sched: fix sched_rt.c:join/leave_domain
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 rt_set_overload(rq);
38 rq->rt.overloaded = 1;
39 } else {
40 rt_clear_overload(rq);
41 rq->rt.overloaded = 0;
42 }
43 }
44 #endif /* CONFIG_SMP */
45
46 /*
47 * Update the current task's runtime statistics. Skip current tasks that
48 * are not in our scheduling class.
49 */
50 static void update_curr_rt(struct rq *rq)
51 {
52 struct task_struct *curr = rq->curr;
53 u64 delta_exec;
54
55 if (!task_has_rt_policy(curr))
56 return;
57
58 delta_exec = rq->clock - curr->se.exec_start;
59 if (unlikely((s64)delta_exec < 0))
60 delta_exec = 0;
61
62 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
63
64 curr->se.sum_exec_runtime += delta_exec;
65 curr->se.exec_start = rq->clock;
66 cpuacct_charge(curr, delta_exec);
67 }
68
69 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
70 {
71 WARN_ON(!rt_task(p));
72 rq->rt.rt_nr_running++;
73 #ifdef CONFIG_SMP
74 if (p->prio < rq->rt.highest_prio)
75 rq->rt.highest_prio = p->prio;
76 if (p->nr_cpus_allowed > 1)
77 rq->rt.rt_nr_migratory++;
78
79 update_rt_migration(rq);
80 #endif /* CONFIG_SMP */
81 }
82
83 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
84 {
85 WARN_ON(!rt_task(p));
86 WARN_ON(!rq->rt.rt_nr_running);
87 rq->rt.rt_nr_running--;
88 #ifdef CONFIG_SMP
89 if (rq->rt.rt_nr_running) {
90 struct rt_prio_array *array;
91
92 WARN_ON(p->prio < rq->rt.highest_prio);
93 if (p->prio == rq->rt.highest_prio) {
94 /* recalculate */
95 array = &rq->rt.active;
96 rq->rt.highest_prio =
97 sched_find_first_bit(array->bitmap);
98 } /* otherwise leave rq->highest prio alone */
99 } else
100 rq->rt.highest_prio = MAX_RT_PRIO;
101 if (p->nr_cpus_allowed > 1)
102 rq->rt.rt_nr_migratory--;
103
104 update_rt_migration(rq);
105 #endif /* CONFIG_SMP */
106 }
107
108 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
109 {
110 struct rt_prio_array *array = &rq->rt.active;
111
112 list_add_tail(&p->run_list, array->queue + p->prio);
113 __set_bit(p->prio, array->bitmap);
114 inc_cpu_load(rq, p->se.load.weight);
115
116 inc_rt_tasks(p, rq);
117 }
118
119 /*
120 * Adding/removing a task to/from a priority array:
121 */
122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
123 {
124 struct rt_prio_array *array = &rq->rt.active;
125
126 update_curr_rt(rq);
127
128 list_del(&p->run_list);
129 if (list_empty(array->queue + p->prio))
130 __clear_bit(p->prio, array->bitmap);
131 dec_cpu_load(rq, p->se.load.weight);
132
133 dec_rt_tasks(p, rq);
134 }
135
136 /*
137 * Put task to the end of the run list without the overhead of dequeue
138 * followed by enqueue.
139 */
140 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
141 {
142 struct rt_prio_array *array = &rq->rt.active;
143
144 list_move_tail(&p->run_list, array->queue + p->prio);
145 }
146
147 static void
148 yield_task_rt(struct rq *rq)
149 {
150 requeue_task_rt(rq, rq->curr);
151 }
152
153 #ifdef CONFIG_SMP
154 static int find_lowest_rq(struct task_struct *task);
155
156 static int select_task_rq_rt(struct task_struct *p, int sync)
157 {
158 struct rq *rq = task_rq(p);
159
160 /*
161 * If the current task is an RT task, then
162 * try to see if we can wake this RT task up on another
163 * runqueue. Otherwise simply start this RT task
164 * on its current runqueue.
165 *
166 * We want to avoid overloading runqueues. Even if
167 * the RT task is of higher priority than the current RT task.
168 * RT tasks behave differently than other tasks. If
169 * one gets preempted, we try to push it off to another queue.
170 * So trying to keep a preempting RT task on the same
171 * cache hot CPU will force the running RT task to
172 * a cold CPU. So we waste all the cache for the lower
173 * RT task in hopes of saving some of a RT task
174 * that is just being woken and probably will have
175 * cold cache anyway.
176 */
177 if (unlikely(rt_task(rq->curr)) &&
178 (p->nr_cpus_allowed > 1)) {
179 int cpu = find_lowest_rq(p);
180
181 return (cpu == -1) ? task_cpu(p) : cpu;
182 }
183
184 /*
185 * Otherwise, just let it ride on the affined RQ and the
186 * post-schedule router will push the preempted task away
187 */
188 return task_cpu(p);
189 }
190 #endif /* CONFIG_SMP */
191
192 /*
193 * Preempt the current task with a newly woken task if needed:
194 */
195 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
196 {
197 if (p->prio < rq->curr->prio)
198 resched_task(rq->curr);
199 }
200
201 static struct task_struct *pick_next_task_rt(struct rq *rq)
202 {
203 struct rt_prio_array *array = &rq->rt.active;
204 struct task_struct *next;
205 struct list_head *queue;
206 int idx;
207
208 idx = sched_find_first_bit(array->bitmap);
209 if (idx >= MAX_RT_PRIO)
210 return NULL;
211
212 queue = array->queue + idx;
213 next = list_entry(queue->next, struct task_struct, run_list);
214
215 next->se.exec_start = rq->clock;
216
217 return next;
218 }
219
220 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
221 {
222 update_curr_rt(rq);
223 p->se.exec_start = 0;
224 }
225
226 #ifdef CONFIG_SMP
227 /* Only try algorithms three times */
228 #define RT_MAX_TRIES 3
229
230 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
231 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
232
233 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
234 {
235 if (!task_running(rq, p) &&
236 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
237 (p->nr_cpus_allowed > 1))
238 return 1;
239 return 0;
240 }
241
242 /* Return the second highest RT task, NULL otherwise */
243 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
244 {
245 struct rt_prio_array *array = &rq->rt.active;
246 struct task_struct *next;
247 struct list_head *queue;
248 int idx;
249
250 if (likely(rq->rt.rt_nr_running < 2))
251 return NULL;
252
253 idx = sched_find_first_bit(array->bitmap);
254 if (unlikely(idx >= MAX_RT_PRIO)) {
255 WARN_ON(1); /* rt_nr_running is bad */
256 return NULL;
257 }
258
259 queue = array->queue + idx;
260 BUG_ON(list_empty(queue));
261
262 next = list_entry(queue->next, struct task_struct, run_list);
263 if (unlikely(pick_rt_task(rq, next, cpu)))
264 goto out;
265
266 if (queue->next->next != queue) {
267 /* same prio task */
268 next = list_entry(queue->next->next, struct task_struct,
269 run_list);
270 if (pick_rt_task(rq, next, cpu))
271 goto out;
272 }
273
274 retry:
275 /* slower, but more flexible */
276 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
277 if (unlikely(idx >= MAX_RT_PRIO))
278 return NULL;
279
280 queue = array->queue + idx;
281 BUG_ON(list_empty(queue));
282
283 list_for_each_entry(next, queue, run_list) {
284 if (pick_rt_task(rq, next, cpu))
285 goto out;
286 }
287
288 goto retry;
289
290 out:
291 return next;
292 }
293
294 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
295
296 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
297 {
298 int lowest_prio = -1;
299 int lowest_cpu = -1;
300 int count = 0;
301 int cpu;
302
303 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
304
305 /*
306 * Scan each rq for the lowest prio.
307 */
308 for_each_cpu_mask(cpu, *lowest_mask) {
309 struct rq *rq = cpu_rq(cpu);
310
311 /* We look for lowest RT prio or non-rt CPU */
312 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
313 /*
314 * if we already found a low RT queue
315 * and now we found this non-rt queue
316 * clear the mask and set our bit.
317 * Otherwise just return the queue as is
318 * and the count==1 will cause the algorithm
319 * to use the first bit found.
320 */
321 if (lowest_cpu != -1) {
322 cpus_clear(*lowest_mask);
323 cpu_set(rq->cpu, *lowest_mask);
324 }
325 return 1;
326 }
327
328 /* no locking for now */
329 if ((rq->rt.highest_prio > task->prio)
330 && (rq->rt.highest_prio >= lowest_prio)) {
331 if (rq->rt.highest_prio > lowest_prio) {
332 /* new low - clear old data */
333 lowest_prio = rq->rt.highest_prio;
334 lowest_cpu = cpu;
335 count = 0;
336 }
337 count++;
338 } else
339 cpu_clear(cpu, *lowest_mask);
340 }
341
342 /*
343 * Clear out all the set bits that represent
344 * runqueues that were of higher prio than
345 * the lowest_prio.
346 */
347 if (lowest_cpu > 0) {
348 /*
349 * Perhaps we could add another cpumask op to
350 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
351 * Then that could be optimized to use memset and such.
352 */
353 for_each_cpu_mask(cpu, *lowest_mask) {
354 if (cpu >= lowest_cpu)
355 break;
356 cpu_clear(cpu, *lowest_mask);
357 }
358 }
359
360 return count;
361 }
362
363 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
364 {
365 int first;
366
367 /* "this_cpu" is cheaper to preempt than a remote processor */
368 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
369 return this_cpu;
370
371 first = first_cpu(*mask);
372 if (first != NR_CPUS)
373 return first;
374
375 return -1;
376 }
377
378 static int find_lowest_rq(struct task_struct *task)
379 {
380 struct sched_domain *sd;
381 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
382 int this_cpu = smp_processor_id();
383 int cpu = task_cpu(task);
384 int count = find_lowest_cpus(task, lowest_mask);
385
386 if (!count)
387 return -1; /* No targets found */
388
389 /*
390 * There is no sense in performing an optimal search if only one
391 * target is found.
392 */
393 if (count == 1)
394 return first_cpu(*lowest_mask);
395
396 /*
397 * At this point we have built a mask of cpus representing the
398 * lowest priority tasks in the system. Now we want to elect
399 * the best one based on our affinity and topology.
400 *
401 * We prioritize the last cpu that the task executed on since
402 * it is most likely cache-hot in that location.
403 */
404 if (cpu_isset(cpu, *lowest_mask))
405 return cpu;
406
407 /*
408 * Otherwise, we consult the sched_domains span maps to figure
409 * out which cpu is logically closest to our hot cache data.
410 */
411 if (this_cpu == cpu)
412 this_cpu = -1; /* Skip this_cpu opt if the same */
413
414 for_each_domain(cpu, sd) {
415 if (sd->flags & SD_WAKE_AFFINE) {
416 cpumask_t domain_mask;
417 int best_cpu;
418
419 cpus_and(domain_mask, sd->span, *lowest_mask);
420
421 best_cpu = pick_optimal_cpu(this_cpu,
422 &domain_mask);
423 if (best_cpu != -1)
424 return best_cpu;
425 }
426 }
427
428 /*
429 * And finally, if there were no matches within the domains
430 * just give the caller *something* to work with from the compatible
431 * locations.
432 */
433 return pick_optimal_cpu(this_cpu, lowest_mask);
434 }
435
436 /* Will lock the rq it finds */
437 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
438 {
439 struct rq *lowest_rq = NULL;
440 int tries;
441 int cpu;
442
443 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
444 cpu = find_lowest_rq(task);
445
446 if ((cpu == -1) || (cpu == rq->cpu))
447 break;
448
449 lowest_rq = cpu_rq(cpu);
450
451 /* if the prio of this runqueue changed, try again */
452 if (double_lock_balance(rq, lowest_rq)) {
453 /*
454 * We had to unlock the run queue. In
455 * the mean time, task could have
456 * migrated already or had its affinity changed.
457 * Also make sure that it wasn't scheduled on its rq.
458 */
459 if (unlikely(task_rq(task) != rq ||
460 !cpu_isset(lowest_rq->cpu,
461 task->cpus_allowed) ||
462 task_running(rq, task) ||
463 !task->se.on_rq)) {
464
465 spin_unlock(&lowest_rq->lock);
466 lowest_rq = NULL;
467 break;
468 }
469 }
470
471 /* If this rq is still suitable use it. */
472 if (lowest_rq->rt.highest_prio > task->prio)
473 break;
474
475 /* try again */
476 spin_unlock(&lowest_rq->lock);
477 lowest_rq = NULL;
478 }
479
480 return lowest_rq;
481 }
482
483 /*
484 * If the current CPU has more than one RT task, see if the non
485 * running task can migrate over to a CPU that is running a task
486 * of lesser priority.
487 */
488 static int push_rt_task(struct rq *rq)
489 {
490 struct task_struct *next_task;
491 struct rq *lowest_rq;
492 int ret = 0;
493 int paranoid = RT_MAX_TRIES;
494
495 if (!rq->rt.overloaded)
496 return 0;
497
498 next_task = pick_next_highest_task_rt(rq, -1);
499 if (!next_task)
500 return 0;
501
502 retry:
503 if (unlikely(next_task == rq->curr)) {
504 WARN_ON(1);
505 return 0;
506 }
507
508 /*
509 * It's possible that the next_task slipped in of
510 * higher priority than current. If that's the case
511 * just reschedule current.
512 */
513 if (unlikely(next_task->prio < rq->curr->prio)) {
514 resched_task(rq->curr);
515 return 0;
516 }
517
518 /* We might release rq lock */
519 get_task_struct(next_task);
520
521 /* find_lock_lowest_rq locks the rq if found */
522 lowest_rq = find_lock_lowest_rq(next_task, rq);
523 if (!lowest_rq) {
524 struct task_struct *task;
525 /*
526 * find lock_lowest_rq releases rq->lock
527 * so it is possible that next_task has changed.
528 * If it has, then try again.
529 */
530 task = pick_next_highest_task_rt(rq, -1);
531 if (unlikely(task != next_task) && task && paranoid--) {
532 put_task_struct(next_task);
533 next_task = task;
534 goto retry;
535 }
536 goto out;
537 }
538
539 deactivate_task(rq, next_task, 0);
540 set_task_cpu(next_task, lowest_rq->cpu);
541 activate_task(lowest_rq, next_task, 0);
542
543 resched_task(lowest_rq->curr);
544
545 spin_unlock(&lowest_rq->lock);
546
547 ret = 1;
548 out:
549 put_task_struct(next_task);
550
551 return ret;
552 }
553
554 /*
555 * TODO: Currently we just use the second highest prio task on
556 * the queue, and stop when it can't migrate (or there's
557 * no more RT tasks). There may be a case where a lower
558 * priority RT task has a different affinity than the
559 * higher RT task. In this case the lower RT task could
560 * possibly be able to migrate where as the higher priority
561 * RT task could not. We currently ignore this issue.
562 * Enhancements are welcome!
563 */
564 static void push_rt_tasks(struct rq *rq)
565 {
566 /* push_rt_task will return true if it moved an RT */
567 while (push_rt_task(rq))
568 ;
569 }
570
571 static int pull_rt_task(struct rq *this_rq)
572 {
573 int this_cpu = this_rq->cpu, ret = 0, cpu;
574 struct task_struct *p, *next;
575 struct rq *src_rq;
576
577 if (likely(!rt_overloaded(this_rq)))
578 return 0;
579
580 next = pick_next_task_rt(this_rq);
581
582 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
583 if (this_cpu == cpu)
584 continue;
585
586 src_rq = cpu_rq(cpu);
587 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
588 /*
589 * It is possible that overlapping cpusets
590 * will miss clearing a non overloaded runqueue.
591 * Clear it now.
592 */
593 if (double_lock_balance(this_rq, src_rq)) {
594 /* unlocked our runqueue lock */
595 struct task_struct *old_next = next;
596
597 next = pick_next_task_rt(this_rq);
598 if (next != old_next)
599 ret = 1;
600 }
601 if (likely(src_rq->rt.rt_nr_running <= 1)) {
602 /*
603 * Small chance that this_rq->curr changed
604 * but it's really harmless here.
605 */
606 rt_clear_overload(this_rq);
607 } else {
608 /*
609 * Heh, the src_rq is now overloaded, since
610 * we already have the src_rq lock, go straight
611 * to pulling tasks from it.
612 */
613 goto try_pulling;
614 }
615 spin_unlock(&src_rq->lock);
616 continue;
617 }
618
619 /*
620 * We can potentially drop this_rq's lock in
621 * double_lock_balance, and another CPU could
622 * steal our next task - hence we must cause
623 * the caller to recalculate the next task
624 * in that case:
625 */
626 if (double_lock_balance(this_rq, src_rq)) {
627 struct task_struct *old_next = next;
628
629 next = pick_next_task_rt(this_rq);
630 if (next != old_next)
631 ret = 1;
632 }
633
634 /*
635 * Are there still pullable RT tasks?
636 */
637 if (src_rq->rt.rt_nr_running <= 1) {
638 spin_unlock(&src_rq->lock);
639 continue;
640 }
641
642 try_pulling:
643 p = pick_next_highest_task_rt(src_rq, this_cpu);
644
645 /*
646 * Do we have an RT task that preempts
647 * the to-be-scheduled task?
648 */
649 if (p && (!next || (p->prio < next->prio))) {
650 WARN_ON(p == src_rq->curr);
651 WARN_ON(!p->se.on_rq);
652
653 /*
654 * There's a chance that p is higher in priority
655 * than what's currently running on its cpu.
656 * This is just that p is wakeing up and hasn't
657 * had a chance to schedule. We only pull
658 * p if it is lower in priority than the
659 * current task on the run queue or
660 * this_rq next task is lower in prio than
661 * the current task on that rq.
662 */
663 if (p->prio < src_rq->curr->prio ||
664 (next && next->prio < src_rq->curr->prio))
665 goto out;
666
667 ret = 1;
668
669 deactivate_task(src_rq, p, 0);
670 set_task_cpu(p, this_cpu);
671 activate_task(this_rq, p, 0);
672 /*
673 * We continue with the search, just in
674 * case there's an even higher prio task
675 * in another runqueue. (low likelyhood
676 * but possible)
677 *
678 * Update next so that we won't pick a task
679 * on another cpu with a priority lower (or equal)
680 * than the one we just picked.
681 */
682 next = p;
683
684 }
685 out:
686 spin_unlock(&src_rq->lock);
687 }
688
689 return ret;
690 }
691
692 static void schedule_balance_rt(struct rq *rq, struct task_struct *prev)
693 {
694 /* Try to pull RT tasks here if we lower this rq's prio */
695 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
696 pull_rt_task(rq);
697 }
698
699 static void schedule_tail_balance_rt(struct rq *rq)
700 {
701 /*
702 * If we have more than one rt_task queued, then
703 * see if we can push the other rt_tasks off to other CPUS.
704 * Note we may release the rq lock, and since
705 * the lock was owned by prev, we need to release it
706 * first via finish_lock_switch and then reaquire it here.
707 */
708 if (unlikely(rq->rt.overloaded)) {
709 spin_lock_irq(&rq->lock);
710 push_rt_tasks(rq);
711 spin_unlock_irq(&rq->lock);
712 }
713 }
714
715
716 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
717 {
718 if (unlikely(rt_task(p)) &&
719 !task_running(rq, p) &&
720 (p->prio >= rq->rt.highest_prio) &&
721 rq->rt.overloaded)
722 push_rt_tasks(rq);
723 }
724
725 static unsigned long
726 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
727 unsigned long max_load_move,
728 struct sched_domain *sd, enum cpu_idle_type idle,
729 int *all_pinned, int *this_best_prio)
730 {
731 /* don't touch RT tasks */
732 return 0;
733 }
734
735 static int
736 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
737 struct sched_domain *sd, enum cpu_idle_type idle)
738 {
739 /* don't touch RT tasks */
740 return 0;
741 }
742
743 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
744 {
745 int weight = cpus_weight(*new_mask);
746
747 BUG_ON(!rt_task(p));
748
749 /*
750 * Update the migration status of the RQ if we have an RT task
751 * which is running AND changing its weight value.
752 */
753 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
754 struct rq *rq = task_rq(p);
755
756 if ((p->nr_cpus_allowed <= 1) && (weight > 1)) {
757 rq->rt.rt_nr_migratory++;
758 } else if ((p->nr_cpus_allowed > 1) && (weight <= 1)) {
759 BUG_ON(!rq->rt.rt_nr_migratory);
760 rq->rt.rt_nr_migratory--;
761 }
762
763 update_rt_migration(rq);
764 }
765
766 p->cpus_allowed = *new_mask;
767 p->nr_cpus_allowed = weight;
768 }
769
770 /* Assumes rq->lock is held */
771 static void join_domain_rt(struct rq *rq)
772 {
773 if (rq->rt.overloaded)
774 rt_set_overload(rq);
775 }
776
777 /* Assumes rq->lock is held */
778 static void leave_domain_rt(struct rq *rq)
779 {
780 if (rq->rt.overloaded)
781 rt_clear_overload(rq);
782 }
783
784 #else /* CONFIG_SMP */
785 # define schedule_tail_balance_rt(rq) do { } while (0)
786 # define schedule_balance_rt(rq, prev) do { } while (0)
787 # define wakeup_balance_rt(rq, p) do { } while (0)
788 #endif /* CONFIG_SMP */
789
790 static void task_tick_rt(struct rq *rq, struct task_struct *p)
791 {
792 update_curr_rt(rq);
793
794 /*
795 * RR tasks need a special form of timeslice management.
796 * FIFO tasks have no timeslices.
797 */
798 if (p->policy != SCHED_RR)
799 return;
800
801 if (--p->time_slice)
802 return;
803
804 p->time_slice = DEF_TIMESLICE;
805
806 /*
807 * Requeue to the end of queue if we are not the only element
808 * on the queue:
809 */
810 if (p->run_list.prev != p->run_list.next) {
811 requeue_task_rt(rq, p);
812 set_tsk_need_resched(p);
813 }
814 }
815
816 static void set_curr_task_rt(struct rq *rq)
817 {
818 struct task_struct *p = rq->curr;
819
820 p->se.exec_start = rq->clock;
821 }
822
823 const struct sched_class rt_sched_class = {
824 .next = &fair_sched_class,
825 .enqueue_task = enqueue_task_rt,
826 .dequeue_task = dequeue_task_rt,
827 .yield_task = yield_task_rt,
828 #ifdef CONFIG_SMP
829 .select_task_rq = select_task_rq_rt,
830 #endif /* CONFIG_SMP */
831
832 .check_preempt_curr = check_preempt_curr_rt,
833
834 .pick_next_task = pick_next_task_rt,
835 .put_prev_task = put_prev_task_rt,
836
837 #ifdef CONFIG_SMP
838 .load_balance = load_balance_rt,
839 .move_one_task = move_one_task_rt,
840 .set_cpus_allowed = set_cpus_allowed_rt,
841 .join_domain = join_domain_rt,
842 .leave_domain = leave_domain_rt,
843 #endif
844
845 .set_curr_task = set_curr_task_rt,
846 .task_tick = task_tick_rt,
847 };
This page took 0.048876 seconds and 6 git commands to generate.