sched: clean up pull_rt_task()
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 /*
9 * The "RT overload" flag: it gets set if a CPU has more than
10 * one runnable RT task.
11 */
12 static cpumask_t rt_overload_mask;
13 static atomic_t rto_count;
14
15 static inline int rt_overloaded(void)
16 {
17 return atomic_read(&rto_count);
18 }
19
20 static inline void rt_set_overload(struct rq *rq)
21 {
22 rq->rt.overloaded = 1;
23 cpu_set(rq->cpu, rt_overload_mask);
24 /*
25 * Make sure the mask is visible before we set
26 * the overload count. That is checked to determine
27 * if we should look at the mask. It would be a shame
28 * if we looked at the mask, but the mask was not
29 * updated yet.
30 */
31 wmb();
32 atomic_inc(&rto_count);
33 }
34
35 static inline void rt_clear_overload(struct rq *rq)
36 {
37 /* the order here really doesn't matter */
38 atomic_dec(&rto_count);
39 cpu_clear(rq->cpu, rt_overload_mask);
40 rq->rt.overloaded = 0;
41 }
42
43 static void update_rt_migration(struct rq *rq)
44 {
45 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
46 rt_set_overload(rq);
47 else
48 rt_clear_overload(rq);
49 }
50 #endif /* CONFIG_SMP */
51
52 /*
53 * Update the current task's runtime statistics. Skip current tasks that
54 * are not in our scheduling class.
55 */
56 static void update_curr_rt(struct rq *rq)
57 {
58 struct task_struct *curr = rq->curr;
59 u64 delta_exec;
60
61 if (!task_has_rt_policy(curr))
62 return;
63
64 delta_exec = rq->clock - curr->se.exec_start;
65 if (unlikely((s64)delta_exec < 0))
66 delta_exec = 0;
67
68 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
69
70 curr->se.sum_exec_runtime += delta_exec;
71 curr->se.exec_start = rq->clock;
72 cpuacct_charge(curr, delta_exec);
73 }
74
75 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
76 {
77 WARN_ON(!rt_task(p));
78 rq->rt.rt_nr_running++;
79 #ifdef CONFIG_SMP
80 if (p->prio < rq->rt.highest_prio)
81 rq->rt.highest_prio = p->prio;
82 if (p->nr_cpus_allowed > 1)
83 rq->rt.rt_nr_migratory++;
84
85 update_rt_migration(rq);
86 #endif /* CONFIG_SMP */
87 }
88
89 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
90 {
91 WARN_ON(!rt_task(p));
92 WARN_ON(!rq->rt.rt_nr_running);
93 rq->rt.rt_nr_running--;
94 #ifdef CONFIG_SMP
95 if (rq->rt.rt_nr_running) {
96 struct rt_prio_array *array;
97
98 WARN_ON(p->prio < rq->rt.highest_prio);
99 if (p->prio == rq->rt.highest_prio) {
100 /* recalculate */
101 array = &rq->rt.active;
102 rq->rt.highest_prio =
103 sched_find_first_bit(array->bitmap);
104 } /* otherwise leave rq->highest prio alone */
105 } else
106 rq->rt.highest_prio = MAX_RT_PRIO;
107 if (p->nr_cpus_allowed > 1)
108 rq->rt.rt_nr_migratory--;
109
110 update_rt_migration(rq);
111 #endif /* CONFIG_SMP */
112 }
113
114 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
115 {
116 struct rt_prio_array *array = &rq->rt.active;
117
118 list_add_tail(&p->run_list, array->queue + p->prio);
119 __set_bit(p->prio, array->bitmap);
120 inc_cpu_load(rq, p->se.load.weight);
121
122 inc_rt_tasks(p, rq);
123 }
124
125 /*
126 * Adding/removing a task to/from a priority array:
127 */
128 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
129 {
130 struct rt_prio_array *array = &rq->rt.active;
131
132 update_curr_rt(rq);
133
134 list_del(&p->run_list);
135 if (list_empty(array->queue + p->prio))
136 __clear_bit(p->prio, array->bitmap);
137 dec_cpu_load(rq, p->se.load.weight);
138
139 dec_rt_tasks(p, rq);
140 }
141
142 /*
143 * Put task to the end of the run list without the overhead of dequeue
144 * followed by enqueue.
145 */
146 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
147 {
148 struct rt_prio_array *array = &rq->rt.active;
149
150 list_move_tail(&p->run_list, array->queue + p->prio);
151 }
152
153 static void
154 yield_task_rt(struct rq *rq)
155 {
156 requeue_task_rt(rq, rq->curr);
157 }
158
159 #ifdef CONFIG_SMP
160 static int find_lowest_rq(struct task_struct *task);
161
162 static int select_task_rq_rt(struct task_struct *p, int sync)
163 {
164 struct rq *rq = task_rq(p);
165
166 /*
167 * If the current task is an RT task, then
168 * try to see if we can wake this RT task up on another
169 * runqueue. Otherwise simply start this RT task
170 * on its current runqueue.
171 *
172 * We want to avoid overloading runqueues. Even if
173 * the RT task is of higher priority than the current RT task.
174 * RT tasks behave differently than other tasks. If
175 * one gets preempted, we try to push it off to another queue.
176 * So trying to keep a preempting RT task on the same
177 * cache hot CPU will force the running RT task to
178 * a cold CPU. So we waste all the cache for the lower
179 * RT task in hopes of saving some of a RT task
180 * that is just being woken and probably will have
181 * cold cache anyway.
182 */
183 if (unlikely(rt_task(rq->curr)) &&
184 (p->nr_cpus_allowed > 1)) {
185 int cpu = find_lowest_rq(p);
186
187 return (cpu == -1) ? task_cpu(p) : cpu;
188 }
189
190 /*
191 * Otherwise, just let it ride on the affined RQ and the
192 * post-schedule router will push the preempted task away
193 */
194 return task_cpu(p);
195 }
196 #endif /* CONFIG_SMP */
197
198 /*
199 * Preempt the current task with a newly woken task if needed:
200 */
201 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
202 {
203 if (p->prio < rq->curr->prio)
204 resched_task(rq->curr);
205 }
206
207 static struct task_struct *pick_next_task_rt(struct rq *rq)
208 {
209 struct rt_prio_array *array = &rq->rt.active;
210 struct task_struct *next;
211 struct list_head *queue;
212 int idx;
213
214 idx = sched_find_first_bit(array->bitmap);
215 if (idx >= MAX_RT_PRIO)
216 return NULL;
217
218 queue = array->queue + idx;
219 next = list_entry(queue->next, struct task_struct, run_list);
220
221 next->se.exec_start = rq->clock;
222
223 return next;
224 }
225
226 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
227 {
228 update_curr_rt(rq);
229 p->se.exec_start = 0;
230 }
231
232 #ifdef CONFIG_SMP
233 /* Only try algorithms three times */
234 #define RT_MAX_TRIES 3
235
236 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
237 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
238
239 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
240 {
241 if (!task_running(rq, p) &&
242 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
243 (p->nr_cpus_allowed > 1))
244 return 1;
245 return 0;
246 }
247
248 /* Return the second highest RT task, NULL otherwise */
249 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
250 {
251 struct rt_prio_array *array = &rq->rt.active;
252 struct task_struct *next;
253 struct list_head *queue;
254 int idx;
255
256 if (likely(rq->rt.rt_nr_running < 2))
257 return NULL;
258
259 idx = sched_find_first_bit(array->bitmap);
260 if (unlikely(idx >= MAX_RT_PRIO)) {
261 WARN_ON(1); /* rt_nr_running is bad */
262 return NULL;
263 }
264
265 queue = array->queue + idx;
266 BUG_ON(list_empty(queue));
267
268 next = list_entry(queue->next, struct task_struct, run_list);
269 if (unlikely(pick_rt_task(rq, next, cpu)))
270 goto out;
271
272 if (queue->next->next != queue) {
273 /* same prio task */
274 next = list_entry(queue->next->next, struct task_struct,
275 run_list);
276 if (pick_rt_task(rq, next, cpu))
277 goto out;
278 }
279
280 retry:
281 /* slower, but more flexible */
282 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
283 if (unlikely(idx >= MAX_RT_PRIO))
284 return NULL;
285
286 queue = array->queue + idx;
287 BUG_ON(list_empty(queue));
288
289 list_for_each_entry(next, queue, run_list) {
290 if (pick_rt_task(rq, next, cpu))
291 goto out;
292 }
293
294 goto retry;
295
296 out:
297 return next;
298 }
299
300 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
301
302 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
303 {
304 int lowest_prio = -1;
305 int lowest_cpu = -1;
306 int count = 0;
307 int cpu;
308
309 cpus_and(*lowest_mask, cpu_online_map, task->cpus_allowed);
310
311 /*
312 * Scan each rq for the lowest prio.
313 */
314 for_each_cpu_mask(cpu, *lowest_mask) {
315 struct rq *rq = cpu_rq(cpu);
316
317 /* We look for lowest RT prio or non-rt CPU */
318 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
319 /*
320 * if we already found a low RT queue
321 * and now we found this non-rt queue
322 * clear the mask and set our bit.
323 * Otherwise just return the queue as is
324 * and the count==1 will cause the algorithm
325 * to use the first bit found.
326 */
327 if (lowest_cpu != -1) {
328 cpus_clear(*lowest_mask);
329 cpu_set(rq->cpu, *lowest_mask);
330 }
331 return 1;
332 }
333
334 /* no locking for now */
335 if ((rq->rt.highest_prio > task->prio)
336 && (rq->rt.highest_prio >= lowest_prio)) {
337 if (rq->rt.highest_prio > lowest_prio) {
338 /* new low - clear old data */
339 lowest_prio = rq->rt.highest_prio;
340 lowest_cpu = cpu;
341 count = 0;
342 }
343 count++;
344 } else
345 cpu_clear(cpu, *lowest_mask);
346 }
347
348 /*
349 * Clear out all the set bits that represent
350 * runqueues that were of higher prio than
351 * the lowest_prio.
352 */
353 if (lowest_cpu > 0) {
354 /*
355 * Perhaps we could add another cpumask op to
356 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
357 * Then that could be optimized to use memset and such.
358 */
359 for_each_cpu_mask(cpu, *lowest_mask) {
360 if (cpu >= lowest_cpu)
361 break;
362 cpu_clear(cpu, *lowest_mask);
363 }
364 }
365
366 return count;
367 }
368
369 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
370 {
371 int first;
372
373 /* "this_cpu" is cheaper to preempt than a remote processor */
374 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
375 return this_cpu;
376
377 first = first_cpu(*mask);
378 if (first != NR_CPUS)
379 return first;
380
381 return -1;
382 }
383
384 static int find_lowest_rq(struct task_struct *task)
385 {
386 struct sched_domain *sd;
387 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
388 int this_cpu = smp_processor_id();
389 int cpu = task_cpu(task);
390 int count = find_lowest_cpus(task, lowest_mask);
391
392 if (!count)
393 return -1; /* No targets found */
394
395 /*
396 * There is no sense in performing an optimal search if only one
397 * target is found.
398 */
399 if (count == 1)
400 return first_cpu(*lowest_mask);
401
402 /*
403 * At this point we have built a mask of cpus representing the
404 * lowest priority tasks in the system. Now we want to elect
405 * the best one based on our affinity and topology.
406 *
407 * We prioritize the last cpu that the task executed on since
408 * it is most likely cache-hot in that location.
409 */
410 if (cpu_isset(cpu, *lowest_mask))
411 return cpu;
412
413 /*
414 * Otherwise, we consult the sched_domains span maps to figure
415 * out which cpu is logically closest to our hot cache data.
416 */
417 if (this_cpu == cpu)
418 this_cpu = -1; /* Skip this_cpu opt if the same */
419
420 for_each_domain(cpu, sd) {
421 if (sd->flags & SD_WAKE_AFFINE) {
422 cpumask_t domain_mask;
423 int best_cpu;
424
425 cpus_and(domain_mask, sd->span, *lowest_mask);
426
427 best_cpu = pick_optimal_cpu(this_cpu,
428 &domain_mask);
429 if (best_cpu != -1)
430 return best_cpu;
431 }
432 }
433
434 /*
435 * And finally, if there were no matches within the domains
436 * just give the caller *something* to work with from the compatible
437 * locations.
438 */
439 return pick_optimal_cpu(this_cpu, lowest_mask);
440 }
441
442 /* Will lock the rq it finds */
443 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
444 {
445 struct rq *lowest_rq = NULL;
446 int tries;
447 int cpu;
448
449 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
450 cpu = find_lowest_rq(task);
451
452 if ((cpu == -1) || (cpu == rq->cpu))
453 break;
454
455 lowest_rq = cpu_rq(cpu);
456
457 /* if the prio of this runqueue changed, try again */
458 if (double_lock_balance(rq, lowest_rq)) {
459 /*
460 * We had to unlock the run queue. In
461 * the mean time, task could have
462 * migrated already or had its affinity changed.
463 * Also make sure that it wasn't scheduled on its rq.
464 */
465 if (unlikely(task_rq(task) != rq ||
466 !cpu_isset(lowest_rq->cpu,
467 task->cpus_allowed) ||
468 task_running(rq, task) ||
469 !task->se.on_rq)) {
470
471 spin_unlock(&lowest_rq->lock);
472 lowest_rq = NULL;
473 break;
474 }
475 }
476
477 /* If this rq is still suitable use it. */
478 if (lowest_rq->rt.highest_prio > task->prio)
479 break;
480
481 /* try again */
482 spin_unlock(&lowest_rq->lock);
483 lowest_rq = NULL;
484 }
485
486 return lowest_rq;
487 }
488
489 /*
490 * If the current CPU has more than one RT task, see if the non
491 * running task can migrate over to a CPU that is running a task
492 * of lesser priority.
493 */
494 static int push_rt_task(struct rq *rq)
495 {
496 struct task_struct *next_task;
497 struct rq *lowest_rq;
498 int ret = 0;
499 int paranoid = RT_MAX_TRIES;
500
501 if (!rq->rt.overloaded)
502 return 0;
503
504 next_task = pick_next_highest_task_rt(rq, -1);
505 if (!next_task)
506 return 0;
507
508 retry:
509 if (unlikely(next_task == rq->curr)) {
510 WARN_ON(1);
511 return 0;
512 }
513
514 /*
515 * It's possible that the next_task slipped in of
516 * higher priority than current. If that's the case
517 * just reschedule current.
518 */
519 if (unlikely(next_task->prio < rq->curr->prio)) {
520 resched_task(rq->curr);
521 return 0;
522 }
523
524 /* We might release rq lock */
525 get_task_struct(next_task);
526
527 /* find_lock_lowest_rq locks the rq if found */
528 lowest_rq = find_lock_lowest_rq(next_task, rq);
529 if (!lowest_rq) {
530 struct task_struct *task;
531 /*
532 * find lock_lowest_rq releases rq->lock
533 * so it is possible that next_task has changed.
534 * If it has, then try again.
535 */
536 task = pick_next_highest_task_rt(rq, -1);
537 if (unlikely(task != next_task) && task && paranoid--) {
538 put_task_struct(next_task);
539 next_task = task;
540 goto retry;
541 }
542 goto out;
543 }
544
545 deactivate_task(rq, next_task, 0);
546 set_task_cpu(next_task, lowest_rq->cpu);
547 activate_task(lowest_rq, next_task, 0);
548
549 resched_task(lowest_rq->curr);
550
551 spin_unlock(&lowest_rq->lock);
552
553 ret = 1;
554 out:
555 put_task_struct(next_task);
556
557 return ret;
558 }
559
560 /*
561 * TODO: Currently we just use the second highest prio task on
562 * the queue, and stop when it can't migrate (or there's
563 * no more RT tasks). There may be a case where a lower
564 * priority RT task has a different affinity than the
565 * higher RT task. In this case the lower RT task could
566 * possibly be able to migrate where as the higher priority
567 * RT task could not. We currently ignore this issue.
568 * Enhancements are welcome!
569 */
570 static void push_rt_tasks(struct rq *rq)
571 {
572 /* push_rt_task will return true if it moved an RT */
573 while (push_rt_task(rq))
574 ;
575 }
576
577 static int pull_rt_task(struct rq *this_rq)
578 {
579 int this_cpu = this_rq->cpu, ret = 0, cpu;
580 struct task_struct *p, *next;
581 struct rq *src_rq;
582
583 /*
584 * If cpusets are used, and we have overlapping
585 * run queue cpusets, then this algorithm may not catch all.
586 * This is just the price you pay on trying to keep
587 * dirtying caches down on large SMP machines.
588 */
589 if (likely(!rt_overloaded()))
590 return 0;
591
592 next = pick_next_task_rt(this_rq);
593
594 for_each_cpu_mask(cpu, rt_overload_mask) {
595 if (this_cpu == cpu)
596 continue;
597
598 src_rq = cpu_rq(cpu);
599 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
600 /*
601 * It is possible that overlapping cpusets
602 * will miss clearing a non overloaded runqueue.
603 * Clear it now.
604 */
605 if (double_lock_balance(this_rq, src_rq)) {
606 /* unlocked our runqueue lock */
607 struct task_struct *old_next = next;
608
609 next = pick_next_task_rt(this_rq);
610 if (next != old_next)
611 ret = 1;
612 }
613 if (likely(src_rq->rt.rt_nr_running <= 1)) {
614 /*
615 * Small chance that this_rq->curr changed
616 * but it's really harmless here.
617 */
618 rt_clear_overload(this_rq);
619 } else {
620 /*
621 * Heh, the src_rq is now overloaded, since
622 * we already have the src_rq lock, go straight
623 * to pulling tasks from it.
624 */
625 goto try_pulling;
626 }
627 spin_unlock(&src_rq->lock);
628 continue;
629 }
630
631 /*
632 * We can potentially drop this_rq's lock in
633 * double_lock_balance, and another CPU could
634 * steal our next task - hence we must cause
635 * the caller to recalculate the next task
636 * in that case:
637 */
638 if (double_lock_balance(this_rq, src_rq)) {
639 struct task_struct *old_next = next;
640
641 next = pick_next_task_rt(this_rq);
642 if (next != old_next)
643 ret = 1;
644 }
645
646 /*
647 * Are there still pullable RT tasks?
648 */
649 if (src_rq->rt.rt_nr_running <= 1) {
650 spin_unlock(&src_rq->lock);
651 continue;
652 }
653
654 try_pulling:
655 p = pick_next_highest_task_rt(src_rq, this_cpu);
656
657 /*
658 * Do we have an RT task that preempts
659 * the to-be-scheduled task?
660 */
661 if (p && (!next || (p->prio < next->prio))) {
662 WARN_ON(p == src_rq->curr);
663 WARN_ON(!p->se.on_rq);
664
665 /*
666 * There's a chance that p is higher in priority
667 * than what's currently running on its cpu.
668 * This is just that p is wakeing up and hasn't
669 * had a chance to schedule. We only pull
670 * p if it is lower in priority than the
671 * current task on the run queue or
672 * this_rq next task is lower in prio than
673 * the current task on that rq.
674 */
675 if (p->prio < src_rq->curr->prio ||
676 (next && next->prio < src_rq->curr->prio))
677 goto out;
678
679 ret = 1;
680
681 deactivate_task(src_rq, p, 0);
682 set_task_cpu(p, this_cpu);
683 activate_task(this_rq, p, 0);
684 /*
685 * We continue with the search, just in
686 * case there's an even higher prio task
687 * in another runqueue. (low likelyhood
688 * but possible)
689 *
690 * Update next so that we won't pick a task
691 * on another cpu with a priority lower (or equal)
692 * than the one we just picked.
693 */
694 next = p;
695
696 }
697 out:
698 spin_unlock(&src_rq->lock);
699 }
700
701 return ret;
702 }
703
704 static void schedule_balance_rt(struct rq *rq,
705 struct task_struct *prev)
706 {
707 /* Try to pull RT tasks here if we lower this rq's prio */
708 if (unlikely(rt_task(prev)) &&
709 rq->rt.highest_prio > prev->prio)
710 pull_rt_task(rq);
711 }
712
713 static void schedule_tail_balance_rt(struct rq *rq)
714 {
715 /*
716 * If we have more than one rt_task queued, then
717 * see if we can push the other rt_tasks off to other CPUS.
718 * Note we may release the rq lock, and since
719 * the lock was owned by prev, we need to release it
720 * first via finish_lock_switch and then reaquire it here.
721 */
722 if (unlikely(rq->rt.overloaded)) {
723 spin_lock_irq(&rq->lock);
724 push_rt_tasks(rq);
725 spin_unlock_irq(&rq->lock);
726 }
727 }
728
729
730 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
731 {
732 if (unlikely(rt_task(p)) &&
733 !task_running(rq, p) &&
734 (p->prio >= rq->rt.highest_prio) &&
735 rq->rt.overloaded)
736 push_rt_tasks(rq);
737 }
738
739 static unsigned long
740 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
741 unsigned long max_load_move,
742 struct sched_domain *sd, enum cpu_idle_type idle,
743 int *all_pinned, int *this_best_prio)
744 {
745 /* don't touch RT tasks */
746 return 0;
747 }
748
749 static int
750 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
751 struct sched_domain *sd, enum cpu_idle_type idle)
752 {
753 /* don't touch RT tasks */
754 return 0;
755 }
756
757 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
758 {
759 int weight = cpus_weight(*new_mask);
760
761 BUG_ON(!rt_task(p));
762
763 /*
764 * Update the migration status of the RQ if we have an RT task
765 * which is running AND changing its weight value.
766 */
767 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
768 struct rq *rq = task_rq(p);
769
770 if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
771 rq->rt.rt_nr_migratory++;
772 } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
773 BUG_ON(!rq->rt.rt_nr_migratory);
774 rq->rt.rt_nr_migratory--;
775 }
776
777 update_rt_migration(rq);
778 }
779
780 p->cpus_allowed = *new_mask;
781 p->nr_cpus_allowed = weight;
782 }
783
784 #else /* CONFIG_SMP */
785 # define schedule_tail_balance_rt(rq) do { } while (0)
786 # define schedule_balance_rt(rq, prev) do { } while (0)
787 # define wakeup_balance_rt(rq, p) do { } while (0)
788 #endif /* CONFIG_SMP */
789
790 static void task_tick_rt(struct rq *rq, struct task_struct *p)
791 {
792 update_curr_rt(rq);
793
794 /*
795 * RR tasks need a special form of timeslice management.
796 * FIFO tasks have no timeslices.
797 */
798 if (p->policy != SCHED_RR)
799 return;
800
801 if (--p->time_slice)
802 return;
803
804 p->time_slice = DEF_TIMESLICE;
805
806 /*
807 * Requeue to the end of queue if we are not the only element
808 * on the queue:
809 */
810 if (p->run_list.prev != p->run_list.next) {
811 requeue_task_rt(rq, p);
812 set_tsk_need_resched(p);
813 }
814 }
815
816 static void set_curr_task_rt(struct rq *rq)
817 {
818 struct task_struct *p = rq->curr;
819
820 p->se.exec_start = rq->clock;
821 }
822
823 const struct sched_class rt_sched_class = {
824 .next = &fair_sched_class,
825 .enqueue_task = enqueue_task_rt,
826 .dequeue_task = dequeue_task_rt,
827 .yield_task = yield_task_rt,
828 #ifdef CONFIG_SMP
829 .select_task_rq = select_task_rq_rt,
830 #endif /* CONFIG_SMP */
831
832 .check_preempt_curr = check_preempt_curr_rt,
833
834 .pick_next_task = pick_next_task_rt,
835 .put_prev_task = put_prev_task_rt,
836
837 #ifdef CONFIG_SMP
838 .load_balance = load_balance_rt,
839 .move_one_task = move_one_task_rt,
840 .set_cpus_allowed = set_cpus_allowed_rt,
841 #endif
842
843 .set_curr_task = set_curr_task_rt,
844 .task_tick = task_tick_rt,
845 };
This page took 0.158822 seconds and 6 git commands to generate.