *load_balance_next_rt(void *arg)
174 {
175 struct rq *rq = arg;
176 struct rt_prio_array *array = &rq->rt.active;
177 struct list_head *head, *curr;
178 struct task_struct *p;
179 int idx;
180
181 idx = rq->rt.rt_load_balance_idx;
182 head = rq->rt.rt_load_balance_head;
183 curr = rq->rt.rt_load_balance_curr;
184
185 /*
186 * If we arrived back to the head again then
187 * iterate to the next queue (if any):
188 */
189 if (unlikely(head == curr)) {
190 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
191
192 if (next_idx >= MAX_RT_PRIO)
193 return NULL;
194
195 idx = next_idx;
196 head = array->queue + idx;
197 curr = head->prev;
198
199 rq->rt.rt_load_balance_idx = idx;
200 rq->rt.rt_load_balance_head = head;
201 }
202
203 p = list_entry(curr, struct task_struct, run_list);
204
205 curr = curr->prev;
206
207 rq->rt.rt_load_balance_curr = curr;
208
209 return p;
210 }
211
212 static unsigned long
213 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
214 unsigned long max_load_move,
215 struct sched_domain *sd, enum cpu_idle_type idle,
216 int *all_pinned, int *this_best_prio)
217 {
218 struct rq_iterator rt_rq_iterator;
219
220 rt_rq_iterator.start = load_balance_start_rt;
221 rt_rq_iterator.next = load_balance_next_rt;
222 /* pass 'busiest' rq argument into
223 * load_balance_[start|next]_rt iterators
224 */
225 rt_rq_iterator.arg = busiest;
226
227 return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
228 idle, all_pinned, this_best_prio, &rt_rq_iterator);
229 }
230
231 static int
232 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
233 struct sched_domain *sd, enum cpu_idle_type idle)
234 {
235 struct rq_iterator rt_rq_iterator;
236
237 rt_rq_iterator.start = load_balance_start_rt;
238 rt_rq_iterator.next = load_balance_next_rt;
239 rt_rq_iterator.arg = busiest;
240
241 return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
242 &rt_rq_iterator);
243 }
244 #endif
245
246 static void task_tick_rt(struct rq *rq, struct task_struct *p)
247 {
248 update_curr_rt(rq);
249
250 /*
251 * RR tasks need a special form of timeslice management.
252 * FIFO tasks have no timeslices.
253 */
254 if (p->policy != SCHED_RR)
255 return;
256
257 if (--p->time_slice)
258 return;
259
260 p->time_slice = DEF_TIMESLICE;
261
262 /*
263 * Requeue to the end of queue if we are not the only element
264 * on the queue:
265 */
266 if (p->run_list.prev != p->run_list.next) {
267 requeue_task_rt(rq, p);
268 set_tsk_need_resched(p);
269 }
270 }
271
272 static void set_curr_task_rt(struct rq *rq)
273 {
274 struct task_struct *p = rq->curr;
275
276 p->se.exec_start = rq->clock;
277 }
278
279 const struct sched_class rt_sched_class = {
280 .next = &fair_sched_class,
281 .enqueue_task = enqueue_task_rt,
282 .dequeue_task = dequeue_task_rt,
283 .yield_task = yield_task_rt,
284
285 .check_preempt_curr = check_preempt_curr_rt,
286
287 .pick_next_task = pick_next_task_rt,
288 .put_prev_task = put_prev_task_rt,
289
290 #ifdef CONFIG_SMP
291 .load_balance = load_balance_rt,
292 .move_one_task = move_one_task_rt,
293 #endif
294
295 .set_curr_task = set_curr_task_rt,
296 .task_tick = task_tick_rt,
297 };
This page took 0.043863 seconds and 6 git commands to generate.