Merge commit 'v2.6.31-rc8' into sched/core
[deliverable/linux.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56 return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189 #define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193 {
194 return rt_se->my_q;
195 }
196
197 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
198 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
203 struct sched_rt_entity *rt_se = rt_rq->rt_se;
204
205 if (rt_rq->rt_nr_running) {
206 if (rt_se && !on_rt_rq(rt_se))
207 enqueue_rt_entity(rt_se);
208 if (rt_rq->highest_prio.curr < curr->prio)
209 resched_task(curr);
210 }
211 }
212
213 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
214 {
215 struct sched_rt_entity *rt_se = rt_rq->rt_se;
216
217 if (rt_se && on_rt_rq(rt_se))
218 dequeue_rt_entity(rt_se);
219 }
220
221 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
222 {
223 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
224 }
225
226 static int rt_se_boosted(struct sched_rt_entity *rt_se)
227 {
228 struct rt_rq *rt_rq = group_rt_rq(rt_se);
229 struct task_struct *p;
230
231 if (rt_rq)
232 return !!rt_rq->rt_nr_boosted;
233
234 p = rt_task_of(rt_se);
235 return p->prio != p->normal_prio;
236 }
237
238 #ifdef CONFIG_SMP
239 static inline const struct cpumask *sched_rt_period_mask(void)
240 {
241 return cpu_rq(smp_processor_id())->rd->span;
242 }
243 #else
244 static inline const struct cpumask *sched_rt_period_mask(void)
245 {
246 return cpu_online_mask;
247 }
248 #endif
249
250 static inline
251 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
252 {
253 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
254 }
255
256 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
257 {
258 return &rt_rq->tg->rt_bandwidth;
259 }
260
261 #else /* !CONFIG_RT_GROUP_SCHED */
262
263 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
264 {
265 return rt_rq->rt_runtime;
266 }
267
268 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
269 {
270 return ktime_to_ns(def_rt_bandwidth.rt_period);
271 }
272
273 #define for_each_leaf_rt_rq(rt_rq, rq) \
274 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
275
276 #define for_each_sched_rt_entity(rt_se) \
277 for (; rt_se; rt_se = NULL)
278
279 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
280 {
281 return NULL;
282 }
283
284 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
285 {
286 if (rt_rq->rt_nr_running)
287 resched_task(rq_of_rt_rq(rt_rq)->curr);
288 }
289
290 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
291 {
292 }
293
294 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
295 {
296 return rt_rq->rt_throttled;
297 }
298
299 static inline const struct cpumask *sched_rt_period_mask(void)
300 {
301 return cpu_online_mask;
302 }
303
304 static inline
305 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
306 {
307 return &cpu_rq(cpu)->rt;
308 }
309
310 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
311 {
312 return &def_rt_bandwidth;
313 }
314
315 #endif /* CONFIG_RT_GROUP_SCHED */
316
317 #ifdef CONFIG_SMP
318 /*
319 * We ran out of runtime, see if we can borrow some from our neighbours.
320 */
321 static int do_balance_runtime(struct rt_rq *rt_rq)
322 {
323 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
324 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
325 int i, weight, more = 0;
326 u64 rt_period;
327
328 weight = cpumask_weight(rd->span);
329
330 spin_lock(&rt_b->rt_runtime_lock);
331 rt_period = ktime_to_ns(rt_b->rt_period);
332 for_each_cpu(i, rd->span) {
333 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
334 s64 diff;
335
336 if (iter == rt_rq)
337 continue;
338
339 spin_lock(&iter->rt_runtime_lock);
340 /*
341 * Either all rqs have inf runtime and there's nothing to steal
342 * or __disable_runtime() below sets a specific rq to inf to
343 * indicate its been disabled and disalow stealing.
344 */
345 if (iter->rt_runtime == RUNTIME_INF)
346 goto next;
347
348 /*
349 * From runqueues with spare time, take 1/n part of their
350 * spare time, but no more than our period.
351 */
352 diff = iter->rt_runtime - iter->rt_time;
353 if (diff > 0) {
354 diff = div_u64((u64)diff, weight);
355 if (rt_rq->rt_runtime + diff > rt_period)
356 diff = rt_period - rt_rq->rt_runtime;
357 iter->rt_runtime -= diff;
358 rt_rq->rt_runtime += diff;
359 more = 1;
360 if (rt_rq->rt_runtime == rt_period) {
361 spin_unlock(&iter->rt_runtime_lock);
362 break;
363 }
364 }
365 next:
366 spin_unlock(&iter->rt_runtime_lock);
367 }
368 spin_unlock(&rt_b->rt_runtime_lock);
369
370 return more;
371 }
372
373 /*
374 * Ensure this RQ takes back all the runtime it lend to its neighbours.
375 */
376 static void __disable_runtime(struct rq *rq)
377 {
378 struct root_domain *rd = rq->rd;
379 struct rt_rq *rt_rq;
380
381 if (unlikely(!scheduler_running))
382 return;
383
384 for_each_leaf_rt_rq(rt_rq, rq) {
385 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
386 s64 want;
387 int i;
388
389 spin_lock(&rt_b->rt_runtime_lock);
390 spin_lock(&rt_rq->rt_runtime_lock);
391 /*
392 * Either we're all inf and nobody needs to borrow, or we're
393 * already disabled and thus have nothing to do, or we have
394 * exactly the right amount of runtime to take out.
395 */
396 if (rt_rq->rt_runtime == RUNTIME_INF ||
397 rt_rq->rt_runtime == rt_b->rt_runtime)
398 goto balanced;
399 spin_unlock(&rt_rq->rt_runtime_lock);
400
401 /*
402 * Calculate the difference between what we started out with
403 * and what we current have, that's the amount of runtime
404 * we lend and now have to reclaim.
405 */
406 want = rt_b->rt_runtime - rt_rq->rt_runtime;
407
408 /*
409 * Greedy reclaim, take back as much as we can.
410 */
411 for_each_cpu(i, rd->span) {
412 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
413 s64 diff;
414
415 /*
416 * Can't reclaim from ourselves or disabled runqueues.
417 */
418 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
419 continue;
420
421 spin_lock(&iter->rt_runtime_lock);
422 if (want > 0) {
423 diff = min_t(s64, iter->rt_runtime, want);
424 iter->rt_runtime -= diff;
425 want -= diff;
426 } else {
427 iter->rt_runtime -= want;
428 want -= want;
429 }
430 spin_unlock(&iter->rt_runtime_lock);
431
432 if (!want)
433 break;
434 }
435
436 spin_lock(&rt_rq->rt_runtime_lock);
437 /*
438 * We cannot be left wanting - that would mean some runtime
439 * leaked out of the system.
440 */
441 BUG_ON(want);
442 balanced:
443 /*
444 * Disable all the borrow logic by pretending we have inf
445 * runtime - in which case borrowing doesn't make sense.
446 */
447 rt_rq->rt_runtime = RUNTIME_INF;
448 spin_unlock(&rt_rq->rt_runtime_lock);
449 spin_unlock(&rt_b->rt_runtime_lock);
450 }
451 }
452
453 static void disable_runtime(struct rq *rq)
454 {
455 unsigned long flags;
456
457 spin_lock_irqsave(&rq->lock, flags);
458 __disable_runtime(rq);
459 spin_unlock_irqrestore(&rq->lock, flags);
460 }
461
462 static void __enable_runtime(struct rq *rq)
463 {
464 struct rt_rq *rt_rq;
465
466 if (unlikely(!scheduler_running))
467 return;
468
469 /*
470 * Reset each runqueue's bandwidth settings
471 */
472 for_each_leaf_rt_rq(rt_rq, rq) {
473 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
474
475 spin_lock(&rt_b->rt_runtime_lock);
476 spin_lock(&rt_rq->rt_runtime_lock);
477 rt_rq->rt_runtime = rt_b->rt_runtime;
478 rt_rq->rt_time = 0;
479 rt_rq->rt_throttled = 0;
480 spin_unlock(&rt_rq->rt_runtime_lock);
481 spin_unlock(&rt_b->rt_runtime_lock);
482 }
483 }
484
485 static void enable_runtime(struct rq *rq)
486 {
487 unsigned long flags;
488
489 spin_lock_irqsave(&rq->lock, flags);
490 __enable_runtime(rq);
491 spin_unlock_irqrestore(&rq->lock, flags);
492 }
493
494 static int balance_runtime(struct rt_rq *rt_rq)
495 {
496 int more = 0;
497
498 if (rt_rq->rt_time > rt_rq->rt_runtime) {
499 spin_unlock(&rt_rq->rt_runtime_lock);
500 more = do_balance_runtime(rt_rq);
501 spin_lock(&rt_rq->rt_runtime_lock);
502 }
503
504 return more;
505 }
506 #else /* !CONFIG_SMP */
507 static inline int balance_runtime(struct rt_rq *rt_rq)
508 {
509 return 0;
510 }
511 #endif /* CONFIG_SMP */
512
513 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
514 {
515 int i, idle = 1;
516 const struct cpumask *span;
517
518 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
519 return 1;
520
521 span = sched_rt_period_mask();
522 for_each_cpu(i, span) {
523 int enqueue = 0;
524 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
525 struct rq *rq = rq_of_rt_rq(rt_rq);
526
527 spin_lock(&rq->lock);
528 if (rt_rq->rt_time) {
529 u64 runtime;
530
531 spin_lock(&rt_rq->rt_runtime_lock);
532 if (rt_rq->rt_throttled)
533 balance_runtime(rt_rq);
534 runtime = rt_rq->rt_runtime;
535 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
536 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
537 rt_rq->rt_throttled = 0;
538 enqueue = 1;
539 }
540 if (rt_rq->rt_time || rt_rq->rt_nr_running)
541 idle = 0;
542 spin_unlock(&rt_rq->rt_runtime_lock);
543 } else if (rt_rq->rt_nr_running)
544 idle = 0;
545
546 if (enqueue)
547 sched_rt_rq_enqueue(rt_rq);
548 spin_unlock(&rq->lock);
549 }
550
551 return idle;
552 }
553
554 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
555 {
556 #ifdef CONFIG_RT_GROUP_SCHED
557 struct rt_rq *rt_rq = group_rt_rq(rt_se);
558
559 if (rt_rq)
560 return rt_rq->highest_prio.curr;
561 #endif
562
563 return rt_task_of(rt_se)->prio;
564 }
565
566 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
567 {
568 u64 runtime = sched_rt_runtime(rt_rq);
569
570 if (rt_rq->rt_throttled)
571 return rt_rq_throttled(rt_rq);
572
573 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
574 return 0;
575
576 balance_runtime(rt_rq);
577 runtime = sched_rt_runtime(rt_rq);
578 if (runtime == RUNTIME_INF)
579 return 0;
580
581 if (rt_rq->rt_time > runtime) {
582 rt_rq->rt_throttled = 1;
583 if (rt_rq_throttled(rt_rq)) {
584 sched_rt_rq_dequeue(rt_rq);
585 return 1;
586 }
587 }
588
589 return 0;
590 }
591
592 /*
593 * Update the current task's runtime statistics. Skip current tasks that
594 * are not in our scheduling class.
595 */
596 static void update_curr_rt(struct rq *rq)
597 {
598 struct task_struct *curr = rq->curr;
599 struct sched_rt_entity *rt_se = &curr->rt;
600 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
601 u64 delta_exec;
602
603 if (!task_has_rt_policy(curr))
604 return;
605
606 delta_exec = rq->clock - curr->se.exec_start;
607 if (unlikely((s64)delta_exec < 0))
608 delta_exec = 0;
609
610 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
611
612 curr->se.sum_exec_runtime += delta_exec;
613 account_group_exec_runtime(curr, delta_exec);
614
615 curr->se.exec_start = rq->clock;
616 cpuacct_charge(curr, delta_exec);
617
618 if (!rt_bandwidth_enabled())
619 return;
620
621 for_each_sched_rt_entity(rt_se) {
622 rt_rq = rt_rq_of_se(rt_se);
623
624 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
625 spin_lock(&rt_rq->rt_runtime_lock);
626 rt_rq->rt_time += delta_exec;
627 if (sched_rt_runtime_exceeded(rt_rq))
628 resched_task(curr);
629 spin_unlock(&rt_rq->rt_runtime_lock);
630 }
631 }
632 }
633
634 #if defined CONFIG_SMP
635
636 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
637
638 static inline int next_prio(struct rq *rq)
639 {
640 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
641
642 if (next && rt_prio(next->prio))
643 return next->prio;
644 else
645 return MAX_RT_PRIO;
646 }
647
648 static void
649 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
650 {
651 struct rq *rq = rq_of_rt_rq(rt_rq);
652
653 if (prio < prev_prio) {
654
655 /*
656 * If the new task is higher in priority than anything on the
657 * run-queue, we know that the previous high becomes our
658 * next-highest.
659 */
660 rt_rq->highest_prio.next = prev_prio;
661
662 if (rq->online)
663 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
664
665 } else if (prio == rt_rq->highest_prio.curr)
666 /*
667 * If the next task is equal in priority to the highest on
668 * the run-queue, then we implicitly know that the next highest
669 * task cannot be any lower than current
670 */
671 rt_rq->highest_prio.next = prio;
672 else if (prio < rt_rq->highest_prio.next)
673 /*
674 * Otherwise, we need to recompute next-highest
675 */
676 rt_rq->highest_prio.next = next_prio(rq);
677 }
678
679 static void
680 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
681 {
682 struct rq *rq = rq_of_rt_rq(rt_rq);
683
684 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
685 rt_rq->highest_prio.next = next_prio(rq);
686
687 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
688 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
689 }
690
691 #else /* CONFIG_SMP */
692
693 static inline
694 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
695 static inline
696 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
697
698 #endif /* CONFIG_SMP */
699
700 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
701 static void
702 inc_rt_prio(struct rt_rq *rt_rq, int prio)
703 {
704 int prev_prio = rt_rq->highest_prio.curr;
705
706 if (prio < prev_prio)
707 rt_rq->highest_prio.curr = prio;
708
709 inc_rt_prio_smp(rt_rq, prio, prev_prio);
710 }
711
712 static void
713 dec_rt_prio(struct rt_rq *rt_rq, int prio)
714 {
715 int prev_prio = rt_rq->highest_prio.curr;
716
717 if (rt_rq->rt_nr_running) {
718
719 WARN_ON(prio < prev_prio);
720
721 /*
722 * This may have been our highest task, and therefore
723 * we may have some recomputation to do
724 */
725 if (prio == prev_prio) {
726 struct rt_prio_array *array = &rt_rq->active;
727
728 rt_rq->highest_prio.curr =
729 sched_find_first_bit(array->bitmap);
730 }
731
732 } else
733 rt_rq->highest_prio.curr = MAX_RT_PRIO;
734
735 dec_rt_prio_smp(rt_rq, prio, prev_prio);
736 }
737
738 #else
739
740 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
741 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
742
743 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
744
745 #ifdef CONFIG_RT_GROUP_SCHED
746
747 static void
748 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
749 {
750 if (rt_se_boosted(rt_se))
751 rt_rq->rt_nr_boosted++;
752
753 if (rt_rq->tg)
754 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
755 }
756
757 static void
758 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
759 {
760 if (rt_se_boosted(rt_se))
761 rt_rq->rt_nr_boosted--;
762
763 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
764 }
765
766 #else /* CONFIG_RT_GROUP_SCHED */
767
768 static void
769 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
770 {
771 start_rt_bandwidth(&def_rt_bandwidth);
772 }
773
774 static inline
775 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
776
777 #endif /* CONFIG_RT_GROUP_SCHED */
778
779 static inline
780 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
781 {
782 int prio = rt_se_prio(rt_se);
783
784 WARN_ON(!rt_prio(prio));
785 rt_rq->rt_nr_running++;
786
787 inc_rt_prio(rt_rq, prio);
788 inc_rt_migration(rt_se, rt_rq);
789 inc_rt_group(rt_se, rt_rq);
790 }
791
792 static inline
793 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
794 {
795 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
796 WARN_ON(!rt_rq->rt_nr_running);
797 rt_rq->rt_nr_running--;
798
799 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
800 dec_rt_migration(rt_se, rt_rq);
801 dec_rt_group(rt_se, rt_rq);
802 }
803
804 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
805 {
806 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
807 struct rt_prio_array *array = &rt_rq->active;
808 struct rt_rq *group_rq = group_rt_rq(rt_se);
809 struct list_head *queue = array->queue + rt_se_prio(rt_se);
810
811 /*
812 * Don't enqueue the group if its throttled, or when empty.
813 * The latter is a consequence of the former when a child group
814 * get throttled and the current group doesn't have any other
815 * active members.
816 */
817 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
818 return;
819
820 list_add_tail(&rt_se->run_list, queue);
821 __set_bit(rt_se_prio(rt_se), array->bitmap);
822
823 inc_rt_tasks(rt_se, rt_rq);
824 }
825
826 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
827 {
828 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
829 struct rt_prio_array *array = &rt_rq->active;
830
831 list_del_init(&rt_se->run_list);
832 if (list_empty(array->queue + rt_se_prio(rt_se)))
833 __clear_bit(rt_se_prio(rt_se), array->bitmap);
834
835 dec_rt_tasks(rt_se, rt_rq);
836 }
837
838 /*
839 * Because the prio of an upper entry depends on the lower
840 * entries, we must remove entries top - down.
841 */
842 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
843 {
844 struct sched_rt_entity *back = NULL;
845
846 for_each_sched_rt_entity(rt_se) {
847 rt_se->back = back;
848 back = rt_se;
849 }
850
851 for (rt_se = back; rt_se; rt_se = rt_se->back) {
852 if (on_rt_rq(rt_se))
853 __dequeue_rt_entity(rt_se);
854 }
855 }
856
857 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
858 {
859 dequeue_rt_stack(rt_se);
860 for_each_sched_rt_entity(rt_se)
861 __enqueue_rt_entity(rt_se);
862 }
863
864 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
865 {
866 dequeue_rt_stack(rt_se);
867
868 for_each_sched_rt_entity(rt_se) {
869 struct rt_rq *rt_rq = group_rt_rq(rt_se);
870
871 if (rt_rq && rt_rq->rt_nr_running)
872 __enqueue_rt_entity(rt_se);
873 }
874 }
875
876 /*
877 * Adding/removing a task to/from a priority array:
878 */
879 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
880 {
881 struct sched_rt_entity *rt_se = &p->rt;
882
883 if (wakeup)
884 rt_se->timeout = 0;
885
886 enqueue_rt_entity(rt_se);
887
888 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
889 enqueue_pushable_task(rq, p);
890
891 inc_cpu_load(rq, p->se.load.weight);
892 }
893
894 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
895 {
896 struct sched_rt_entity *rt_se = &p->rt;
897
898 update_curr_rt(rq);
899 dequeue_rt_entity(rt_se);
900
901 dequeue_pushable_task(rq, p);
902
903 dec_cpu_load(rq, p->se.load.weight);
904 }
905
906 /*
907 * Put task to the end of the run list without the overhead of dequeue
908 * followed by enqueue.
909 */
910 static void
911 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
912 {
913 if (on_rt_rq(rt_se)) {
914 struct rt_prio_array *array = &rt_rq->active;
915 struct list_head *queue = array->queue + rt_se_prio(rt_se);
916
917 if (head)
918 list_move(&rt_se->run_list, queue);
919 else
920 list_move_tail(&rt_se->run_list, queue);
921 }
922 }
923
924 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
925 {
926 struct sched_rt_entity *rt_se = &p->rt;
927 struct rt_rq *rt_rq;
928
929 for_each_sched_rt_entity(rt_se) {
930 rt_rq = rt_rq_of_se(rt_se);
931 requeue_rt_entity(rt_rq, rt_se, head);
932 }
933 }
934
935 static void yield_task_rt(struct rq *rq)
936 {
937 requeue_task_rt(rq, rq->curr, 0);
938 }
939
940 #ifdef CONFIG_SMP
941 static int find_lowest_rq(struct task_struct *task);
942
943 static int select_task_rq_rt(struct task_struct *p, int sync)
944 {
945 struct rq *rq = task_rq(p);
946
947 /*
948 * If the current task is an RT task, then
949 * try to see if we can wake this RT task up on another
950 * runqueue. Otherwise simply start this RT task
951 * on its current runqueue.
952 *
953 * We want to avoid overloading runqueues. Even if
954 * the RT task is of higher priority than the current RT task.
955 * RT tasks behave differently than other tasks. If
956 * one gets preempted, we try to push it off to another queue.
957 * So trying to keep a preempting RT task on the same
958 * cache hot CPU will force the running RT task to
959 * a cold CPU. So we waste all the cache for the lower
960 * RT task in hopes of saving some of a RT task
961 * that is just being woken and probably will have
962 * cold cache anyway.
963 */
964 if (unlikely(rt_task(rq->curr)) &&
965 (p->rt.nr_cpus_allowed > 1)) {
966 int cpu = find_lowest_rq(p);
967
968 return (cpu == -1) ? task_cpu(p) : cpu;
969 }
970
971 /*
972 * Otherwise, just let it ride on the affined RQ and the
973 * post-schedule router will push the preempted task away
974 */
975 return task_cpu(p);
976 }
977
978 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
979 {
980 if (rq->curr->rt.nr_cpus_allowed == 1)
981 return;
982
983 if (p->rt.nr_cpus_allowed != 1
984 && cpupri_find(&rq->rd->cpupri, p, NULL))
985 return;
986
987 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
988 return;
989
990 /*
991 * There appears to be other cpus that can accept
992 * current and none to run 'p', so lets reschedule
993 * to try and push current away:
994 */
995 requeue_task_rt(rq, p, 1);
996 resched_task(rq->curr);
997 }
998
999 #endif /* CONFIG_SMP */
1000
1001 /*
1002 * Preempt the current task with a newly woken task if needed:
1003 */
1004 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
1005 {
1006 if (p->prio < rq->curr->prio) {
1007 resched_task(rq->curr);
1008 return;
1009 }
1010
1011 #ifdef CONFIG_SMP
1012 /*
1013 * If:
1014 *
1015 * - the newly woken task is of equal priority to the current task
1016 * - the newly woken task is non-migratable while current is migratable
1017 * - current will be preempted on the next reschedule
1018 *
1019 * we should check to see if current can readily move to a different
1020 * cpu. If so, we will reschedule to allow the push logic to try
1021 * to move current somewhere else, making room for our non-migratable
1022 * task.
1023 */
1024 if (p->prio == rq->curr->prio && !need_resched())
1025 check_preempt_equal_prio(rq, p);
1026 #endif
1027 }
1028
1029 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1030 struct rt_rq *rt_rq)
1031 {
1032 struct rt_prio_array *array = &rt_rq->active;
1033 struct sched_rt_entity *next = NULL;
1034 struct list_head *queue;
1035 int idx;
1036
1037 idx = sched_find_first_bit(array->bitmap);
1038 BUG_ON(idx >= MAX_RT_PRIO);
1039
1040 queue = array->queue + idx;
1041 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1042
1043 return next;
1044 }
1045
1046 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1047 {
1048 struct sched_rt_entity *rt_se;
1049 struct task_struct *p;
1050 struct rt_rq *rt_rq;
1051
1052 rt_rq = &rq->rt;
1053
1054 if (unlikely(!rt_rq->rt_nr_running))
1055 return NULL;
1056
1057 if (rt_rq_throttled(rt_rq))
1058 return NULL;
1059
1060 do {
1061 rt_se = pick_next_rt_entity(rq, rt_rq);
1062 BUG_ON(!rt_se);
1063 rt_rq = group_rt_rq(rt_se);
1064 } while (rt_rq);
1065
1066 p = rt_task_of(rt_se);
1067 p->se.exec_start = rq->clock;
1068
1069 return p;
1070 }
1071
1072 static struct task_struct *pick_next_task_rt(struct rq *rq)
1073 {
1074 struct task_struct *p = _pick_next_task_rt(rq);
1075
1076 /* The running task is never eligible for pushing */
1077 if (p)
1078 dequeue_pushable_task(rq, p);
1079
1080 #ifdef CONFIG_SMP
1081 /*
1082 * We detect this state here so that we can avoid taking the RQ
1083 * lock again later if there is no need to push
1084 */
1085 rq->post_schedule = has_pushable_tasks(rq);
1086 #endif
1087
1088 return p;
1089 }
1090
1091 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1092 {
1093 update_curr_rt(rq);
1094 p->se.exec_start = 0;
1095
1096 /*
1097 * The previous task needs to be made eligible for pushing
1098 * if it is still active
1099 */
1100 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1101 enqueue_pushable_task(rq, p);
1102 }
1103
1104 #ifdef CONFIG_SMP
1105
1106 /* Only try algorithms three times */
1107 #define RT_MAX_TRIES 3
1108
1109 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1110
1111 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1112 {
1113 if (!task_running(rq, p) &&
1114 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1115 (p->rt.nr_cpus_allowed > 1))
1116 return 1;
1117 return 0;
1118 }
1119
1120 /* Return the second highest RT task, NULL otherwise */
1121 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1122 {
1123 struct task_struct *next = NULL;
1124 struct sched_rt_entity *rt_se;
1125 struct rt_prio_array *array;
1126 struct rt_rq *rt_rq;
1127 int idx;
1128
1129 for_each_leaf_rt_rq(rt_rq, rq) {
1130 array = &rt_rq->active;
1131 idx = sched_find_first_bit(array->bitmap);
1132 next_idx:
1133 if (idx >= MAX_RT_PRIO)
1134 continue;
1135 if (next && next->prio < idx)
1136 continue;
1137 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1138 struct task_struct *p = rt_task_of(rt_se);
1139 if (pick_rt_task(rq, p, cpu)) {
1140 next = p;
1141 break;
1142 }
1143 }
1144 if (!next) {
1145 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1146 goto next_idx;
1147 }
1148 }
1149
1150 return next;
1151 }
1152
1153 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1154
1155 static inline int pick_optimal_cpu(int this_cpu,
1156 const struct cpumask *mask)
1157 {
1158 int first;
1159
1160 /* "this_cpu" is cheaper to preempt than a remote processor */
1161 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
1162 return this_cpu;
1163
1164 first = cpumask_first(mask);
1165 if (first < nr_cpu_ids)
1166 return first;
1167
1168 return -1;
1169 }
1170
1171 static int find_lowest_rq(struct task_struct *task)
1172 {
1173 struct sched_domain *sd;
1174 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1175 int this_cpu = smp_processor_id();
1176 int cpu = task_cpu(task);
1177 cpumask_var_t domain_mask;
1178
1179 if (task->rt.nr_cpus_allowed == 1)
1180 return -1; /* No other targets possible */
1181
1182 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1183 return -1; /* No targets found */
1184
1185 /*
1186 * At this point we have built a mask of cpus representing the
1187 * lowest priority tasks in the system. Now we want to elect
1188 * the best one based on our affinity and topology.
1189 *
1190 * We prioritize the last cpu that the task executed on since
1191 * it is most likely cache-hot in that location.
1192 */
1193 if (cpumask_test_cpu(cpu, lowest_mask))
1194 return cpu;
1195
1196 /*
1197 * Otherwise, we consult the sched_domains span maps to figure
1198 * out which cpu is logically closest to our hot cache data.
1199 */
1200 if (this_cpu == cpu)
1201 this_cpu = -1; /* Skip this_cpu opt if the same */
1202
1203 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1204 for_each_domain(cpu, sd) {
1205 if (sd->flags & SD_WAKE_AFFINE) {
1206 int best_cpu;
1207
1208 cpumask_and(domain_mask,
1209 sched_domain_span(sd),
1210 lowest_mask);
1211
1212 best_cpu = pick_optimal_cpu(this_cpu,
1213 domain_mask);
1214
1215 if (best_cpu != -1) {
1216 free_cpumask_var(domain_mask);
1217 return best_cpu;
1218 }
1219 }
1220 }
1221 free_cpumask_var(domain_mask);
1222 }
1223
1224 /*
1225 * And finally, if there were no matches within the domains
1226 * just give the caller *something* to work with from the compatible
1227 * locations.
1228 */
1229 return pick_optimal_cpu(this_cpu, lowest_mask);
1230 }
1231
1232 /* Will lock the rq it finds */
1233 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1234 {
1235 struct rq *lowest_rq = NULL;
1236 int tries;
1237 int cpu;
1238
1239 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1240 cpu = find_lowest_rq(task);
1241
1242 if ((cpu == -1) || (cpu == rq->cpu))
1243 break;
1244
1245 lowest_rq = cpu_rq(cpu);
1246
1247 /* if the prio of this runqueue changed, try again */
1248 if (double_lock_balance(rq, lowest_rq)) {
1249 /*
1250 * We had to unlock the run queue. In
1251 * the mean time, task could have
1252 * migrated already or had its affinity changed.
1253 * Also make sure that it wasn't scheduled on its rq.
1254 */
1255 if (unlikely(task_rq(task) != rq ||
1256 !cpumask_test_cpu(lowest_rq->cpu,
1257 &task->cpus_allowed) ||
1258 task_running(rq, task) ||
1259 !task->se.on_rq)) {
1260
1261 spin_unlock(&lowest_rq->lock);
1262 lowest_rq = NULL;
1263 break;
1264 }
1265 }
1266
1267 /* If this rq is still suitable use it. */
1268 if (lowest_rq->rt.highest_prio.curr > task->prio)
1269 break;
1270
1271 /* try again */
1272 double_unlock_balance(rq, lowest_rq);
1273 lowest_rq = NULL;
1274 }
1275
1276 return lowest_rq;
1277 }
1278
1279 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1280 {
1281 struct task_struct *p;
1282
1283 if (!has_pushable_tasks(rq))
1284 return NULL;
1285
1286 p = plist_first_entry(&rq->rt.pushable_tasks,
1287 struct task_struct, pushable_tasks);
1288
1289 BUG_ON(rq->cpu != task_cpu(p));
1290 BUG_ON(task_current(rq, p));
1291 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1292
1293 BUG_ON(!p->se.on_rq);
1294 BUG_ON(!rt_task(p));
1295
1296 return p;
1297 }
1298
1299 /*
1300 * If the current CPU has more than one RT task, see if the non
1301 * running task can migrate over to a CPU that is running a task
1302 * of lesser priority.
1303 */
1304 static int push_rt_task(struct rq *rq)
1305 {
1306 struct task_struct *next_task;
1307 struct rq *lowest_rq;
1308
1309 if (!rq->rt.overloaded)
1310 return 0;
1311
1312 next_task = pick_next_pushable_task(rq);
1313 if (!next_task)
1314 return 0;
1315
1316 retry:
1317 if (unlikely(next_task == rq->curr)) {
1318 WARN_ON(1);
1319 return 0;
1320 }
1321
1322 /*
1323 * It's possible that the next_task slipped in of
1324 * higher priority than current. If that's the case
1325 * just reschedule current.
1326 */
1327 if (unlikely(next_task->prio < rq->curr->prio)) {
1328 resched_task(rq->curr);
1329 return 0;
1330 }
1331
1332 /* We might release rq lock */
1333 get_task_struct(next_task);
1334
1335 /* find_lock_lowest_rq locks the rq if found */
1336 lowest_rq = find_lock_lowest_rq(next_task, rq);
1337 if (!lowest_rq) {
1338 struct task_struct *task;
1339 /*
1340 * find lock_lowest_rq releases rq->lock
1341 * so it is possible that next_task has migrated.
1342 *
1343 * We need to make sure that the task is still on the same
1344 * run-queue and is also still the next task eligible for
1345 * pushing.
1346 */
1347 task = pick_next_pushable_task(rq);
1348 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1349 /*
1350 * If we get here, the task hasnt moved at all, but
1351 * it has failed to push. We will not try again,
1352 * since the other cpus will pull from us when they
1353 * are ready.
1354 */
1355 dequeue_pushable_task(rq, next_task);
1356 goto out;
1357 }
1358
1359 if (!task)
1360 /* No more tasks, just exit */
1361 goto out;
1362
1363 /*
1364 * Something has shifted, try again.
1365 */
1366 put_task_struct(next_task);
1367 next_task = task;
1368 goto retry;
1369 }
1370
1371 deactivate_task(rq, next_task, 0);
1372 set_task_cpu(next_task, lowest_rq->cpu);
1373 activate_task(lowest_rq, next_task, 0);
1374
1375 resched_task(lowest_rq->curr);
1376
1377 double_unlock_balance(rq, lowest_rq);
1378
1379 out:
1380 put_task_struct(next_task);
1381
1382 return 1;
1383 }
1384
1385 static void push_rt_tasks(struct rq *rq)
1386 {
1387 /* push_rt_task will return true if it moved an RT */
1388 while (push_rt_task(rq))
1389 ;
1390 }
1391
1392 static int pull_rt_task(struct rq *this_rq)
1393 {
1394 int this_cpu = this_rq->cpu, ret = 0, cpu;
1395 struct task_struct *p;
1396 struct rq *src_rq;
1397
1398 if (likely(!rt_overloaded(this_rq)))
1399 return 0;
1400
1401 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1402 if (this_cpu == cpu)
1403 continue;
1404
1405 src_rq = cpu_rq(cpu);
1406
1407 /*
1408 * Don't bother taking the src_rq->lock if the next highest
1409 * task is known to be lower-priority than our current task.
1410 * This may look racy, but if this value is about to go
1411 * logically higher, the src_rq will push this task away.
1412 * And if its going logically lower, we do not care
1413 */
1414 if (src_rq->rt.highest_prio.next >=
1415 this_rq->rt.highest_prio.curr)
1416 continue;
1417
1418 /*
1419 * We can potentially drop this_rq's lock in
1420 * double_lock_balance, and another CPU could
1421 * alter this_rq
1422 */
1423 double_lock_balance(this_rq, src_rq);
1424
1425 /*
1426 * Are there still pullable RT tasks?
1427 */
1428 if (src_rq->rt.rt_nr_running <= 1)
1429 goto skip;
1430
1431 p = pick_next_highest_task_rt(src_rq, this_cpu);
1432
1433 /*
1434 * Do we have an RT task that preempts
1435 * the to-be-scheduled task?
1436 */
1437 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1438 WARN_ON(p == src_rq->curr);
1439 WARN_ON(!p->se.on_rq);
1440
1441 /*
1442 * There's a chance that p is higher in priority
1443 * than what's currently running on its cpu.
1444 * This is just that p is wakeing up and hasn't
1445 * had a chance to schedule. We only pull
1446 * p if it is lower in priority than the
1447 * current task on the run queue
1448 */
1449 if (p->prio < src_rq->curr->prio)
1450 goto skip;
1451
1452 ret = 1;
1453
1454 deactivate_task(src_rq, p, 0);
1455 set_task_cpu(p, this_cpu);
1456 activate_task(this_rq, p, 0);
1457 /*
1458 * We continue with the search, just in
1459 * case there's an even higher prio task
1460 * in another runqueue. (low likelyhood
1461 * but possible)
1462 */
1463 }
1464 skip:
1465 double_unlock_balance(this_rq, src_rq);
1466 }
1467
1468 return ret;
1469 }
1470
1471 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1472 {
1473 /* Try to pull RT tasks here if we lower this rq's prio */
1474 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1475 pull_rt_task(rq);
1476 }
1477
1478 static void post_schedule_rt(struct rq *rq)
1479 {
1480 push_rt_tasks(rq);
1481 }
1482
1483 /*
1484 * If we are not running and we are not going to reschedule soon, we should
1485 * try to push tasks away now
1486 */
1487 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1488 {
1489 if (!task_running(rq, p) &&
1490 !test_tsk_need_resched(rq->curr) &&
1491 has_pushable_tasks(rq) &&
1492 p->rt.nr_cpus_allowed > 1)
1493 push_rt_tasks(rq);
1494 }
1495
1496 static unsigned long
1497 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1498 unsigned long max_load_move,
1499 struct sched_domain *sd, enum cpu_idle_type idle,
1500 int *all_pinned, int *this_best_prio)
1501 {
1502 /* don't touch RT tasks */
1503 return 0;
1504 }
1505
1506 static int
1507 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1508 struct sched_domain *sd, enum cpu_idle_type idle)
1509 {
1510 /* don't touch RT tasks */
1511 return 0;
1512 }
1513
1514 static void set_cpus_allowed_rt(struct task_struct *p,
1515 const struct cpumask *new_mask)
1516 {
1517 int weight = cpumask_weight(new_mask);
1518
1519 BUG_ON(!rt_task(p));
1520
1521 /*
1522 * Update the migration status of the RQ if we have an RT task
1523 * which is running AND changing its weight value.
1524 */
1525 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1526 struct rq *rq = task_rq(p);
1527
1528 if (!task_current(rq, p)) {
1529 /*
1530 * Make sure we dequeue this task from the pushable list
1531 * before going further. It will either remain off of
1532 * the list because we are no longer pushable, or it
1533 * will be requeued.
1534 */
1535 if (p->rt.nr_cpus_allowed > 1)
1536 dequeue_pushable_task(rq, p);
1537
1538 /*
1539 * Requeue if our weight is changing and still > 1
1540 */
1541 if (weight > 1)
1542 enqueue_pushable_task(rq, p);
1543
1544 }
1545
1546 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1547 rq->rt.rt_nr_migratory++;
1548 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1549 BUG_ON(!rq->rt.rt_nr_migratory);
1550 rq->rt.rt_nr_migratory--;
1551 }
1552
1553 update_rt_migration(&rq->rt);
1554 }
1555
1556 cpumask_copy(&p->cpus_allowed, new_mask);
1557 p->rt.nr_cpus_allowed = weight;
1558 }
1559
1560 /* Assumes rq->lock is held */
1561 static void rq_online_rt(struct rq *rq)
1562 {
1563 if (rq->rt.overloaded)
1564 rt_set_overload(rq);
1565
1566 __enable_runtime(rq);
1567
1568 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1569 }
1570
1571 /* Assumes rq->lock is held */
1572 static void rq_offline_rt(struct rq *rq)
1573 {
1574 if (rq->rt.overloaded)
1575 rt_clear_overload(rq);
1576
1577 __disable_runtime(rq);
1578
1579 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1580 }
1581
1582 /*
1583 * When switch from the rt queue, we bring ourselves to a position
1584 * that we might want to pull RT tasks from other runqueues.
1585 */
1586 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1587 int running)
1588 {
1589 /*
1590 * If there are other RT tasks then we will reschedule
1591 * and the scheduling of the other RT tasks will handle
1592 * the balancing. But if we are the last RT task
1593 * we may need to handle the pulling of RT tasks
1594 * now.
1595 */
1596 if (!rq->rt.rt_nr_running)
1597 pull_rt_task(rq);
1598 }
1599
1600 static inline void init_sched_rt_class(void)
1601 {
1602 unsigned int i;
1603
1604 for_each_possible_cpu(i)
1605 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1606 GFP_KERNEL, cpu_to_node(i));
1607 }
1608 #endif /* CONFIG_SMP */
1609
1610 /*
1611 * When switching a task to RT, we may overload the runqueue
1612 * with RT tasks. In this case we try to push them off to
1613 * other runqueues.
1614 */
1615 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1616 int running)
1617 {
1618 int check_resched = 1;
1619
1620 /*
1621 * If we are already running, then there's nothing
1622 * that needs to be done. But if we are not running
1623 * we may need to preempt the current running task.
1624 * If that current running task is also an RT task
1625 * then see if we can move to another run queue.
1626 */
1627 if (!running) {
1628 #ifdef CONFIG_SMP
1629 if (rq->rt.overloaded && push_rt_task(rq) &&
1630 /* Don't resched if we changed runqueues */
1631 rq != task_rq(p))
1632 check_resched = 0;
1633 #endif /* CONFIG_SMP */
1634 if (check_resched && p->prio < rq->curr->prio)
1635 resched_task(rq->curr);
1636 }
1637 }
1638
1639 /*
1640 * Priority of the task has changed. This may cause
1641 * us to initiate a push or pull.
1642 */
1643 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1644 int oldprio, int running)
1645 {
1646 if (running) {
1647 #ifdef CONFIG_SMP
1648 /*
1649 * If our priority decreases while running, we
1650 * may need to pull tasks to this runqueue.
1651 */
1652 if (oldprio < p->prio)
1653 pull_rt_task(rq);
1654 /*
1655 * If there's a higher priority task waiting to run
1656 * then reschedule. Note, the above pull_rt_task
1657 * can release the rq lock and p could migrate.
1658 * Only reschedule if p is still on the same runqueue.
1659 */
1660 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1661 resched_task(p);
1662 #else
1663 /* For UP simply resched on drop of prio */
1664 if (oldprio < p->prio)
1665 resched_task(p);
1666 #endif /* CONFIG_SMP */
1667 } else {
1668 /*
1669 * This task is not running, but if it is
1670 * greater than the current running task
1671 * then reschedule.
1672 */
1673 if (p->prio < rq->curr->prio)
1674 resched_task(rq->curr);
1675 }
1676 }
1677
1678 static void watchdog(struct rq *rq, struct task_struct *p)
1679 {
1680 unsigned long soft, hard;
1681
1682 if (!p->signal)
1683 return;
1684
1685 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1686 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1687
1688 if (soft != RLIM_INFINITY) {
1689 unsigned long next;
1690
1691 p->rt.timeout++;
1692 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1693 if (p->rt.timeout > next)
1694 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1695 }
1696 }
1697
1698 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1699 {
1700 update_curr_rt(rq);
1701
1702 watchdog(rq, p);
1703
1704 /*
1705 * RR tasks need a special form of timeslice management.
1706 * FIFO tasks have no timeslices.
1707 */
1708 if (p->policy != SCHED_RR)
1709 return;
1710
1711 if (--p->rt.time_slice)
1712 return;
1713
1714 p->rt.time_slice = DEF_TIMESLICE;
1715
1716 /*
1717 * Requeue to the end of queue if we are not the only element
1718 * on the queue:
1719 */
1720 if (p->rt.run_list.prev != p->rt.run_list.next) {
1721 requeue_task_rt(rq, p, 0);
1722 set_tsk_need_resched(p);
1723 }
1724 }
1725
1726 static void set_curr_task_rt(struct rq *rq)
1727 {
1728 struct task_struct *p = rq->curr;
1729
1730 p->se.exec_start = rq->clock;
1731
1732 /* The running task is never eligible for pushing */
1733 dequeue_pushable_task(rq, p);
1734 }
1735
1736 static const struct sched_class rt_sched_class = {
1737 .next = &fair_sched_class,
1738 .enqueue_task = enqueue_task_rt,
1739 .dequeue_task = dequeue_task_rt,
1740 .yield_task = yield_task_rt,
1741
1742 .check_preempt_curr = check_preempt_curr_rt,
1743
1744 .pick_next_task = pick_next_task_rt,
1745 .put_prev_task = put_prev_task_rt,
1746
1747 #ifdef CONFIG_SMP
1748 .select_task_rq = select_task_rq_rt,
1749
1750 .load_balance = load_balance_rt,
1751 .move_one_task = move_one_task_rt,
1752 .set_cpus_allowed = set_cpus_allowed_rt,
1753 .rq_online = rq_online_rt,
1754 .rq_offline = rq_offline_rt,
1755 .pre_schedule = pre_schedule_rt,
1756 .post_schedule = post_schedule_rt,
1757 .task_wake_up = task_wake_up_rt,
1758 .switched_from = switched_from_rt,
1759 #endif
1760
1761 .set_curr_task = set_curr_task_rt,
1762 .task_tick = task_tick_rt,
1763
1764 .prio_changed = prio_changed_rt,
1765 .switched_to = switched_to_rt,
1766 };
1767
1768 #ifdef CONFIG_SCHED_DEBUG
1769 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1770
1771 static void print_rt_stats(struct seq_file *m, int cpu)
1772 {
1773 struct rt_rq *rt_rq;
1774
1775 rcu_read_lock();
1776 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1777 print_rt_rq(m, cpu, rt_rq);
1778 rcu_read_unlock();
1779 }
1780 #endif /* CONFIG_SCHED_DEBUG */
1781
This page took 0.105192 seconds and 6 git commands to generate.