359c4de7c7721f3cf17c88bb0687b90c32a056a0
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals. Unlike
562 * the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 *
567 * Returns true if the signal should be actually delivered, otherwise
568 * it should be dropped.
569 */
570 static int prepare_signal(int sig, struct task_struct *p)
571 {
572 struct signal_struct *signal = p->signal;
573 struct task_struct *t;
574
575 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
576 /*
577 * The process is in the middle of dying, nothing to do.
578 */
579 } else if (sig_kernel_stop(sig)) {
580 /*
581 * This is a stop signal. Remove SIGCONT from all queues.
582 */
583 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
584 t = p;
585 do {
586 rm_from_queue(sigmask(SIGCONT), &t->pending);
587 } while_each_thread(p, t);
588 } else if (sig == SIGCONT) {
589 unsigned int why;
590 /*
591 * Remove all stop signals from all queues,
592 * and wake all threads.
593 */
594 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
595 t = p;
596 do {
597 unsigned int state;
598 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
599 /*
600 * If there is a handler for SIGCONT, we must make
601 * sure that no thread returns to user mode before
602 * we post the signal, in case it was the only
603 * thread eligible to run the signal handler--then
604 * it must not do anything between resuming and
605 * running the handler. With the TIF_SIGPENDING
606 * flag set, the thread will pause and acquire the
607 * siglock that we hold now and until we've queued
608 * the pending signal.
609 *
610 * Wake up the stopped thread _after_ setting
611 * TIF_SIGPENDING
612 */
613 state = __TASK_STOPPED;
614 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
615 set_tsk_thread_flag(t, TIF_SIGPENDING);
616 state |= TASK_INTERRUPTIBLE;
617 }
618 wake_up_state(t, state);
619 } while_each_thread(p, t);
620
621 /*
622 * Notify the parent with CLD_CONTINUED if we were stopped.
623 *
624 * If we were in the middle of a group stop, we pretend it
625 * was already finished, and then continued. Since SIGCHLD
626 * doesn't queue we report only CLD_STOPPED, as if the next
627 * CLD_CONTINUED was dropped.
628 */
629 why = 0;
630 if (signal->flags & SIGNAL_STOP_STOPPED)
631 why |= SIGNAL_CLD_CONTINUED;
632 else if (signal->group_stop_count)
633 why |= SIGNAL_CLD_STOPPED;
634
635 if (why) {
636 signal->flags = why | SIGNAL_STOP_CONTINUED;
637 signal->group_stop_count = 0;
638 signal->group_exit_code = 0;
639 } else {
640 /*
641 * We are not stopped, but there could be a stop
642 * signal in the middle of being processed after
643 * being removed from the queue. Clear that too.
644 */
645 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
646 }
647 }
648
649 return !sig_ignored(p, sig);
650 }
651
652 /*
653 * Test if P wants to take SIG. After we've checked all threads with this,
654 * it's equivalent to finding no threads not blocking SIG. Any threads not
655 * blocking SIG were ruled out because they are not running and already
656 * have pending signals. Such threads will dequeue from the shared queue
657 * as soon as they're available, so putting the signal on the shared queue
658 * will be equivalent to sending it to one such thread.
659 */
660 static inline int wants_signal(int sig, struct task_struct *p)
661 {
662 if (sigismember(&p->blocked, sig))
663 return 0;
664 if (p->flags & PF_EXITING)
665 return 0;
666 if (sig == SIGKILL)
667 return 1;
668 if (task_is_stopped_or_traced(p))
669 return 0;
670 return task_curr(p) || !signal_pending(p);
671 }
672
673 static void complete_signal(int sig, struct task_struct *p, int group)
674 {
675 struct signal_struct *signal = p->signal;
676 struct task_struct *t;
677
678 /*
679 * Now find a thread we can wake up to take the signal off the queue.
680 *
681 * If the main thread wants the signal, it gets first crack.
682 * Probably the least surprising to the average bear.
683 */
684 if (wants_signal(sig, p))
685 t = p;
686 else if (!group || thread_group_empty(p))
687 /*
688 * There is just one thread and it does not need to be woken.
689 * It will dequeue unblocked signals before it runs again.
690 */
691 return;
692 else {
693 /*
694 * Otherwise try to find a suitable thread.
695 */
696 t = signal->curr_target;
697 while (!wants_signal(sig, t)) {
698 t = next_thread(t);
699 if (t == signal->curr_target)
700 /*
701 * No thread needs to be woken.
702 * Any eligible threads will see
703 * the signal in the queue soon.
704 */
705 return;
706 }
707 signal->curr_target = t;
708 }
709
710 /*
711 * Found a killable thread. If the signal will be fatal,
712 * then start taking the whole group down immediately.
713 */
714 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
715 !sigismember(&t->real_blocked, sig) &&
716 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
717 /*
718 * This signal will be fatal to the whole group.
719 */
720 if (!sig_kernel_coredump(sig)) {
721 /*
722 * Start a group exit and wake everybody up.
723 * This way we don't have other threads
724 * running and doing things after a slower
725 * thread has the fatal signal pending.
726 */
727 signal->flags = SIGNAL_GROUP_EXIT;
728 signal->group_exit_code = sig;
729 signal->group_stop_count = 0;
730 t = p;
731 do {
732 sigaddset(&t->pending.signal, SIGKILL);
733 signal_wake_up(t, 1);
734 } while_each_thread(p, t);
735 return;
736 }
737 }
738
739 /*
740 * The signal is already in the shared-pending queue.
741 * Tell the chosen thread to wake up and dequeue it.
742 */
743 signal_wake_up(t, sig == SIGKILL);
744 return;
745 }
746
747 static inline int legacy_queue(struct sigpending *signals, int sig)
748 {
749 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
750 }
751
752 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
753 int group)
754 {
755 struct sigpending *pending;
756 struct sigqueue *q;
757
758 assert_spin_locked(&t->sighand->siglock);
759 if (!prepare_signal(sig, t))
760 return 0;
761
762 pending = group ? &t->signal->shared_pending : &t->pending;
763 /*
764 * Short-circuit ignored signals and support queuing
765 * exactly one non-rt signal, so that we can get more
766 * detailed information about the cause of the signal.
767 */
768 if (legacy_queue(pending, sig))
769 return 0;
770
771 /*
772 * Deliver the signal to listening signalfds. This must be called
773 * with the sighand lock held.
774 */
775 signalfd_notify(t, sig);
776
777 /*
778 * fast-pathed signals for kernel-internal things like SIGSTOP
779 * or SIGKILL.
780 */
781 if (info == SEND_SIG_FORCED)
782 goto out_set;
783
784 /* Real-time signals must be queued if sent by sigqueue, or
785 some other real-time mechanism. It is implementation
786 defined whether kill() does so. We attempt to do so, on
787 the principle of least surprise, but since kill is not
788 allowed to fail with EAGAIN when low on memory we just
789 make sure at least one signal gets delivered and don't
790 pass on the info struct. */
791
792 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
793 (is_si_special(info) ||
794 info->si_code >= 0)));
795 if (q) {
796 list_add_tail(&q->list, &pending->list);
797 switch ((unsigned long) info) {
798 case (unsigned long) SEND_SIG_NOINFO:
799 q->info.si_signo = sig;
800 q->info.si_errno = 0;
801 q->info.si_code = SI_USER;
802 q->info.si_pid = task_pid_vnr(current);
803 q->info.si_uid = current->uid;
804 break;
805 case (unsigned long) SEND_SIG_PRIV:
806 q->info.si_signo = sig;
807 q->info.si_errno = 0;
808 q->info.si_code = SI_KERNEL;
809 q->info.si_pid = 0;
810 q->info.si_uid = 0;
811 break;
812 default:
813 copy_siginfo(&q->info, info);
814 break;
815 }
816 } else if (!is_si_special(info)) {
817 if (sig >= SIGRTMIN && info->si_code != SI_USER)
818 /*
819 * Queue overflow, abort. We may abort if the signal was rt
820 * and sent by user using something other than kill().
821 */
822 return -EAGAIN;
823 }
824
825 out_set:
826 sigaddset(&pending->signal, sig);
827 complete_signal(sig, t, group);
828 return 0;
829 }
830
831 int print_fatal_signals;
832
833 static void print_fatal_signal(struct pt_regs *regs, int signr)
834 {
835 printk("%s/%d: potentially unexpected fatal signal %d.\n",
836 current->comm, task_pid_nr(current), signr);
837
838 #if defined(__i386__) && !defined(__arch_um__)
839 printk("code at %08lx: ", regs->ip);
840 {
841 int i;
842 for (i = 0; i < 16; i++) {
843 unsigned char insn;
844
845 __get_user(insn, (unsigned char *)(regs->ip + i));
846 printk("%02x ", insn);
847 }
848 }
849 #endif
850 printk("\n");
851 show_regs(regs);
852 }
853
854 static int __init setup_print_fatal_signals(char *str)
855 {
856 get_option (&str, &print_fatal_signals);
857
858 return 1;
859 }
860
861 __setup("print-fatal-signals=", setup_print_fatal_signals);
862
863 int
864 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
865 {
866 return send_signal(sig, info, p, 1);
867 }
868
869 static int
870 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
871 {
872 return send_signal(sig, info, t, 0);
873 }
874
875 /*
876 * Force a signal that the process can't ignore: if necessary
877 * we unblock the signal and change any SIG_IGN to SIG_DFL.
878 *
879 * Note: If we unblock the signal, we always reset it to SIG_DFL,
880 * since we do not want to have a signal handler that was blocked
881 * be invoked when user space had explicitly blocked it.
882 *
883 * We don't want to have recursive SIGSEGV's etc, for example.
884 */
885 int
886 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
887 {
888 unsigned long int flags;
889 int ret, blocked, ignored;
890 struct k_sigaction *action;
891
892 spin_lock_irqsave(&t->sighand->siglock, flags);
893 action = &t->sighand->action[sig-1];
894 ignored = action->sa.sa_handler == SIG_IGN;
895 blocked = sigismember(&t->blocked, sig);
896 if (blocked || ignored) {
897 action->sa.sa_handler = SIG_DFL;
898 if (blocked) {
899 sigdelset(&t->blocked, sig);
900 recalc_sigpending_and_wake(t);
901 }
902 }
903 ret = specific_send_sig_info(sig, info, t);
904 spin_unlock_irqrestore(&t->sighand->siglock, flags);
905
906 return ret;
907 }
908
909 void
910 force_sig_specific(int sig, struct task_struct *t)
911 {
912 force_sig_info(sig, SEND_SIG_FORCED, t);
913 }
914
915 /*
916 * Nuke all other threads in the group.
917 */
918 void zap_other_threads(struct task_struct *p)
919 {
920 struct task_struct *t;
921
922 p->signal->group_stop_count = 0;
923
924 for (t = next_thread(p); t != p; t = next_thread(t)) {
925 /*
926 * Don't bother with already dead threads
927 */
928 if (t->exit_state)
929 continue;
930
931 /* SIGKILL will be handled before any pending SIGSTOP */
932 sigaddset(&t->pending.signal, SIGKILL);
933 signal_wake_up(t, 1);
934 }
935 }
936
937 int __fatal_signal_pending(struct task_struct *tsk)
938 {
939 return sigismember(&tsk->pending.signal, SIGKILL);
940 }
941 EXPORT_SYMBOL(__fatal_signal_pending);
942
943 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
944 {
945 struct sighand_struct *sighand;
946
947 rcu_read_lock();
948 for (;;) {
949 sighand = rcu_dereference(tsk->sighand);
950 if (unlikely(sighand == NULL))
951 break;
952
953 spin_lock_irqsave(&sighand->siglock, *flags);
954 if (likely(sighand == tsk->sighand))
955 break;
956 spin_unlock_irqrestore(&sighand->siglock, *flags);
957 }
958 rcu_read_unlock();
959
960 return sighand;
961 }
962
963 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
964 {
965 unsigned long flags;
966 int ret;
967
968 ret = check_kill_permission(sig, info, p);
969
970 if (!ret && sig) {
971 ret = -ESRCH;
972 if (lock_task_sighand(p, &flags)) {
973 ret = __group_send_sig_info(sig, info, p);
974 unlock_task_sighand(p, &flags);
975 }
976 }
977
978 return ret;
979 }
980
981 /*
982 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
983 * control characters do (^C, ^Z etc)
984 */
985
986 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
987 {
988 struct task_struct *p = NULL;
989 int retval, success;
990
991 success = 0;
992 retval = -ESRCH;
993 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
994 int err = group_send_sig_info(sig, info, p);
995 success |= !err;
996 retval = err;
997 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
998 return success ? 0 : retval;
999 }
1000
1001 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1002 {
1003 int error = -ESRCH;
1004 struct task_struct *p;
1005
1006 rcu_read_lock();
1007 retry:
1008 p = pid_task(pid, PIDTYPE_PID);
1009 if (p) {
1010 error = group_send_sig_info(sig, info, p);
1011 if (unlikely(error == -ESRCH))
1012 /*
1013 * The task was unhashed in between, try again.
1014 * If it is dead, pid_task() will return NULL,
1015 * if we race with de_thread() it will find the
1016 * new leader.
1017 */
1018 goto retry;
1019 }
1020 rcu_read_unlock();
1021
1022 return error;
1023 }
1024
1025 int
1026 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1027 {
1028 int error;
1029 rcu_read_lock();
1030 error = kill_pid_info(sig, info, find_vpid(pid));
1031 rcu_read_unlock();
1032 return error;
1033 }
1034
1035 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1036 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1037 uid_t uid, uid_t euid, u32 secid)
1038 {
1039 int ret = -EINVAL;
1040 struct task_struct *p;
1041
1042 if (!valid_signal(sig))
1043 return ret;
1044
1045 read_lock(&tasklist_lock);
1046 p = pid_task(pid, PIDTYPE_PID);
1047 if (!p) {
1048 ret = -ESRCH;
1049 goto out_unlock;
1050 }
1051 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1052 && (euid != p->suid) && (euid != p->uid)
1053 && (uid != p->suid) && (uid != p->uid)) {
1054 ret = -EPERM;
1055 goto out_unlock;
1056 }
1057 ret = security_task_kill(p, info, sig, secid);
1058 if (ret)
1059 goto out_unlock;
1060 if (sig && p->sighand) {
1061 unsigned long flags;
1062 spin_lock_irqsave(&p->sighand->siglock, flags);
1063 ret = __group_send_sig_info(sig, info, p);
1064 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1065 }
1066 out_unlock:
1067 read_unlock(&tasklist_lock);
1068 return ret;
1069 }
1070 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1071
1072 /*
1073 * kill_something_info() interprets pid in interesting ways just like kill(2).
1074 *
1075 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1076 * is probably wrong. Should make it like BSD or SYSV.
1077 */
1078
1079 static int kill_something_info(int sig, struct siginfo *info, int pid)
1080 {
1081 int ret;
1082
1083 if (pid > 0) {
1084 rcu_read_lock();
1085 ret = kill_pid_info(sig, info, find_vpid(pid));
1086 rcu_read_unlock();
1087 return ret;
1088 }
1089
1090 read_lock(&tasklist_lock);
1091 if (pid != -1) {
1092 ret = __kill_pgrp_info(sig, info,
1093 pid ? find_vpid(-pid) : task_pgrp(current));
1094 } else {
1095 int retval = 0, count = 0;
1096 struct task_struct * p;
1097
1098 for_each_process(p) {
1099 if (p->pid > 1 && !same_thread_group(p, current)) {
1100 int err = group_send_sig_info(sig, info, p);
1101 ++count;
1102 if (err != -EPERM)
1103 retval = err;
1104 }
1105 }
1106 ret = count ? retval : -ESRCH;
1107 }
1108 read_unlock(&tasklist_lock);
1109
1110 return ret;
1111 }
1112
1113 /*
1114 * These are for backward compatibility with the rest of the kernel source.
1115 */
1116
1117 /*
1118 * The caller must ensure the task can't exit.
1119 */
1120 int
1121 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1122 {
1123 int ret;
1124 unsigned long flags;
1125
1126 /*
1127 * Make sure legacy kernel users don't send in bad values
1128 * (normal paths check this in check_kill_permission).
1129 */
1130 if (!valid_signal(sig))
1131 return -EINVAL;
1132
1133 spin_lock_irqsave(&p->sighand->siglock, flags);
1134 ret = specific_send_sig_info(sig, info, p);
1135 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 return ret;
1137 }
1138
1139 #define __si_special(priv) \
1140 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1141
1142 int
1143 send_sig(int sig, struct task_struct *p, int priv)
1144 {
1145 return send_sig_info(sig, __si_special(priv), p);
1146 }
1147
1148 void
1149 force_sig(int sig, struct task_struct *p)
1150 {
1151 force_sig_info(sig, SEND_SIG_PRIV, p);
1152 }
1153
1154 /*
1155 * When things go south during signal handling, we
1156 * will force a SIGSEGV. And if the signal that caused
1157 * the problem was already a SIGSEGV, we'll want to
1158 * make sure we don't even try to deliver the signal..
1159 */
1160 int
1161 force_sigsegv(int sig, struct task_struct *p)
1162 {
1163 if (sig == SIGSEGV) {
1164 unsigned long flags;
1165 spin_lock_irqsave(&p->sighand->siglock, flags);
1166 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1167 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1168 }
1169 force_sig(SIGSEGV, p);
1170 return 0;
1171 }
1172
1173 int kill_pgrp(struct pid *pid, int sig, int priv)
1174 {
1175 int ret;
1176
1177 read_lock(&tasklist_lock);
1178 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1179 read_unlock(&tasklist_lock);
1180
1181 return ret;
1182 }
1183 EXPORT_SYMBOL(kill_pgrp);
1184
1185 int kill_pid(struct pid *pid, int sig, int priv)
1186 {
1187 return kill_pid_info(sig, __si_special(priv), pid);
1188 }
1189 EXPORT_SYMBOL(kill_pid);
1190
1191 int
1192 kill_proc(pid_t pid, int sig, int priv)
1193 {
1194 int ret;
1195
1196 rcu_read_lock();
1197 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1198 rcu_read_unlock();
1199 return ret;
1200 }
1201
1202 /*
1203 * These functions support sending signals using preallocated sigqueue
1204 * structures. This is needed "because realtime applications cannot
1205 * afford to lose notifications of asynchronous events, like timer
1206 * expirations or I/O completions". In the case of Posix Timers
1207 * we allocate the sigqueue structure from the timer_create. If this
1208 * allocation fails we are able to report the failure to the application
1209 * with an EAGAIN error.
1210 */
1211
1212 struct sigqueue *sigqueue_alloc(void)
1213 {
1214 struct sigqueue *q;
1215
1216 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1217 q->flags |= SIGQUEUE_PREALLOC;
1218 return(q);
1219 }
1220
1221 void sigqueue_free(struct sigqueue *q)
1222 {
1223 unsigned long flags;
1224 spinlock_t *lock = &current->sighand->siglock;
1225
1226 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1227 /*
1228 * If the signal is still pending remove it from the
1229 * pending queue. We must hold ->siglock while testing
1230 * q->list to serialize with collect_signal().
1231 */
1232 spin_lock_irqsave(lock, flags);
1233 if (!list_empty(&q->list))
1234 list_del_init(&q->list);
1235 spin_unlock_irqrestore(lock, flags);
1236
1237 q->flags &= ~SIGQUEUE_PREALLOC;
1238 __sigqueue_free(q);
1239 }
1240
1241 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1242 {
1243 int sig = q->info.si_signo;
1244 struct sigpending *pending;
1245 unsigned long flags;
1246 int ret;
1247
1248 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1249
1250 ret = -1;
1251 if (!likely(lock_task_sighand(t, &flags)))
1252 goto ret;
1253
1254 ret = 1; /* the signal is ignored */
1255 if (!prepare_signal(sig, t))
1256 goto out;
1257
1258 ret = 0;
1259 if (unlikely(!list_empty(&q->list))) {
1260 /*
1261 * If an SI_TIMER entry is already queue just increment
1262 * the overrun count.
1263 */
1264 BUG_ON(q->info.si_code != SI_TIMER);
1265 q->info.si_overrun++;
1266 goto out;
1267 }
1268
1269 signalfd_notify(t, sig);
1270 pending = group ? &t->signal->shared_pending : &t->pending;
1271 list_add_tail(&q->list, &pending->list);
1272 sigaddset(&pending->signal, sig);
1273 complete_signal(sig, t, group);
1274 out:
1275 unlock_task_sighand(t, &flags);
1276 ret:
1277 return ret;
1278 }
1279
1280 /*
1281 * Wake up any threads in the parent blocked in wait* syscalls.
1282 */
1283 static inline void __wake_up_parent(struct task_struct *p,
1284 struct task_struct *parent)
1285 {
1286 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1287 }
1288
1289 /*
1290 * Let a parent know about the death of a child.
1291 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1292 */
1293
1294 void do_notify_parent(struct task_struct *tsk, int sig)
1295 {
1296 struct siginfo info;
1297 unsigned long flags;
1298 struct sighand_struct *psig;
1299
1300 BUG_ON(sig == -1);
1301
1302 /* do_notify_parent_cldstop should have been called instead. */
1303 BUG_ON(task_is_stopped_or_traced(tsk));
1304
1305 BUG_ON(!tsk->ptrace &&
1306 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1307
1308 info.si_signo = sig;
1309 info.si_errno = 0;
1310 /*
1311 * we are under tasklist_lock here so our parent is tied to
1312 * us and cannot exit and release its namespace.
1313 *
1314 * the only it can is to switch its nsproxy with sys_unshare,
1315 * bu uncharing pid namespaces is not allowed, so we'll always
1316 * see relevant namespace
1317 *
1318 * write_lock() currently calls preempt_disable() which is the
1319 * same as rcu_read_lock(), but according to Oleg, this is not
1320 * correct to rely on this
1321 */
1322 rcu_read_lock();
1323 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1324 rcu_read_unlock();
1325
1326 info.si_uid = tsk->uid;
1327
1328 /* FIXME: find out whether or not this is supposed to be c*time. */
1329 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1330 tsk->signal->utime));
1331 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1332 tsk->signal->stime));
1333
1334 info.si_status = tsk->exit_code & 0x7f;
1335 if (tsk->exit_code & 0x80)
1336 info.si_code = CLD_DUMPED;
1337 else if (tsk->exit_code & 0x7f)
1338 info.si_code = CLD_KILLED;
1339 else {
1340 info.si_code = CLD_EXITED;
1341 info.si_status = tsk->exit_code >> 8;
1342 }
1343
1344 psig = tsk->parent->sighand;
1345 spin_lock_irqsave(&psig->siglock, flags);
1346 if (!tsk->ptrace && sig == SIGCHLD &&
1347 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1348 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1349 /*
1350 * We are exiting and our parent doesn't care. POSIX.1
1351 * defines special semantics for setting SIGCHLD to SIG_IGN
1352 * or setting the SA_NOCLDWAIT flag: we should be reaped
1353 * automatically and not left for our parent's wait4 call.
1354 * Rather than having the parent do it as a magic kind of
1355 * signal handler, we just set this to tell do_exit that we
1356 * can be cleaned up without becoming a zombie. Note that
1357 * we still call __wake_up_parent in this case, because a
1358 * blocked sys_wait4 might now return -ECHILD.
1359 *
1360 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1361 * is implementation-defined: we do (if you don't want
1362 * it, just use SIG_IGN instead).
1363 */
1364 tsk->exit_signal = -1;
1365 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1366 sig = 0;
1367 }
1368 if (valid_signal(sig) && sig > 0)
1369 __group_send_sig_info(sig, &info, tsk->parent);
1370 __wake_up_parent(tsk, tsk->parent);
1371 spin_unlock_irqrestore(&psig->siglock, flags);
1372 }
1373
1374 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1375 {
1376 struct siginfo info;
1377 unsigned long flags;
1378 struct task_struct *parent;
1379 struct sighand_struct *sighand;
1380
1381 if (tsk->ptrace & PT_PTRACED)
1382 parent = tsk->parent;
1383 else {
1384 tsk = tsk->group_leader;
1385 parent = tsk->real_parent;
1386 }
1387
1388 info.si_signo = SIGCHLD;
1389 info.si_errno = 0;
1390 /*
1391 * see comment in do_notify_parent() abot the following 3 lines
1392 */
1393 rcu_read_lock();
1394 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1395 rcu_read_unlock();
1396
1397 info.si_uid = tsk->uid;
1398
1399 /* FIXME: find out whether or not this is supposed to be c*time. */
1400 info.si_utime = cputime_to_jiffies(tsk->utime);
1401 info.si_stime = cputime_to_jiffies(tsk->stime);
1402
1403 info.si_code = why;
1404 switch (why) {
1405 case CLD_CONTINUED:
1406 info.si_status = SIGCONT;
1407 break;
1408 case CLD_STOPPED:
1409 info.si_status = tsk->signal->group_exit_code & 0x7f;
1410 break;
1411 case CLD_TRAPPED:
1412 info.si_status = tsk->exit_code & 0x7f;
1413 break;
1414 default:
1415 BUG();
1416 }
1417
1418 sighand = parent->sighand;
1419 spin_lock_irqsave(&sighand->siglock, flags);
1420 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1421 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1422 __group_send_sig_info(SIGCHLD, &info, parent);
1423 /*
1424 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1425 */
1426 __wake_up_parent(tsk, parent);
1427 spin_unlock_irqrestore(&sighand->siglock, flags);
1428 }
1429
1430 static inline int may_ptrace_stop(void)
1431 {
1432 if (!likely(current->ptrace & PT_PTRACED))
1433 return 0;
1434 /*
1435 * Are we in the middle of do_coredump?
1436 * If so and our tracer is also part of the coredump stopping
1437 * is a deadlock situation, and pointless because our tracer
1438 * is dead so don't allow us to stop.
1439 * If SIGKILL was already sent before the caller unlocked
1440 * ->siglock we must see ->core_waiters != 0. Otherwise it
1441 * is safe to enter schedule().
1442 */
1443 if (unlikely(current->mm->core_waiters) &&
1444 unlikely(current->mm == current->parent->mm))
1445 return 0;
1446
1447 return 1;
1448 }
1449
1450 /*
1451 * Return nonzero if there is a SIGKILL that should be waking us up.
1452 * Called with the siglock held.
1453 */
1454 static int sigkill_pending(struct task_struct *tsk)
1455 {
1456 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1457 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1458 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1459 }
1460
1461 /*
1462 * This must be called with current->sighand->siglock held.
1463 *
1464 * This should be the path for all ptrace stops.
1465 * We always set current->last_siginfo while stopped here.
1466 * That makes it a way to test a stopped process for
1467 * being ptrace-stopped vs being job-control-stopped.
1468 *
1469 * If we actually decide not to stop at all because the tracer
1470 * is gone, we keep current->exit_code unless clear_code.
1471 */
1472 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1473 {
1474 int killed = 0;
1475
1476 if (arch_ptrace_stop_needed(exit_code, info)) {
1477 /*
1478 * The arch code has something special to do before a
1479 * ptrace stop. This is allowed to block, e.g. for faults
1480 * on user stack pages. We can't keep the siglock while
1481 * calling arch_ptrace_stop, so we must release it now.
1482 * To preserve proper semantics, we must do this before
1483 * any signal bookkeeping like checking group_stop_count.
1484 * Meanwhile, a SIGKILL could come in before we retake the
1485 * siglock. That must prevent us from sleeping in TASK_TRACED.
1486 * So after regaining the lock, we must check for SIGKILL.
1487 */
1488 spin_unlock_irq(&current->sighand->siglock);
1489 arch_ptrace_stop(exit_code, info);
1490 spin_lock_irq(&current->sighand->siglock);
1491 killed = sigkill_pending(current);
1492 }
1493
1494 /*
1495 * If there is a group stop in progress,
1496 * we must participate in the bookkeeping.
1497 */
1498 if (current->signal->group_stop_count > 0)
1499 --current->signal->group_stop_count;
1500
1501 current->last_siginfo = info;
1502 current->exit_code = exit_code;
1503
1504 /* Let the debugger run. */
1505 __set_current_state(TASK_TRACED);
1506 spin_unlock_irq(&current->sighand->siglock);
1507 read_lock(&tasklist_lock);
1508 if (!unlikely(killed) && may_ptrace_stop()) {
1509 do_notify_parent_cldstop(current, CLD_TRAPPED);
1510 read_unlock(&tasklist_lock);
1511 schedule();
1512 } else {
1513 /*
1514 * By the time we got the lock, our tracer went away.
1515 * Don't drop the lock yet, another tracer may come.
1516 */
1517 __set_current_state(TASK_RUNNING);
1518 if (clear_code)
1519 current->exit_code = 0;
1520 read_unlock(&tasklist_lock);
1521 }
1522
1523 /*
1524 * While in TASK_TRACED, we were considered "frozen enough".
1525 * Now that we woke up, it's crucial if we're supposed to be
1526 * frozen that we freeze now before running anything substantial.
1527 */
1528 try_to_freeze();
1529
1530 /*
1531 * We are back. Now reacquire the siglock before touching
1532 * last_siginfo, so that we are sure to have synchronized with
1533 * any signal-sending on another CPU that wants to examine it.
1534 */
1535 spin_lock_irq(&current->sighand->siglock);
1536 current->last_siginfo = NULL;
1537
1538 /*
1539 * Queued signals ignored us while we were stopped for tracing.
1540 * So check for any that we should take before resuming user mode.
1541 * This sets TIF_SIGPENDING, but never clears it.
1542 */
1543 recalc_sigpending_tsk(current);
1544 }
1545
1546 void ptrace_notify(int exit_code)
1547 {
1548 siginfo_t info;
1549
1550 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1551
1552 memset(&info, 0, sizeof info);
1553 info.si_signo = SIGTRAP;
1554 info.si_code = exit_code;
1555 info.si_pid = task_pid_vnr(current);
1556 info.si_uid = current->uid;
1557
1558 /* Let the debugger run. */
1559 spin_lock_irq(&current->sighand->siglock);
1560 ptrace_stop(exit_code, 1, &info);
1561 spin_unlock_irq(&current->sighand->siglock);
1562 }
1563
1564 static void
1565 finish_stop(int stop_count)
1566 {
1567 /*
1568 * If there are no other threads in the group, or if there is
1569 * a group stop in progress and we are the last to stop,
1570 * report to the parent. When ptraced, every thread reports itself.
1571 */
1572 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1573 read_lock(&tasklist_lock);
1574 do_notify_parent_cldstop(current, CLD_STOPPED);
1575 read_unlock(&tasklist_lock);
1576 }
1577
1578 do {
1579 schedule();
1580 } while (try_to_freeze());
1581 /*
1582 * Now we don't run again until continued.
1583 */
1584 current->exit_code = 0;
1585 }
1586
1587 /*
1588 * This performs the stopping for SIGSTOP and other stop signals.
1589 * We have to stop all threads in the thread group.
1590 * Returns nonzero if we've actually stopped and released the siglock.
1591 * Returns zero if we didn't stop and still hold the siglock.
1592 */
1593 static int do_signal_stop(int signr)
1594 {
1595 struct signal_struct *sig = current->signal;
1596 int stop_count;
1597
1598 if (sig->group_stop_count > 0) {
1599 /*
1600 * There is a group stop in progress. We don't need to
1601 * start another one.
1602 */
1603 stop_count = --sig->group_stop_count;
1604 } else {
1605 struct task_struct *t;
1606
1607 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1608 unlikely(signal_group_exit(sig)))
1609 return 0;
1610 /*
1611 * There is no group stop already in progress.
1612 * We must initiate one now.
1613 */
1614 sig->group_exit_code = signr;
1615
1616 stop_count = 0;
1617 for (t = next_thread(current); t != current; t = next_thread(t))
1618 /*
1619 * Setting state to TASK_STOPPED for a group
1620 * stop is always done with the siglock held,
1621 * so this check has no races.
1622 */
1623 if (!(t->flags & PF_EXITING) &&
1624 !task_is_stopped_or_traced(t)) {
1625 stop_count++;
1626 signal_wake_up(t, 0);
1627 }
1628 sig->group_stop_count = stop_count;
1629 }
1630
1631 if (stop_count == 0)
1632 sig->flags = SIGNAL_STOP_STOPPED;
1633 current->exit_code = sig->group_exit_code;
1634 __set_current_state(TASK_STOPPED);
1635
1636 spin_unlock_irq(&current->sighand->siglock);
1637 finish_stop(stop_count);
1638 return 1;
1639 }
1640
1641 static int ptrace_signal(int signr, siginfo_t *info,
1642 struct pt_regs *regs, void *cookie)
1643 {
1644 if (!(current->ptrace & PT_PTRACED))
1645 return signr;
1646
1647 ptrace_signal_deliver(regs, cookie);
1648
1649 /* Let the debugger run. */
1650 ptrace_stop(signr, 0, info);
1651
1652 /* We're back. Did the debugger cancel the sig? */
1653 signr = current->exit_code;
1654 if (signr == 0)
1655 return signr;
1656
1657 current->exit_code = 0;
1658
1659 /* Update the siginfo structure if the signal has
1660 changed. If the debugger wanted something
1661 specific in the siginfo structure then it should
1662 have updated *info via PTRACE_SETSIGINFO. */
1663 if (signr != info->si_signo) {
1664 info->si_signo = signr;
1665 info->si_errno = 0;
1666 info->si_code = SI_USER;
1667 info->si_pid = task_pid_vnr(current->parent);
1668 info->si_uid = current->parent->uid;
1669 }
1670
1671 /* If the (new) signal is now blocked, requeue it. */
1672 if (sigismember(&current->blocked, signr)) {
1673 specific_send_sig_info(signr, info, current);
1674 signr = 0;
1675 }
1676
1677 return signr;
1678 }
1679
1680 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1681 struct pt_regs *regs, void *cookie)
1682 {
1683 struct sighand_struct *sighand = current->sighand;
1684 struct signal_struct *signal = current->signal;
1685 int signr;
1686
1687 relock:
1688 /*
1689 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1690 * While in TASK_STOPPED, we were considered "frozen enough".
1691 * Now that we woke up, it's crucial if we're supposed to be
1692 * frozen that we freeze now before running anything substantial.
1693 */
1694 try_to_freeze();
1695
1696 spin_lock_irq(&sighand->siglock);
1697
1698 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1699 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1700 ? CLD_CONTINUED : CLD_STOPPED;
1701 signal->flags &= ~SIGNAL_CLD_MASK;
1702 spin_unlock_irq(&sighand->siglock);
1703
1704 read_lock(&tasklist_lock);
1705 do_notify_parent_cldstop(current->group_leader, why);
1706 read_unlock(&tasklist_lock);
1707 goto relock;
1708 }
1709
1710 for (;;) {
1711 struct k_sigaction *ka;
1712
1713 if (unlikely(signal->group_stop_count > 0) &&
1714 do_signal_stop(0))
1715 goto relock;
1716
1717 signr = dequeue_signal(current, &current->blocked, info);
1718 if (!signr)
1719 break; /* will return 0 */
1720
1721 if (signr != SIGKILL) {
1722 signr = ptrace_signal(signr, info, regs, cookie);
1723 if (!signr)
1724 continue;
1725 }
1726
1727 ka = &sighand->action[signr-1];
1728 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1729 continue;
1730 if (ka->sa.sa_handler != SIG_DFL) {
1731 /* Run the handler. */
1732 *return_ka = *ka;
1733
1734 if (ka->sa.sa_flags & SA_ONESHOT)
1735 ka->sa.sa_handler = SIG_DFL;
1736
1737 break; /* will return non-zero "signr" value */
1738 }
1739
1740 /*
1741 * Now we are doing the default action for this signal.
1742 */
1743 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1744 continue;
1745
1746 /*
1747 * Global init gets no signals it doesn't want.
1748 */
1749 if (is_global_init(current))
1750 continue;
1751
1752 if (sig_kernel_stop(signr)) {
1753 /*
1754 * The default action is to stop all threads in
1755 * the thread group. The job control signals
1756 * do nothing in an orphaned pgrp, but SIGSTOP
1757 * always works. Note that siglock needs to be
1758 * dropped during the call to is_orphaned_pgrp()
1759 * because of lock ordering with tasklist_lock.
1760 * This allows an intervening SIGCONT to be posted.
1761 * We need to check for that and bail out if necessary.
1762 */
1763 if (signr != SIGSTOP) {
1764 spin_unlock_irq(&sighand->siglock);
1765
1766 /* signals can be posted during this window */
1767
1768 if (is_current_pgrp_orphaned())
1769 goto relock;
1770
1771 spin_lock_irq(&sighand->siglock);
1772 }
1773
1774 if (likely(do_signal_stop(signr))) {
1775 /* It released the siglock. */
1776 goto relock;
1777 }
1778
1779 /*
1780 * We didn't actually stop, due to a race
1781 * with SIGCONT or something like that.
1782 */
1783 continue;
1784 }
1785
1786 spin_unlock_irq(&sighand->siglock);
1787
1788 /*
1789 * Anything else is fatal, maybe with a core dump.
1790 */
1791 current->flags |= PF_SIGNALED;
1792
1793 if (sig_kernel_coredump(signr)) {
1794 if (print_fatal_signals)
1795 print_fatal_signal(regs, signr);
1796 /*
1797 * If it was able to dump core, this kills all
1798 * other threads in the group and synchronizes with
1799 * their demise. If we lost the race with another
1800 * thread getting here, it set group_exit_code
1801 * first and our do_group_exit call below will use
1802 * that value and ignore the one we pass it.
1803 */
1804 do_coredump((long)signr, signr, regs);
1805 }
1806
1807 /*
1808 * Death signals, no core dump.
1809 */
1810 do_group_exit(signr);
1811 /* NOTREACHED */
1812 }
1813 spin_unlock_irq(&sighand->siglock);
1814 return signr;
1815 }
1816
1817 void exit_signals(struct task_struct *tsk)
1818 {
1819 int group_stop = 0;
1820 struct task_struct *t;
1821
1822 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1823 tsk->flags |= PF_EXITING;
1824 return;
1825 }
1826
1827 spin_lock_irq(&tsk->sighand->siglock);
1828 /*
1829 * From now this task is not visible for group-wide signals,
1830 * see wants_signal(), do_signal_stop().
1831 */
1832 tsk->flags |= PF_EXITING;
1833 if (!signal_pending(tsk))
1834 goto out;
1835
1836 /* It could be that __group_complete_signal() choose us to
1837 * notify about group-wide signal. Another thread should be
1838 * woken now to take the signal since we will not.
1839 */
1840 for (t = tsk; (t = next_thread(t)) != tsk; )
1841 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1842 recalc_sigpending_and_wake(t);
1843
1844 if (unlikely(tsk->signal->group_stop_count) &&
1845 !--tsk->signal->group_stop_count) {
1846 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1847 group_stop = 1;
1848 }
1849 out:
1850 spin_unlock_irq(&tsk->sighand->siglock);
1851
1852 if (unlikely(group_stop)) {
1853 read_lock(&tasklist_lock);
1854 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1855 read_unlock(&tasklist_lock);
1856 }
1857 }
1858
1859 EXPORT_SYMBOL(recalc_sigpending);
1860 EXPORT_SYMBOL_GPL(dequeue_signal);
1861 EXPORT_SYMBOL(flush_signals);
1862 EXPORT_SYMBOL(force_sig);
1863 EXPORT_SYMBOL(kill_proc);
1864 EXPORT_SYMBOL(ptrace_notify);
1865 EXPORT_SYMBOL(send_sig);
1866 EXPORT_SYMBOL(send_sig_info);
1867 EXPORT_SYMBOL(sigprocmask);
1868 EXPORT_SYMBOL(block_all_signals);
1869 EXPORT_SYMBOL(unblock_all_signals);
1870
1871
1872 /*
1873 * System call entry points.
1874 */
1875
1876 asmlinkage long sys_restart_syscall(void)
1877 {
1878 struct restart_block *restart = &current_thread_info()->restart_block;
1879 return restart->fn(restart);
1880 }
1881
1882 long do_no_restart_syscall(struct restart_block *param)
1883 {
1884 return -EINTR;
1885 }
1886
1887 /*
1888 * We don't need to get the kernel lock - this is all local to this
1889 * particular thread.. (and that's good, because this is _heavily_
1890 * used by various programs)
1891 */
1892
1893 /*
1894 * This is also useful for kernel threads that want to temporarily
1895 * (or permanently) block certain signals.
1896 *
1897 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1898 * interface happily blocks "unblockable" signals like SIGKILL
1899 * and friends.
1900 */
1901 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1902 {
1903 int error;
1904
1905 spin_lock_irq(&current->sighand->siglock);
1906 if (oldset)
1907 *oldset = current->blocked;
1908
1909 error = 0;
1910 switch (how) {
1911 case SIG_BLOCK:
1912 sigorsets(&current->blocked, &current->blocked, set);
1913 break;
1914 case SIG_UNBLOCK:
1915 signandsets(&current->blocked, &current->blocked, set);
1916 break;
1917 case SIG_SETMASK:
1918 current->blocked = *set;
1919 break;
1920 default:
1921 error = -EINVAL;
1922 }
1923 recalc_sigpending();
1924 spin_unlock_irq(&current->sighand->siglock);
1925
1926 return error;
1927 }
1928
1929 asmlinkage long
1930 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1931 {
1932 int error = -EINVAL;
1933 sigset_t old_set, new_set;
1934
1935 /* XXX: Don't preclude handling different sized sigset_t's. */
1936 if (sigsetsize != sizeof(sigset_t))
1937 goto out;
1938
1939 if (set) {
1940 error = -EFAULT;
1941 if (copy_from_user(&new_set, set, sizeof(*set)))
1942 goto out;
1943 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1944
1945 error = sigprocmask(how, &new_set, &old_set);
1946 if (error)
1947 goto out;
1948 if (oset)
1949 goto set_old;
1950 } else if (oset) {
1951 spin_lock_irq(&current->sighand->siglock);
1952 old_set = current->blocked;
1953 spin_unlock_irq(&current->sighand->siglock);
1954
1955 set_old:
1956 error = -EFAULT;
1957 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1958 goto out;
1959 }
1960 error = 0;
1961 out:
1962 return error;
1963 }
1964
1965 long do_sigpending(void __user *set, unsigned long sigsetsize)
1966 {
1967 long error = -EINVAL;
1968 sigset_t pending;
1969
1970 if (sigsetsize > sizeof(sigset_t))
1971 goto out;
1972
1973 spin_lock_irq(&current->sighand->siglock);
1974 sigorsets(&pending, &current->pending.signal,
1975 &current->signal->shared_pending.signal);
1976 spin_unlock_irq(&current->sighand->siglock);
1977
1978 /* Outside the lock because only this thread touches it. */
1979 sigandsets(&pending, &current->blocked, &pending);
1980
1981 error = -EFAULT;
1982 if (!copy_to_user(set, &pending, sigsetsize))
1983 error = 0;
1984
1985 out:
1986 return error;
1987 }
1988
1989 asmlinkage long
1990 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1991 {
1992 return do_sigpending(set, sigsetsize);
1993 }
1994
1995 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
1996
1997 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
1998 {
1999 int err;
2000
2001 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2002 return -EFAULT;
2003 if (from->si_code < 0)
2004 return __copy_to_user(to, from, sizeof(siginfo_t))
2005 ? -EFAULT : 0;
2006 /*
2007 * If you change siginfo_t structure, please be sure
2008 * this code is fixed accordingly.
2009 * Please remember to update the signalfd_copyinfo() function
2010 * inside fs/signalfd.c too, in case siginfo_t changes.
2011 * It should never copy any pad contained in the structure
2012 * to avoid security leaks, but must copy the generic
2013 * 3 ints plus the relevant union member.
2014 */
2015 err = __put_user(from->si_signo, &to->si_signo);
2016 err |= __put_user(from->si_errno, &to->si_errno);
2017 err |= __put_user((short)from->si_code, &to->si_code);
2018 switch (from->si_code & __SI_MASK) {
2019 case __SI_KILL:
2020 err |= __put_user(from->si_pid, &to->si_pid);
2021 err |= __put_user(from->si_uid, &to->si_uid);
2022 break;
2023 case __SI_TIMER:
2024 err |= __put_user(from->si_tid, &to->si_tid);
2025 err |= __put_user(from->si_overrun, &to->si_overrun);
2026 err |= __put_user(from->si_ptr, &to->si_ptr);
2027 break;
2028 case __SI_POLL:
2029 err |= __put_user(from->si_band, &to->si_band);
2030 err |= __put_user(from->si_fd, &to->si_fd);
2031 break;
2032 case __SI_FAULT:
2033 err |= __put_user(from->si_addr, &to->si_addr);
2034 #ifdef __ARCH_SI_TRAPNO
2035 err |= __put_user(from->si_trapno, &to->si_trapno);
2036 #endif
2037 break;
2038 case __SI_CHLD:
2039 err |= __put_user(from->si_pid, &to->si_pid);
2040 err |= __put_user(from->si_uid, &to->si_uid);
2041 err |= __put_user(from->si_status, &to->si_status);
2042 err |= __put_user(from->si_utime, &to->si_utime);
2043 err |= __put_user(from->si_stime, &to->si_stime);
2044 break;
2045 case __SI_RT: /* This is not generated by the kernel as of now. */
2046 case __SI_MESGQ: /* But this is */
2047 err |= __put_user(from->si_pid, &to->si_pid);
2048 err |= __put_user(from->si_uid, &to->si_uid);
2049 err |= __put_user(from->si_ptr, &to->si_ptr);
2050 break;
2051 default: /* this is just in case for now ... */
2052 err |= __put_user(from->si_pid, &to->si_pid);
2053 err |= __put_user(from->si_uid, &to->si_uid);
2054 break;
2055 }
2056 return err;
2057 }
2058
2059 #endif
2060
2061 asmlinkage long
2062 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2063 siginfo_t __user *uinfo,
2064 const struct timespec __user *uts,
2065 size_t sigsetsize)
2066 {
2067 int ret, sig;
2068 sigset_t these;
2069 struct timespec ts;
2070 siginfo_t info;
2071 long timeout = 0;
2072
2073 /* XXX: Don't preclude handling different sized sigset_t's. */
2074 if (sigsetsize != sizeof(sigset_t))
2075 return -EINVAL;
2076
2077 if (copy_from_user(&these, uthese, sizeof(these)))
2078 return -EFAULT;
2079
2080 /*
2081 * Invert the set of allowed signals to get those we
2082 * want to block.
2083 */
2084 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2085 signotset(&these);
2086
2087 if (uts) {
2088 if (copy_from_user(&ts, uts, sizeof(ts)))
2089 return -EFAULT;
2090 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2091 || ts.tv_sec < 0)
2092 return -EINVAL;
2093 }
2094
2095 spin_lock_irq(&current->sighand->siglock);
2096 sig = dequeue_signal(current, &these, &info);
2097 if (!sig) {
2098 timeout = MAX_SCHEDULE_TIMEOUT;
2099 if (uts)
2100 timeout = (timespec_to_jiffies(&ts)
2101 + (ts.tv_sec || ts.tv_nsec));
2102
2103 if (timeout) {
2104 /* None ready -- temporarily unblock those we're
2105 * interested while we are sleeping in so that we'll
2106 * be awakened when they arrive. */
2107 current->real_blocked = current->blocked;
2108 sigandsets(&current->blocked, &current->blocked, &these);
2109 recalc_sigpending();
2110 spin_unlock_irq(&current->sighand->siglock);
2111
2112 timeout = schedule_timeout_interruptible(timeout);
2113
2114 spin_lock_irq(&current->sighand->siglock);
2115 sig = dequeue_signal(current, &these, &info);
2116 current->blocked = current->real_blocked;
2117 siginitset(&current->real_blocked, 0);
2118 recalc_sigpending();
2119 }
2120 }
2121 spin_unlock_irq(&current->sighand->siglock);
2122
2123 if (sig) {
2124 ret = sig;
2125 if (uinfo) {
2126 if (copy_siginfo_to_user(uinfo, &info))
2127 ret = -EFAULT;
2128 }
2129 } else {
2130 ret = -EAGAIN;
2131 if (timeout)
2132 ret = -EINTR;
2133 }
2134
2135 return ret;
2136 }
2137
2138 asmlinkage long
2139 sys_kill(int pid, int sig)
2140 {
2141 struct siginfo info;
2142
2143 info.si_signo = sig;
2144 info.si_errno = 0;
2145 info.si_code = SI_USER;
2146 info.si_pid = task_tgid_vnr(current);
2147 info.si_uid = current->uid;
2148
2149 return kill_something_info(sig, &info, pid);
2150 }
2151
2152 static int do_tkill(int tgid, int pid, int sig)
2153 {
2154 int error;
2155 struct siginfo info;
2156 struct task_struct *p;
2157 unsigned long flags;
2158
2159 error = -ESRCH;
2160 info.si_signo = sig;
2161 info.si_errno = 0;
2162 info.si_code = SI_TKILL;
2163 info.si_pid = task_tgid_vnr(current);
2164 info.si_uid = current->uid;
2165
2166 rcu_read_lock();
2167 p = find_task_by_vpid(pid);
2168 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2169 error = check_kill_permission(sig, &info, p);
2170 /*
2171 * The null signal is a permissions and process existence
2172 * probe. No signal is actually delivered.
2173 *
2174 * If lock_task_sighand() fails we pretend the task dies
2175 * after receiving the signal. The window is tiny, and the
2176 * signal is private anyway.
2177 */
2178 if (!error && sig && lock_task_sighand(p, &flags)) {
2179 error = specific_send_sig_info(sig, &info, p);
2180 unlock_task_sighand(p, &flags);
2181 }
2182 }
2183 rcu_read_unlock();
2184
2185 return error;
2186 }
2187
2188 /**
2189 * sys_tgkill - send signal to one specific thread
2190 * @tgid: the thread group ID of the thread
2191 * @pid: the PID of the thread
2192 * @sig: signal to be sent
2193 *
2194 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2195 * exists but it's not belonging to the target process anymore. This
2196 * method solves the problem of threads exiting and PIDs getting reused.
2197 */
2198 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2199 {
2200 /* This is only valid for single tasks */
2201 if (pid <= 0 || tgid <= 0)
2202 return -EINVAL;
2203
2204 return do_tkill(tgid, pid, sig);
2205 }
2206
2207 /*
2208 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2209 */
2210 asmlinkage long
2211 sys_tkill(int pid, int sig)
2212 {
2213 /* This is only valid for single tasks */
2214 if (pid <= 0)
2215 return -EINVAL;
2216
2217 return do_tkill(0, pid, sig);
2218 }
2219
2220 asmlinkage long
2221 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2222 {
2223 siginfo_t info;
2224
2225 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2226 return -EFAULT;
2227
2228 /* Not even root can pretend to send signals from the kernel.
2229 Nor can they impersonate a kill(), which adds source info. */
2230 if (info.si_code >= 0)
2231 return -EPERM;
2232 info.si_signo = sig;
2233
2234 /* POSIX.1b doesn't mention process groups. */
2235 return kill_proc_info(sig, &info, pid);
2236 }
2237
2238 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2239 {
2240 struct task_struct *t = current;
2241 struct k_sigaction *k;
2242 sigset_t mask;
2243
2244 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2245 return -EINVAL;
2246
2247 k = &t->sighand->action[sig-1];
2248
2249 spin_lock_irq(&current->sighand->siglock);
2250 if (oact)
2251 *oact = *k;
2252
2253 if (act) {
2254 sigdelsetmask(&act->sa.sa_mask,
2255 sigmask(SIGKILL) | sigmask(SIGSTOP));
2256 *k = *act;
2257 /*
2258 * POSIX 3.3.1.3:
2259 * "Setting a signal action to SIG_IGN for a signal that is
2260 * pending shall cause the pending signal to be discarded,
2261 * whether or not it is blocked."
2262 *
2263 * "Setting a signal action to SIG_DFL for a signal that is
2264 * pending and whose default action is to ignore the signal
2265 * (for example, SIGCHLD), shall cause the pending signal to
2266 * be discarded, whether or not it is blocked"
2267 */
2268 if (__sig_ignored(t, sig)) {
2269 sigemptyset(&mask);
2270 sigaddset(&mask, sig);
2271 rm_from_queue_full(&mask, &t->signal->shared_pending);
2272 do {
2273 rm_from_queue_full(&mask, &t->pending);
2274 t = next_thread(t);
2275 } while (t != current);
2276 }
2277 }
2278
2279 spin_unlock_irq(&current->sighand->siglock);
2280 return 0;
2281 }
2282
2283 int
2284 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2285 {
2286 stack_t oss;
2287 int error;
2288
2289 if (uoss) {
2290 oss.ss_sp = (void __user *) current->sas_ss_sp;
2291 oss.ss_size = current->sas_ss_size;
2292 oss.ss_flags = sas_ss_flags(sp);
2293 }
2294
2295 if (uss) {
2296 void __user *ss_sp;
2297 size_t ss_size;
2298 int ss_flags;
2299
2300 error = -EFAULT;
2301 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2302 || __get_user(ss_sp, &uss->ss_sp)
2303 || __get_user(ss_flags, &uss->ss_flags)
2304 || __get_user(ss_size, &uss->ss_size))
2305 goto out;
2306
2307 error = -EPERM;
2308 if (on_sig_stack(sp))
2309 goto out;
2310
2311 error = -EINVAL;
2312 /*
2313 *
2314 * Note - this code used to test ss_flags incorrectly
2315 * old code may have been written using ss_flags==0
2316 * to mean ss_flags==SS_ONSTACK (as this was the only
2317 * way that worked) - this fix preserves that older
2318 * mechanism
2319 */
2320 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2321 goto out;
2322
2323 if (ss_flags == SS_DISABLE) {
2324 ss_size = 0;
2325 ss_sp = NULL;
2326 } else {
2327 error = -ENOMEM;
2328 if (ss_size < MINSIGSTKSZ)
2329 goto out;
2330 }
2331
2332 current->sas_ss_sp = (unsigned long) ss_sp;
2333 current->sas_ss_size = ss_size;
2334 }
2335
2336 if (uoss) {
2337 error = -EFAULT;
2338 if (copy_to_user(uoss, &oss, sizeof(oss)))
2339 goto out;
2340 }
2341
2342 error = 0;
2343 out:
2344 return error;
2345 }
2346
2347 #ifdef __ARCH_WANT_SYS_SIGPENDING
2348
2349 asmlinkage long
2350 sys_sigpending(old_sigset_t __user *set)
2351 {
2352 return do_sigpending(set, sizeof(*set));
2353 }
2354
2355 #endif
2356
2357 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2358 /* Some platforms have their own version with special arguments others
2359 support only sys_rt_sigprocmask. */
2360
2361 asmlinkage long
2362 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2363 {
2364 int error;
2365 old_sigset_t old_set, new_set;
2366
2367 if (set) {
2368 error = -EFAULT;
2369 if (copy_from_user(&new_set, set, sizeof(*set)))
2370 goto out;
2371 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2372
2373 spin_lock_irq(&current->sighand->siglock);
2374 old_set = current->blocked.sig[0];
2375
2376 error = 0;
2377 switch (how) {
2378 default:
2379 error = -EINVAL;
2380 break;
2381 case SIG_BLOCK:
2382 sigaddsetmask(&current->blocked, new_set);
2383 break;
2384 case SIG_UNBLOCK:
2385 sigdelsetmask(&current->blocked, new_set);
2386 break;
2387 case SIG_SETMASK:
2388 current->blocked.sig[0] = new_set;
2389 break;
2390 }
2391
2392 recalc_sigpending();
2393 spin_unlock_irq(&current->sighand->siglock);
2394 if (error)
2395 goto out;
2396 if (oset)
2397 goto set_old;
2398 } else if (oset) {
2399 old_set = current->blocked.sig[0];
2400 set_old:
2401 error = -EFAULT;
2402 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2403 goto out;
2404 }
2405 error = 0;
2406 out:
2407 return error;
2408 }
2409 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2410
2411 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2412 asmlinkage long
2413 sys_rt_sigaction(int sig,
2414 const struct sigaction __user *act,
2415 struct sigaction __user *oact,
2416 size_t sigsetsize)
2417 {
2418 struct k_sigaction new_sa, old_sa;
2419 int ret = -EINVAL;
2420
2421 /* XXX: Don't preclude handling different sized sigset_t's. */
2422 if (sigsetsize != sizeof(sigset_t))
2423 goto out;
2424
2425 if (act) {
2426 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2427 return -EFAULT;
2428 }
2429
2430 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2431
2432 if (!ret && oact) {
2433 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2434 return -EFAULT;
2435 }
2436 out:
2437 return ret;
2438 }
2439 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2440
2441 #ifdef __ARCH_WANT_SYS_SGETMASK
2442
2443 /*
2444 * For backwards compatibility. Functionality superseded by sigprocmask.
2445 */
2446 asmlinkage long
2447 sys_sgetmask(void)
2448 {
2449 /* SMP safe */
2450 return current->blocked.sig[0];
2451 }
2452
2453 asmlinkage long
2454 sys_ssetmask(int newmask)
2455 {
2456 int old;
2457
2458 spin_lock_irq(&current->sighand->siglock);
2459 old = current->blocked.sig[0];
2460
2461 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2462 sigmask(SIGSTOP)));
2463 recalc_sigpending();
2464 spin_unlock_irq(&current->sighand->siglock);
2465
2466 return old;
2467 }
2468 #endif /* __ARCH_WANT_SGETMASK */
2469
2470 #ifdef __ARCH_WANT_SYS_SIGNAL
2471 /*
2472 * For backwards compatibility. Functionality superseded by sigaction.
2473 */
2474 asmlinkage unsigned long
2475 sys_signal(int sig, __sighandler_t handler)
2476 {
2477 struct k_sigaction new_sa, old_sa;
2478 int ret;
2479
2480 new_sa.sa.sa_handler = handler;
2481 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2482 sigemptyset(&new_sa.sa.sa_mask);
2483
2484 ret = do_sigaction(sig, &new_sa, &old_sa);
2485
2486 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2487 }
2488 #endif /* __ARCH_WANT_SYS_SIGNAL */
2489
2490 #ifdef __ARCH_WANT_SYS_PAUSE
2491
2492 asmlinkage long
2493 sys_pause(void)
2494 {
2495 current->state = TASK_INTERRUPTIBLE;
2496 schedule();
2497 return -ERESTARTNOHAND;
2498 }
2499
2500 #endif
2501
2502 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2503 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2504 {
2505 sigset_t newset;
2506
2507 /* XXX: Don't preclude handling different sized sigset_t's. */
2508 if (sigsetsize != sizeof(sigset_t))
2509 return -EINVAL;
2510
2511 if (copy_from_user(&newset, unewset, sizeof(newset)))
2512 return -EFAULT;
2513 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2514
2515 spin_lock_irq(&current->sighand->siglock);
2516 current->saved_sigmask = current->blocked;
2517 current->blocked = newset;
2518 recalc_sigpending();
2519 spin_unlock_irq(&current->sighand->siglock);
2520
2521 current->state = TASK_INTERRUPTIBLE;
2522 schedule();
2523 set_thread_flag(TIF_RESTORE_SIGMASK);
2524 return -ERESTARTNOHAND;
2525 }
2526 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2527
2528 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2529 {
2530 return NULL;
2531 }
2532
2533 void __init signals_init(void)
2534 {
2535 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2536 }
This page took 0.112751 seconds and 4 git commands to generate.