do not change dead_task->exit_signal
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
39
40 /*
41 * SLAB caches for signal bits.
42 */
43
44 static struct kmem_cache *sigqueue_cachep;
45
46 int print_fatal_signals __read_mostly;
47
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62 {
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72 }
73
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !t->ptrace;
91 }
92
93 /*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121 }
122
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139 }
140
141 /*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149 }
150
151 void recalc_sigpending(void)
152 {
153 if (!recalc_sigpending_tsk(current) && !freezing(current))
154 clear_thread_flag(TIF_SIGPENDING);
155
156 }
157
158 /* Given the mask, find the first available signal that should be serviced. */
159
160 #define SYNCHRONOUS_MASK \
161 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
162 sigmask(SIGTRAP) | sigmask(SIGFPE))
163
164 int next_signal(struct sigpending *pending, sigset_t *mask)
165 {
166 unsigned long i, *s, *m, x;
167 int sig = 0;
168
169 s = pending->signal.sig;
170 m = mask->sig;
171
172 /*
173 * Handle the first word specially: it contains the
174 * synchronous signals that need to be dequeued first.
175 */
176 x = *s &~ *m;
177 if (x) {
178 if (x & SYNCHRONOUS_MASK)
179 x &= SYNCHRONOUS_MASK;
180 sig = ffz(~x) + 1;
181 return sig;
182 }
183
184 switch (_NSIG_WORDS) {
185 default:
186 for (i = 1; i < _NSIG_WORDS; ++i) {
187 x = *++s &~ *++m;
188 if (!x)
189 continue;
190 sig = ffz(~x) + i*_NSIG_BPW + 1;
191 break;
192 }
193 break;
194
195 case 2:
196 x = s[1] &~ m[1];
197 if (!x)
198 break;
199 sig = ffz(~x) + _NSIG_BPW + 1;
200 break;
201
202 case 1:
203 /* Nothing to do */
204 break;
205 }
206
207 return sig;
208 }
209
210 static inline void print_dropped_signal(int sig)
211 {
212 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
213
214 if (!print_fatal_signals)
215 return;
216
217 if (!__ratelimit(&ratelimit_state))
218 return;
219
220 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
221 current->comm, current->pid, sig);
222 }
223
224 /**
225 * task_set_jobctl_pending - set jobctl pending bits
226 * @task: target task
227 * @mask: pending bits to set
228 *
229 * Clear @mask from @task->jobctl. @mask must be subset of
230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
231 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
232 * cleared. If @task is already being killed or exiting, this function
233 * becomes noop.
234 *
235 * CONTEXT:
236 * Must be called with @task->sighand->siglock held.
237 *
238 * RETURNS:
239 * %true if @mask is set, %false if made noop because @task was dying.
240 */
241 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
242 {
243 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
244 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
245 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
246
247 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
248 return false;
249
250 if (mask & JOBCTL_STOP_SIGMASK)
251 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
252
253 task->jobctl |= mask;
254 return true;
255 }
256
257 /**
258 * task_clear_jobctl_trapping - clear jobctl trapping bit
259 * @task: target task
260 *
261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
262 * Clear it and wake up the ptracer. Note that we don't need any further
263 * locking. @task->siglock guarantees that @task->parent points to the
264 * ptracer.
265 *
266 * CONTEXT:
267 * Must be called with @task->sighand->siglock held.
268 */
269 void task_clear_jobctl_trapping(struct task_struct *task)
270 {
271 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
272 task->jobctl &= ~JOBCTL_TRAPPING;
273 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
274 }
275 }
276
277 /**
278 * task_clear_jobctl_pending - clear jobctl pending bits
279 * @task: target task
280 * @mask: pending bits to clear
281 *
282 * Clear @mask from @task->jobctl. @mask must be subset of
283 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
284 * STOP bits are cleared together.
285 *
286 * If clearing of @mask leaves no stop or trap pending, this function calls
287 * task_clear_jobctl_trapping().
288 *
289 * CONTEXT:
290 * Must be called with @task->sighand->siglock held.
291 */
292 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
293 {
294 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
295
296 if (mask & JOBCTL_STOP_PENDING)
297 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
298
299 task->jobctl &= ~mask;
300
301 if (!(task->jobctl & JOBCTL_PENDING_MASK))
302 task_clear_jobctl_trapping(task);
303 }
304
305 /**
306 * task_participate_group_stop - participate in a group stop
307 * @task: task participating in a group stop
308 *
309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
310 * Group stop states are cleared and the group stop count is consumed if
311 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
312 * stop, the appropriate %SIGNAL_* flags are set.
313 *
314 * CONTEXT:
315 * Must be called with @task->sighand->siglock held.
316 *
317 * RETURNS:
318 * %true if group stop completion should be notified to the parent, %false
319 * otherwise.
320 */
321 static bool task_participate_group_stop(struct task_struct *task)
322 {
323 struct signal_struct *sig = task->signal;
324 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
325
326 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
327
328 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
329
330 if (!consume)
331 return false;
332
333 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
334 sig->group_stop_count--;
335
336 /*
337 * Tell the caller to notify completion iff we are entering into a
338 * fresh group stop. Read comment in do_signal_stop() for details.
339 */
340 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
341 sig->flags = SIGNAL_STOP_STOPPED;
342 return true;
343 }
344 return false;
345 }
346
347 /*
348 * allocate a new signal queue record
349 * - this may be called without locks if and only if t == current, otherwise an
350 * appropriate lock must be held to stop the target task from exiting
351 */
352 static struct sigqueue *
353 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
354 {
355 struct sigqueue *q = NULL;
356 struct user_struct *user;
357
358 /*
359 * Protect access to @t credentials. This can go away when all
360 * callers hold rcu read lock.
361 */
362 rcu_read_lock();
363 user = get_uid(__task_cred(t)->user);
364 atomic_inc(&user->sigpending);
365 rcu_read_unlock();
366
367 if (override_rlimit ||
368 atomic_read(&user->sigpending) <=
369 task_rlimit(t, RLIMIT_SIGPENDING)) {
370 q = kmem_cache_alloc(sigqueue_cachep, flags);
371 } else {
372 print_dropped_signal(sig);
373 }
374
375 if (unlikely(q == NULL)) {
376 atomic_dec(&user->sigpending);
377 free_uid(user);
378 } else {
379 INIT_LIST_HEAD(&q->list);
380 q->flags = 0;
381 q->user = user;
382 }
383
384 return q;
385 }
386
387 static void __sigqueue_free(struct sigqueue *q)
388 {
389 if (q->flags & SIGQUEUE_PREALLOC)
390 return;
391 atomic_dec(&q->user->sigpending);
392 free_uid(q->user);
393 kmem_cache_free(sigqueue_cachep, q);
394 }
395
396 void flush_sigqueue(struct sigpending *queue)
397 {
398 struct sigqueue *q;
399
400 sigemptyset(&queue->signal);
401 while (!list_empty(&queue->list)) {
402 q = list_entry(queue->list.next, struct sigqueue , list);
403 list_del_init(&q->list);
404 __sigqueue_free(q);
405 }
406 }
407
408 /*
409 * Flush all pending signals for a task.
410 */
411 void __flush_signals(struct task_struct *t)
412 {
413 clear_tsk_thread_flag(t, TIF_SIGPENDING);
414 flush_sigqueue(&t->pending);
415 flush_sigqueue(&t->signal->shared_pending);
416 }
417
418 void flush_signals(struct task_struct *t)
419 {
420 unsigned long flags;
421
422 spin_lock_irqsave(&t->sighand->siglock, flags);
423 __flush_signals(t);
424 spin_unlock_irqrestore(&t->sighand->siglock, flags);
425 }
426
427 static void __flush_itimer_signals(struct sigpending *pending)
428 {
429 sigset_t signal, retain;
430 struct sigqueue *q, *n;
431
432 signal = pending->signal;
433 sigemptyset(&retain);
434
435 list_for_each_entry_safe(q, n, &pending->list, list) {
436 int sig = q->info.si_signo;
437
438 if (likely(q->info.si_code != SI_TIMER)) {
439 sigaddset(&retain, sig);
440 } else {
441 sigdelset(&signal, sig);
442 list_del_init(&q->list);
443 __sigqueue_free(q);
444 }
445 }
446
447 sigorsets(&pending->signal, &signal, &retain);
448 }
449
450 void flush_itimer_signals(void)
451 {
452 struct task_struct *tsk = current;
453 unsigned long flags;
454
455 spin_lock_irqsave(&tsk->sighand->siglock, flags);
456 __flush_itimer_signals(&tsk->pending);
457 __flush_itimer_signals(&tsk->signal->shared_pending);
458 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
459 }
460
461 void ignore_signals(struct task_struct *t)
462 {
463 int i;
464
465 for (i = 0; i < _NSIG; ++i)
466 t->sighand->action[i].sa.sa_handler = SIG_IGN;
467
468 flush_signals(t);
469 }
470
471 /*
472 * Flush all handlers for a task.
473 */
474
475 void
476 flush_signal_handlers(struct task_struct *t, int force_default)
477 {
478 int i;
479 struct k_sigaction *ka = &t->sighand->action[0];
480 for (i = _NSIG ; i != 0 ; i--) {
481 if (force_default || ka->sa.sa_handler != SIG_IGN)
482 ka->sa.sa_handler = SIG_DFL;
483 ka->sa.sa_flags = 0;
484 sigemptyset(&ka->sa.sa_mask);
485 ka++;
486 }
487 }
488
489 int unhandled_signal(struct task_struct *tsk, int sig)
490 {
491 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
492 if (is_global_init(tsk))
493 return 1;
494 if (handler != SIG_IGN && handler != SIG_DFL)
495 return 0;
496 /* if ptraced, let the tracer determine */
497 return !tsk->ptrace;
498 }
499
500 /*
501 * Notify the system that a driver wants to block all signals for this
502 * process, and wants to be notified if any signals at all were to be
503 * sent/acted upon. If the notifier routine returns non-zero, then the
504 * signal will be acted upon after all. If the notifier routine returns 0,
505 * then then signal will be blocked. Only one block per process is
506 * allowed. priv is a pointer to private data that the notifier routine
507 * can use to determine if the signal should be blocked or not.
508 */
509 void
510 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
511 {
512 unsigned long flags;
513
514 spin_lock_irqsave(&current->sighand->siglock, flags);
515 current->notifier_mask = mask;
516 current->notifier_data = priv;
517 current->notifier = notifier;
518 spin_unlock_irqrestore(&current->sighand->siglock, flags);
519 }
520
521 /* Notify the system that blocking has ended. */
522
523 void
524 unblock_all_signals(void)
525 {
526 unsigned long flags;
527
528 spin_lock_irqsave(&current->sighand->siglock, flags);
529 current->notifier = NULL;
530 current->notifier_data = NULL;
531 recalc_sigpending();
532 spin_unlock_irqrestore(&current->sighand->siglock, flags);
533 }
534
535 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
536 {
537 struct sigqueue *q, *first = NULL;
538
539 /*
540 * Collect the siginfo appropriate to this signal. Check if
541 * there is another siginfo for the same signal.
542 */
543 list_for_each_entry(q, &list->list, list) {
544 if (q->info.si_signo == sig) {
545 if (first)
546 goto still_pending;
547 first = q;
548 }
549 }
550
551 sigdelset(&list->signal, sig);
552
553 if (first) {
554 still_pending:
555 list_del_init(&first->list);
556 copy_siginfo(info, &first->info);
557 __sigqueue_free(first);
558 } else {
559 /*
560 * Ok, it wasn't in the queue. This must be
561 * a fast-pathed signal or we must have been
562 * out of queue space. So zero out the info.
563 */
564 info->si_signo = sig;
565 info->si_errno = 0;
566 info->si_code = SI_USER;
567 info->si_pid = 0;
568 info->si_uid = 0;
569 }
570 }
571
572 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
573 siginfo_t *info)
574 {
575 int sig = next_signal(pending, mask);
576
577 if (sig) {
578 if (current->notifier) {
579 if (sigismember(current->notifier_mask, sig)) {
580 if (!(current->notifier)(current->notifier_data)) {
581 clear_thread_flag(TIF_SIGPENDING);
582 return 0;
583 }
584 }
585 }
586
587 collect_signal(sig, pending, info);
588 }
589
590 return sig;
591 }
592
593 /*
594 * Dequeue a signal and return the element to the caller, which is
595 * expected to free it.
596 *
597 * All callers have to hold the siglock.
598 */
599 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
600 {
601 int signr;
602
603 /* We only dequeue private signals from ourselves, we don't let
604 * signalfd steal them
605 */
606 signr = __dequeue_signal(&tsk->pending, mask, info);
607 if (!signr) {
608 signr = __dequeue_signal(&tsk->signal->shared_pending,
609 mask, info);
610 /*
611 * itimer signal ?
612 *
613 * itimers are process shared and we restart periodic
614 * itimers in the signal delivery path to prevent DoS
615 * attacks in the high resolution timer case. This is
616 * compliant with the old way of self-restarting
617 * itimers, as the SIGALRM is a legacy signal and only
618 * queued once. Changing the restart behaviour to
619 * restart the timer in the signal dequeue path is
620 * reducing the timer noise on heavy loaded !highres
621 * systems too.
622 */
623 if (unlikely(signr == SIGALRM)) {
624 struct hrtimer *tmr = &tsk->signal->real_timer;
625
626 if (!hrtimer_is_queued(tmr) &&
627 tsk->signal->it_real_incr.tv64 != 0) {
628 hrtimer_forward(tmr, tmr->base->get_time(),
629 tsk->signal->it_real_incr);
630 hrtimer_restart(tmr);
631 }
632 }
633 }
634
635 recalc_sigpending();
636 if (!signr)
637 return 0;
638
639 if (unlikely(sig_kernel_stop(signr))) {
640 /*
641 * Set a marker that we have dequeued a stop signal. Our
642 * caller might release the siglock and then the pending
643 * stop signal it is about to process is no longer in the
644 * pending bitmasks, but must still be cleared by a SIGCONT
645 * (and overruled by a SIGKILL). So those cases clear this
646 * shared flag after we've set it. Note that this flag may
647 * remain set after the signal we return is ignored or
648 * handled. That doesn't matter because its only purpose
649 * is to alert stop-signal processing code when another
650 * processor has come along and cleared the flag.
651 */
652 current->jobctl |= JOBCTL_STOP_DEQUEUED;
653 }
654 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
655 /*
656 * Release the siglock to ensure proper locking order
657 * of timer locks outside of siglocks. Note, we leave
658 * irqs disabled here, since the posix-timers code is
659 * about to disable them again anyway.
660 */
661 spin_unlock(&tsk->sighand->siglock);
662 do_schedule_next_timer(info);
663 spin_lock(&tsk->sighand->siglock);
664 }
665 return signr;
666 }
667
668 /*
669 * Tell a process that it has a new active signal..
670 *
671 * NOTE! we rely on the previous spin_lock to
672 * lock interrupts for us! We can only be called with
673 * "siglock" held, and the local interrupt must
674 * have been disabled when that got acquired!
675 *
676 * No need to set need_resched since signal event passing
677 * goes through ->blocked
678 */
679 void signal_wake_up(struct task_struct *t, int resume)
680 {
681 unsigned int mask;
682
683 set_tsk_thread_flag(t, TIF_SIGPENDING);
684
685 /*
686 * For SIGKILL, we want to wake it up in the stopped/traced/killable
687 * case. We don't check t->state here because there is a race with it
688 * executing another processor and just now entering stopped state.
689 * By using wake_up_state, we ensure the process will wake up and
690 * handle its death signal.
691 */
692 mask = TASK_INTERRUPTIBLE;
693 if (resume)
694 mask |= TASK_WAKEKILL;
695 if (!wake_up_state(t, mask))
696 kick_process(t);
697 }
698
699 /*
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
702 *
703 * All callers must be holding the siglock.
704 *
705 * This version takes a sigset mask and looks at all signals,
706 * not just those in the first mask word.
707 */
708 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
709 {
710 struct sigqueue *q, *n;
711 sigset_t m;
712
713 sigandsets(&m, mask, &s->signal);
714 if (sigisemptyset(&m))
715 return 0;
716
717 sigandnsets(&s->signal, &s->signal, mask);
718 list_for_each_entry_safe(q, n, &s->list, list) {
719 if (sigismember(mask, q->info.si_signo)) {
720 list_del_init(&q->list);
721 __sigqueue_free(q);
722 }
723 }
724 return 1;
725 }
726 /*
727 * Remove signals in mask from the pending set and queue.
728 * Returns 1 if any signals were found.
729 *
730 * All callers must be holding the siglock.
731 */
732 static int rm_from_queue(unsigned long mask, struct sigpending *s)
733 {
734 struct sigqueue *q, *n;
735
736 if (!sigtestsetmask(&s->signal, mask))
737 return 0;
738
739 sigdelsetmask(&s->signal, mask);
740 list_for_each_entry_safe(q, n, &s->list, list) {
741 if (q->info.si_signo < SIGRTMIN &&
742 (mask & sigmask(q->info.si_signo))) {
743 list_del_init(&q->list);
744 __sigqueue_free(q);
745 }
746 }
747 return 1;
748 }
749
750 static inline int is_si_special(const struct siginfo *info)
751 {
752 return info <= SEND_SIG_FORCED;
753 }
754
755 static inline bool si_fromuser(const struct siginfo *info)
756 {
757 return info == SEND_SIG_NOINFO ||
758 (!is_si_special(info) && SI_FROMUSER(info));
759 }
760
761 /*
762 * called with RCU read lock from check_kill_permission()
763 */
764 static int kill_ok_by_cred(struct task_struct *t)
765 {
766 const struct cred *cred = current_cred();
767 const struct cred *tcred = __task_cred(t);
768
769 if (cred->user->user_ns == tcred->user->user_ns &&
770 (cred->euid == tcred->suid ||
771 cred->euid == tcred->uid ||
772 cred->uid == tcred->suid ||
773 cred->uid == tcred->uid))
774 return 1;
775
776 if (ns_capable(tcred->user->user_ns, CAP_KILL))
777 return 1;
778
779 return 0;
780 }
781
782 /*
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
785 */
786 static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
788 {
789 struct pid *sid;
790 int error;
791
792 if (!valid_signal(sig))
793 return -EINVAL;
794
795 if (!si_fromuser(info))
796 return 0;
797
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
801
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
807 /*
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
810 */
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
815 }
816 }
817
818 return security_task_kill(t, info, sig, 0);
819 }
820
821 /**
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
824 *
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
828 *
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
834 *
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
837 */
838 static void ptrace_trap_notify(struct task_struct *t)
839 {
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
842
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845 }
846
847 /*
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
853 *
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
856 */
857 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
858 {
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
861
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 /*
864 * The process is in the middle of dying, nothing to do.
865 */
866 } else if (sig_kernel_stop(sig)) {
867 /*
868 * This is a stop signal. Remove SIGCONT from all queues.
869 */
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
877 /*
878 * Remove all stop signals from all queues, wake all threads.
879 */
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
890
891 /*
892 * Notify the parent with CLD_CONTINUED if we were stopped.
893 *
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
898 */
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
904
905 if (why) {
906 /*
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
910 */
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
914 }
915 }
916
917 return !sig_ignored(p, sig, from_ancestor_ns);
918 }
919
920 /*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928 static inline int wants_signal(int sig, struct task_struct *p)
929 {
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939 }
940
941 static void complete_signal(int sig, struct task_struct *p, int group)
942 {
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
968 /*
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
972 */
973 return;
974 }
975 signal->curr_target = t;
976 }
977
978 /*
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
981 */
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
986 /*
987 * This signal will be fatal to the whole group.
988 */
989 if (!sig_kernel_coredump(sig)) {
990 /*
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
995 */
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1006 }
1007 }
1008
1009 /*
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1012 */
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1015 }
1016
1017 static inline int legacy_queue(struct sigpending *signals, int sig)
1018 {
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020 }
1021
1022 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023 int group, int from_ancestor_ns)
1024 {
1025 struct sigpending *pending;
1026 struct sigqueue *q;
1027 int override_rlimit;
1028
1029 trace_signal_generate(sig, info, t);
1030
1031 assert_spin_locked(&t->sighand->siglock);
1032
1033 if (!prepare_signal(sig, t, from_ancestor_ns))
1034 return 0;
1035
1036 pending = group ? &t->signal->shared_pending : &t->pending;
1037 /*
1038 * Short-circuit ignored signals and support queuing
1039 * exactly one non-rt signal, so that we can get more
1040 * detailed information about the cause of the signal.
1041 */
1042 if (legacy_queue(pending, sig))
1043 return 0;
1044 /*
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1047 */
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1050
1051 /*
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1059 */
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1064
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = current_uid();
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1090 }
1091 } else if (!is_si_special(info)) {
1092 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093 /*
1094 * Queue overflow, abort. We may abort if the
1095 * signal was rt and sent by user using something
1096 * other than kill().
1097 */
1098 trace_signal_overflow_fail(sig, group, info);
1099 return -EAGAIN;
1100 } else {
1101 /*
1102 * This is a silent loss of information. We still
1103 * send the signal, but the *info bits are lost.
1104 */
1105 trace_signal_lose_info(sig, group, info);
1106 }
1107 }
1108
1109 out_set:
1110 signalfd_notify(t, sig);
1111 sigaddset(&pending->signal, sig);
1112 complete_signal(sig, t, group);
1113 return 0;
1114 }
1115
1116 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117 int group)
1118 {
1119 int from_ancestor_ns = 0;
1120
1121 #ifdef CONFIG_PID_NS
1122 from_ancestor_ns = si_fromuser(info) &&
1123 !task_pid_nr_ns(current, task_active_pid_ns(t));
1124 #endif
1125
1126 return __send_signal(sig, info, t, group, from_ancestor_ns);
1127 }
1128
1129 static void print_fatal_signal(struct pt_regs *regs, int signr)
1130 {
1131 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132 current->comm, task_pid_nr(current), signr);
1133
1134 #if defined(__i386__) && !defined(__arch_um__)
1135 printk("code at %08lx: ", regs->ip);
1136 {
1137 int i;
1138 for (i = 0; i < 16; i++) {
1139 unsigned char insn;
1140
1141 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142 break;
1143 printk("%02x ", insn);
1144 }
1145 }
1146 #endif
1147 printk("\n");
1148 preempt_disable();
1149 show_regs(regs);
1150 preempt_enable();
1151 }
1152
1153 static int __init setup_print_fatal_signals(char *str)
1154 {
1155 get_option (&str, &print_fatal_signals);
1156
1157 return 1;
1158 }
1159
1160 __setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162 int
1163 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164 {
1165 return send_signal(sig, info, p, 1);
1166 }
1167
1168 static int
1169 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170 {
1171 return send_signal(sig, info, t, 0);
1172 }
1173
1174 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175 bool group)
1176 {
1177 unsigned long flags;
1178 int ret = -ESRCH;
1179
1180 if (lock_task_sighand(p, &flags)) {
1181 ret = send_signal(sig, info, p, group);
1182 unlock_task_sighand(p, &flags);
1183 }
1184
1185 return ret;
1186 }
1187
1188 /*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199 int
1200 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201 {
1202 unsigned long int flags;
1203 int ret, blocked, ignored;
1204 struct k_sigaction *action;
1205
1206 spin_lock_irqsave(&t->sighand->siglock, flags);
1207 action = &t->sighand->action[sig-1];
1208 ignored = action->sa.sa_handler == SIG_IGN;
1209 blocked = sigismember(&t->blocked, sig);
1210 if (blocked || ignored) {
1211 action->sa.sa_handler = SIG_DFL;
1212 if (blocked) {
1213 sigdelset(&t->blocked, sig);
1214 recalc_sigpending_and_wake(t);
1215 }
1216 }
1217 if (action->sa.sa_handler == SIG_DFL)
1218 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219 ret = specific_send_sig_info(sig, info, t);
1220 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222 return ret;
1223 }
1224
1225 /*
1226 * Nuke all other threads in the group.
1227 */
1228 int zap_other_threads(struct task_struct *p)
1229 {
1230 struct task_struct *t = p;
1231 int count = 0;
1232
1233 p->signal->group_stop_count = 0;
1234
1235 while_each_thread(p, t) {
1236 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237 count++;
1238
1239 /* Don't bother with already dead threads */
1240 if (t->exit_state)
1241 continue;
1242 sigaddset(&t->pending.signal, SIGKILL);
1243 signal_wake_up(t, 1);
1244 }
1245
1246 return count;
1247 }
1248
1249 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250 unsigned long *flags)
1251 {
1252 struct sighand_struct *sighand;
1253
1254 rcu_read_lock();
1255 for (;;) {
1256 sighand = rcu_dereference(tsk->sighand);
1257 if (unlikely(sighand == NULL))
1258 break;
1259
1260 spin_lock_irqsave(&sighand->siglock, *flags);
1261 if (likely(sighand == tsk->sighand))
1262 break;
1263 spin_unlock_irqrestore(&sighand->siglock, *flags);
1264 }
1265 rcu_read_unlock();
1266
1267 return sighand;
1268 }
1269
1270 /*
1271 * send signal info to all the members of a group
1272 */
1273 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1274 {
1275 int ret;
1276
1277 rcu_read_lock();
1278 ret = check_kill_permission(sig, info, p);
1279 rcu_read_unlock();
1280
1281 if (!ret && sig)
1282 ret = do_send_sig_info(sig, info, p, true);
1283
1284 return ret;
1285 }
1286
1287 /*
1288 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1289 * control characters do (^C, ^Z etc)
1290 * - the caller must hold at least a readlock on tasklist_lock
1291 */
1292 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1293 {
1294 struct task_struct *p = NULL;
1295 int retval, success;
1296
1297 success = 0;
1298 retval = -ESRCH;
1299 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1300 int err = group_send_sig_info(sig, info, p);
1301 success |= !err;
1302 retval = err;
1303 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1304 return success ? 0 : retval;
1305 }
1306
1307 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1308 {
1309 int error = -ESRCH;
1310 struct task_struct *p;
1311
1312 rcu_read_lock();
1313 retry:
1314 p = pid_task(pid, PIDTYPE_PID);
1315 if (p) {
1316 error = group_send_sig_info(sig, info, p);
1317 if (unlikely(error == -ESRCH))
1318 /*
1319 * The task was unhashed in between, try again.
1320 * If it is dead, pid_task() will return NULL,
1321 * if we race with de_thread() it will find the
1322 * new leader.
1323 */
1324 goto retry;
1325 }
1326 rcu_read_unlock();
1327
1328 return error;
1329 }
1330
1331 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1332 {
1333 int error;
1334 rcu_read_lock();
1335 error = kill_pid_info(sig, info, find_vpid(pid));
1336 rcu_read_unlock();
1337 return error;
1338 }
1339
1340 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1341 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1342 uid_t uid, uid_t euid, u32 secid)
1343 {
1344 int ret = -EINVAL;
1345 struct task_struct *p;
1346 const struct cred *pcred;
1347 unsigned long flags;
1348
1349 if (!valid_signal(sig))
1350 return ret;
1351
1352 rcu_read_lock();
1353 p = pid_task(pid, PIDTYPE_PID);
1354 if (!p) {
1355 ret = -ESRCH;
1356 goto out_unlock;
1357 }
1358 pcred = __task_cred(p);
1359 if (si_fromuser(info) &&
1360 euid != pcred->suid && euid != pcred->uid &&
1361 uid != pcred->suid && uid != pcred->uid) {
1362 ret = -EPERM;
1363 goto out_unlock;
1364 }
1365 ret = security_task_kill(p, info, sig, secid);
1366 if (ret)
1367 goto out_unlock;
1368
1369 if (sig) {
1370 if (lock_task_sighand(p, &flags)) {
1371 ret = __send_signal(sig, info, p, 1, 0);
1372 unlock_task_sighand(p, &flags);
1373 } else
1374 ret = -ESRCH;
1375 }
1376 out_unlock:
1377 rcu_read_unlock();
1378 return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1381
1382 /*
1383 * kill_something_info() interprets pid in interesting ways just like kill(2).
1384 *
1385 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1386 * is probably wrong. Should make it like BSD or SYSV.
1387 */
1388
1389 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1390 {
1391 int ret;
1392
1393 if (pid > 0) {
1394 rcu_read_lock();
1395 ret = kill_pid_info(sig, info, find_vpid(pid));
1396 rcu_read_unlock();
1397 return ret;
1398 }
1399
1400 read_lock(&tasklist_lock);
1401 if (pid != -1) {
1402 ret = __kill_pgrp_info(sig, info,
1403 pid ? find_vpid(-pid) : task_pgrp(current));
1404 } else {
1405 int retval = 0, count = 0;
1406 struct task_struct * p;
1407
1408 for_each_process(p) {
1409 if (task_pid_vnr(p) > 1 &&
1410 !same_thread_group(p, current)) {
1411 int err = group_send_sig_info(sig, info, p);
1412 ++count;
1413 if (err != -EPERM)
1414 retval = err;
1415 }
1416 }
1417 ret = count ? retval : -ESRCH;
1418 }
1419 read_unlock(&tasklist_lock);
1420
1421 return ret;
1422 }
1423
1424 /*
1425 * These are for backward compatibility with the rest of the kernel source.
1426 */
1427
1428 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1429 {
1430 /*
1431 * Make sure legacy kernel users don't send in bad values
1432 * (normal paths check this in check_kill_permission).
1433 */
1434 if (!valid_signal(sig))
1435 return -EINVAL;
1436
1437 return do_send_sig_info(sig, info, p, false);
1438 }
1439
1440 #define __si_special(priv) \
1441 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1442
1443 int
1444 send_sig(int sig, struct task_struct *p, int priv)
1445 {
1446 return send_sig_info(sig, __si_special(priv), p);
1447 }
1448
1449 void
1450 force_sig(int sig, struct task_struct *p)
1451 {
1452 force_sig_info(sig, SEND_SIG_PRIV, p);
1453 }
1454
1455 /*
1456 * When things go south during signal handling, we
1457 * will force a SIGSEGV. And if the signal that caused
1458 * the problem was already a SIGSEGV, we'll want to
1459 * make sure we don't even try to deliver the signal..
1460 */
1461 int
1462 force_sigsegv(int sig, struct task_struct *p)
1463 {
1464 if (sig == SIGSEGV) {
1465 unsigned long flags;
1466 spin_lock_irqsave(&p->sighand->siglock, flags);
1467 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1468 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1469 }
1470 force_sig(SIGSEGV, p);
1471 return 0;
1472 }
1473
1474 int kill_pgrp(struct pid *pid, int sig, int priv)
1475 {
1476 int ret;
1477
1478 read_lock(&tasklist_lock);
1479 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1480 read_unlock(&tasklist_lock);
1481
1482 return ret;
1483 }
1484 EXPORT_SYMBOL(kill_pgrp);
1485
1486 int kill_pid(struct pid *pid, int sig, int priv)
1487 {
1488 return kill_pid_info(sig, __si_special(priv), pid);
1489 }
1490 EXPORT_SYMBOL(kill_pid);
1491
1492 /*
1493 * These functions support sending signals using preallocated sigqueue
1494 * structures. This is needed "because realtime applications cannot
1495 * afford to lose notifications of asynchronous events, like timer
1496 * expirations or I/O completions". In the case of POSIX Timers
1497 * we allocate the sigqueue structure from the timer_create. If this
1498 * allocation fails we are able to report the failure to the application
1499 * with an EAGAIN error.
1500 */
1501 struct sigqueue *sigqueue_alloc(void)
1502 {
1503 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1504
1505 if (q)
1506 q->flags |= SIGQUEUE_PREALLOC;
1507
1508 return q;
1509 }
1510
1511 void sigqueue_free(struct sigqueue *q)
1512 {
1513 unsigned long flags;
1514 spinlock_t *lock = &current->sighand->siglock;
1515
1516 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1517 /*
1518 * We must hold ->siglock while testing q->list
1519 * to serialize with collect_signal() or with
1520 * __exit_signal()->flush_sigqueue().
1521 */
1522 spin_lock_irqsave(lock, flags);
1523 q->flags &= ~SIGQUEUE_PREALLOC;
1524 /*
1525 * If it is queued it will be freed when dequeued,
1526 * like the "regular" sigqueue.
1527 */
1528 if (!list_empty(&q->list))
1529 q = NULL;
1530 spin_unlock_irqrestore(lock, flags);
1531
1532 if (q)
1533 __sigqueue_free(q);
1534 }
1535
1536 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1537 {
1538 int sig = q->info.si_signo;
1539 struct sigpending *pending;
1540 unsigned long flags;
1541 int ret;
1542
1543 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1544
1545 ret = -1;
1546 if (!likely(lock_task_sighand(t, &flags)))
1547 goto ret;
1548
1549 ret = 1; /* the signal is ignored */
1550 if (!prepare_signal(sig, t, 0))
1551 goto out;
1552
1553 ret = 0;
1554 if (unlikely(!list_empty(&q->list))) {
1555 /*
1556 * If an SI_TIMER entry is already queue just increment
1557 * the overrun count.
1558 */
1559 BUG_ON(q->info.si_code != SI_TIMER);
1560 q->info.si_overrun++;
1561 goto out;
1562 }
1563 q->info.si_overrun = 0;
1564
1565 signalfd_notify(t, sig);
1566 pending = group ? &t->signal->shared_pending : &t->pending;
1567 list_add_tail(&q->list, &pending->list);
1568 sigaddset(&pending->signal, sig);
1569 complete_signal(sig, t, group);
1570 out:
1571 unlock_task_sighand(t, &flags);
1572 ret:
1573 return ret;
1574 }
1575
1576 /*
1577 * Let a parent know about the death of a child.
1578 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1579 *
1580 * Returns true if our parent ignored us and so we've switched to
1581 * self-reaping.
1582 */
1583 bool do_notify_parent(struct task_struct *tsk, int sig)
1584 {
1585 struct siginfo info;
1586 unsigned long flags;
1587 struct sighand_struct *psig;
1588 bool autoreap = false;
1589
1590 BUG_ON(sig == -1);
1591
1592 /* do_notify_parent_cldstop should have been called instead. */
1593 BUG_ON(task_is_stopped_or_traced(tsk));
1594
1595 BUG_ON(!tsk->ptrace &&
1596 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1597
1598 info.si_signo = sig;
1599 info.si_errno = 0;
1600 /*
1601 * we are under tasklist_lock here so our parent is tied to
1602 * us and cannot exit and release its namespace.
1603 *
1604 * the only it can is to switch its nsproxy with sys_unshare,
1605 * bu uncharing pid namespaces is not allowed, so we'll always
1606 * see relevant namespace
1607 *
1608 * write_lock() currently calls preempt_disable() which is the
1609 * same as rcu_read_lock(), but according to Oleg, this is not
1610 * correct to rely on this
1611 */
1612 rcu_read_lock();
1613 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1614 info.si_uid = __task_cred(tsk)->uid;
1615 rcu_read_unlock();
1616
1617 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1618 tsk->signal->utime));
1619 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1620 tsk->signal->stime));
1621
1622 info.si_status = tsk->exit_code & 0x7f;
1623 if (tsk->exit_code & 0x80)
1624 info.si_code = CLD_DUMPED;
1625 else if (tsk->exit_code & 0x7f)
1626 info.si_code = CLD_KILLED;
1627 else {
1628 info.si_code = CLD_EXITED;
1629 info.si_status = tsk->exit_code >> 8;
1630 }
1631
1632 psig = tsk->parent->sighand;
1633 spin_lock_irqsave(&psig->siglock, flags);
1634 if (!tsk->ptrace && sig == SIGCHLD &&
1635 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1636 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1637 /*
1638 * We are exiting and our parent doesn't care. POSIX.1
1639 * defines special semantics for setting SIGCHLD to SIG_IGN
1640 * or setting the SA_NOCLDWAIT flag: we should be reaped
1641 * automatically and not left for our parent's wait4 call.
1642 * Rather than having the parent do it as a magic kind of
1643 * signal handler, we just set this to tell do_exit that we
1644 * can be cleaned up without becoming a zombie. Note that
1645 * we still call __wake_up_parent in this case, because a
1646 * blocked sys_wait4 might now return -ECHILD.
1647 *
1648 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1649 * is implementation-defined: we do (if you don't want
1650 * it, just use SIG_IGN instead).
1651 */
1652 autoreap = true;
1653 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1654 sig = 0;
1655 }
1656 if (valid_signal(sig) && sig)
1657 __group_send_sig_info(sig, &info, tsk->parent);
1658 __wake_up_parent(tsk, tsk->parent);
1659 spin_unlock_irqrestore(&psig->siglock, flags);
1660
1661 return autoreap;
1662 }
1663
1664 /**
1665 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1666 * @tsk: task reporting the state change
1667 * @for_ptracer: the notification is for ptracer
1668 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1669 *
1670 * Notify @tsk's parent that the stopped/continued state has changed. If
1671 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1672 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1673 *
1674 * CONTEXT:
1675 * Must be called with tasklist_lock at least read locked.
1676 */
1677 static void do_notify_parent_cldstop(struct task_struct *tsk,
1678 bool for_ptracer, int why)
1679 {
1680 struct siginfo info;
1681 unsigned long flags;
1682 struct task_struct *parent;
1683 struct sighand_struct *sighand;
1684
1685 if (for_ptracer) {
1686 parent = tsk->parent;
1687 } else {
1688 tsk = tsk->group_leader;
1689 parent = tsk->real_parent;
1690 }
1691
1692 info.si_signo = SIGCHLD;
1693 info.si_errno = 0;
1694 /*
1695 * see comment in do_notify_parent() about the following 4 lines
1696 */
1697 rcu_read_lock();
1698 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1699 info.si_uid = __task_cred(tsk)->uid;
1700 rcu_read_unlock();
1701
1702 info.si_utime = cputime_to_clock_t(tsk->utime);
1703 info.si_stime = cputime_to_clock_t(tsk->stime);
1704
1705 info.si_code = why;
1706 switch (why) {
1707 case CLD_CONTINUED:
1708 info.si_status = SIGCONT;
1709 break;
1710 case CLD_STOPPED:
1711 info.si_status = tsk->signal->group_exit_code & 0x7f;
1712 break;
1713 case CLD_TRAPPED:
1714 info.si_status = tsk->exit_code & 0x7f;
1715 break;
1716 default:
1717 BUG();
1718 }
1719
1720 sighand = parent->sighand;
1721 spin_lock_irqsave(&sighand->siglock, flags);
1722 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724 __group_send_sig_info(SIGCHLD, &info, parent);
1725 /*
1726 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727 */
1728 __wake_up_parent(tsk, parent);
1729 spin_unlock_irqrestore(&sighand->siglock, flags);
1730 }
1731
1732 static inline int may_ptrace_stop(void)
1733 {
1734 if (!likely(current->ptrace))
1735 return 0;
1736 /*
1737 * Are we in the middle of do_coredump?
1738 * If so and our tracer is also part of the coredump stopping
1739 * is a deadlock situation, and pointless because our tracer
1740 * is dead so don't allow us to stop.
1741 * If SIGKILL was already sent before the caller unlocked
1742 * ->siglock we must see ->core_state != NULL. Otherwise it
1743 * is safe to enter schedule().
1744 */
1745 if (unlikely(current->mm->core_state) &&
1746 unlikely(current->mm == current->parent->mm))
1747 return 0;
1748
1749 return 1;
1750 }
1751
1752 /*
1753 * Return non-zero if there is a SIGKILL that should be waking us up.
1754 * Called with the siglock held.
1755 */
1756 static int sigkill_pending(struct task_struct *tsk)
1757 {
1758 return sigismember(&tsk->pending.signal, SIGKILL) ||
1759 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1760 }
1761
1762 /*
1763 * Test whether the target task of the usual cldstop notification - the
1764 * real_parent of @child - is in the same group as the ptracer.
1765 */
1766 static bool real_parent_is_ptracer(struct task_struct *child)
1767 {
1768 return same_thread_group(child->parent, child->real_parent);
1769 }
1770
1771 /*
1772 * This must be called with current->sighand->siglock held.
1773 *
1774 * This should be the path for all ptrace stops.
1775 * We always set current->last_siginfo while stopped here.
1776 * That makes it a way to test a stopped process for
1777 * being ptrace-stopped vs being job-control-stopped.
1778 *
1779 * If we actually decide not to stop at all because the tracer
1780 * is gone, we keep current->exit_code unless clear_code.
1781 */
1782 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1783 __releases(&current->sighand->siglock)
1784 __acquires(&current->sighand->siglock)
1785 {
1786 bool gstop_done = false;
1787
1788 if (arch_ptrace_stop_needed(exit_code, info)) {
1789 /*
1790 * The arch code has something special to do before a
1791 * ptrace stop. This is allowed to block, e.g. for faults
1792 * on user stack pages. We can't keep the siglock while
1793 * calling arch_ptrace_stop, so we must release it now.
1794 * To preserve proper semantics, we must do this before
1795 * any signal bookkeeping like checking group_stop_count.
1796 * Meanwhile, a SIGKILL could come in before we retake the
1797 * siglock. That must prevent us from sleeping in TASK_TRACED.
1798 * So after regaining the lock, we must check for SIGKILL.
1799 */
1800 spin_unlock_irq(&current->sighand->siglock);
1801 arch_ptrace_stop(exit_code, info);
1802 spin_lock_irq(&current->sighand->siglock);
1803 if (sigkill_pending(current))
1804 return;
1805 }
1806
1807 /*
1808 * We're committing to trapping. TRACED should be visible before
1809 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1810 * Also, transition to TRACED and updates to ->jobctl should be
1811 * atomic with respect to siglock and should be done after the arch
1812 * hook as siglock is released and regrabbed across it.
1813 */
1814 set_current_state(TASK_TRACED);
1815
1816 current->last_siginfo = info;
1817 current->exit_code = exit_code;
1818
1819 /*
1820 * If @why is CLD_STOPPED, we're trapping to participate in a group
1821 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1822 * across siglock relocks since INTERRUPT was scheduled, PENDING
1823 * could be clear now. We act as if SIGCONT is received after
1824 * TASK_TRACED is entered - ignore it.
1825 */
1826 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1827 gstop_done = task_participate_group_stop(current);
1828
1829 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1830 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1831 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1832 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1833
1834 /* entering a trap, clear TRAPPING */
1835 task_clear_jobctl_trapping(current);
1836
1837 spin_unlock_irq(&current->sighand->siglock);
1838 read_lock(&tasklist_lock);
1839 if (may_ptrace_stop()) {
1840 /*
1841 * Notify parents of the stop.
1842 *
1843 * While ptraced, there are two parents - the ptracer and
1844 * the real_parent of the group_leader. The ptracer should
1845 * know about every stop while the real parent is only
1846 * interested in the completion of group stop. The states
1847 * for the two don't interact with each other. Notify
1848 * separately unless they're gonna be duplicates.
1849 */
1850 do_notify_parent_cldstop(current, true, why);
1851 if (gstop_done && !real_parent_is_ptracer(current))
1852 do_notify_parent_cldstop(current, false, why);
1853
1854 /*
1855 * Don't want to allow preemption here, because
1856 * sys_ptrace() needs this task to be inactive.
1857 *
1858 * XXX: implement read_unlock_no_resched().
1859 */
1860 preempt_disable();
1861 read_unlock(&tasklist_lock);
1862 preempt_enable_no_resched();
1863 schedule();
1864 } else {
1865 /*
1866 * By the time we got the lock, our tracer went away.
1867 * Don't drop the lock yet, another tracer may come.
1868 *
1869 * If @gstop_done, the ptracer went away between group stop
1870 * completion and here. During detach, it would have set
1871 * JOBCTL_STOP_PENDING on us and we'll re-enter
1872 * TASK_STOPPED in do_signal_stop() on return, so notifying
1873 * the real parent of the group stop completion is enough.
1874 */
1875 if (gstop_done)
1876 do_notify_parent_cldstop(current, false, why);
1877
1878 __set_current_state(TASK_RUNNING);
1879 if (clear_code)
1880 current->exit_code = 0;
1881 read_unlock(&tasklist_lock);
1882 }
1883
1884 /*
1885 * While in TASK_TRACED, we were considered "frozen enough".
1886 * Now that we woke up, it's crucial if we're supposed to be
1887 * frozen that we freeze now before running anything substantial.
1888 */
1889 try_to_freeze();
1890
1891 /*
1892 * We are back. Now reacquire the siglock before touching
1893 * last_siginfo, so that we are sure to have synchronized with
1894 * any signal-sending on another CPU that wants to examine it.
1895 */
1896 spin_lock_irq(&current->sighand->siglock);
1897 current->last_siginfo = NULL;
1898
1899 /* LISTENING can be set only during STOP traps, clear it */
1900 current->jobctl &= ~JOBCTL_LISTENING;
1901
1902 /*
1903 * Queued signals ignored us while we were stopped for tracing.
1904 * So check for any that we should take before resuming user mode.
1905 * This sets TIF_SIGPENDING, but never clears it.
1906 */
1907 recalc_sigpending_tsk(current);
1908 }
1909
1910 static void ptrace_do_notify(int signr, int exit_code, int why)
1911 {
1912 siginfo_t info;
1913
1914 memset(&info, 0, sizeof info);
1915 info.si_signo = signr;
1916 info.si_code = exit_code;
1917 info.si_pid = task_pid_vnr(current);
1918 info.si_uid = current_uid();
1919
1920 /* Let the debugger run. */
1921 ptrace_stop(exit_code, why, 1, &info);
1922 }
1923
1924 void ptrace_notify(int exit_code)
1925 {
1926 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1927
1928 spin_lock_irq(&current->sighand->siglock);
1929 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1930 spin_unlock_irq(&current->sighand->siglock);
1931 }
1932
1933 /**
1934 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1935 * @signr: signr causing group stop if initiating
1936 *
1937 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1938 * and participate in it. If already set, participate in the existing
1939 * group stop. If participated in a group stop (and thus slept), %true is
1940 * returned with siglock released.
1941 *
1942 * If ptraced, this function doesn't handle stop itself. Instead,
1943 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1944 * untouched. The caller must ensure that INTERRUPT trap handling takes
1945 * places afterwards.
1946 *
1947 * CONTEXT:
1948 * Must be called with @current->sighand->siglock held, which is released
1949 * on %true return.
1950 *
1951 * RETURNS:
1952 * %false if group stop is already cancelled or ptrace trap is scheduled.
1953 * %true if participated in group stop.
1954 */
1955 static bool do_signal_stop(int signr)
1956 __releases(&current->sighand->siglock)
1957 {
1958 struct signal_struct *sig = current->signal;
1959
1960 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1961 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1962 struct task_struct *t;
1963
1964 /* signr will be recorded in task->jobctl for retries */
1965 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1966
1967 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1968 unlikely(signal_group_exit(sig)))
1969 return false;
1970 /*
1971 * There is no group stop already in progress. We must
1972 * initiate one now.
1973 *
1974 * While ptraced, a task may be resumed while group stop is
1975 * still in effect and then receive a stop signal and
1976 * initiate another group stop. This deviates from the
1977 * usual behavior as two consecutive stop signals can't
1978 * cause two group stops when !ptraced. That is why we
1979 * also check !task_is_stopped(t) below.
1980 *
1981 * The condition can be distinguished by testing whether
1982 * SIGNAL_STOP_STOPPED is already set. Don't generate
1983 * group_exit_code in such case.
1984 *
1985 * This is not necessary for SIGNAL_STOP_CONTINUED because
1986 * an intervening stop signal is required to cause two
1987 * continued events regardless of ptrace.
1988 */
1989 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1990 sig->group_exit_code = signr;
1991 else
1992 WARN_ON_ONCE(!current->ptrace);
1993
1994 sig->group_stop_count = 0;
1995
1996 if (task_set_jobctl_pending(current, signr | gstop))
1997 sig->group_stop_count++;
1998
1999 for (t = next_thread(current); t != current;
2000 t = next_thread(t)) {
2001 /*
2002 * Setting state to TASK_STOPPED for a group
2003 * stop is always done with the siglock held,
2004 * so this check has no races.
2005 */
2006 if (!task_is_stopped(t) &&
2007 task_set_jobctl_pending(t, signr | gstop)) {
2008 sig->group_stop_count++;
2009 if (likely(!(t->ptrace & PT_SEIZED)))
2010 signal_wake_up(t, 0);
2011 else
2012 ptrace_trap_notify(t);
2013 }
2014 }
2015 }
2016
2017 if (likely(!current->ptrace)) {
2018 int notify = 0;
2019
2020 /*
2021 * If there are no other threads in the group, or if there
2022 * is a group stop in progress and we are the last to stop,
2023 * report to the parent.
2024 */
2025 if (task_participate_group_stop(current))
2026 notify = CLD_STOPPED;
2027
2028 __set_current_state(TASK_STOPPED);
2029 spin_unlock_irq(&current->sighand->siglock);
2030
2031 /*
2032 * Notify the parent of the group stop completion. Because
2033 * we're not holding either the siglock or tasklist_lock
2034 * here, ptracer may attach inbetween; however, this is for
2035 * group stop and should always be delivered to the real
2036 * parent of the group leader. The new ptracer will get
2037 * its notification when this task transitions into
2038 * TASK_TRACED.
2039 */
2040 if (notify) {
2041 read_lock(&tasklist_lock);
2042 do_notify_parent_cldstop(current, false, notify);
2043 read_unlock(&tasklist_lock);
2044 }
2045
2046 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2047 schedule();
2048 return true;
2049 } else {
2050 /*
2051 * While ptraced, group stop is handled by STOP trap.
2052 * Schedule it and let the caller deal with it.
2053 */
2054 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2055 return false;
2056 }
2057 }
2058
2059 /**
2060 * do_jobctl_trap - take care of ptrace jobctl traps
2061 *
2062 * When PT_SEIZED, it's used for both group stop and explicit
2063 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2064 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2065 * the stop signal; otherwise, %SIGTRAP.
2066 *
2067 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2068 * number as exit_code and no siginfo.
2069 *
2070 * CONTEXT:
2071 * Must be called with @current->sighand->siglock held, which may be
2072 * released and re-acquired before returning with intervening sleep.
2073 */
2074 static void do_jobctl_trap(void)
2075 {
2076 struct signal_struct *signal = current->signal;
2077 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2078
2079 if (current->ptrace & PT_SEIZED) {
2080 if (!signal->group_stop_count &&
2081 !(signal->flags & SIGNAL_STOP_STOPPED))
2082 signr = SIGTRAP;
2083 WARN_ON_ONCE(!signr);
2084 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2085 CLD_STOPPED);
2086 } else {
2087 WARN_ON_ONCE(!signr);
2088 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2089 current->exit_code = 0;
2090 }
2091 }
2092
2093 static int ptrace_signal(int signr, siginfo_t *info,
2094 struct pt_regs *regs, void *cookie)
2095 {
2096 if (!current->ptrace)
2097 return signr;
2098
2099 ptrace_signal_deliver(regs, cookie);
2100
2101 /* Let the debugger run. */
2102 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2103
2104 /* We're back. Did the debugger cancel the sig? */
2105 signr = current->exit_code;
2106 if (signr == 0)
2107 return signr;
2108
2109 current->exit_code = 0;
2110
2111 /*
2112 * Update the siginfo structure if the signal has
2113 * changed. If the debugger wanted something
2114 * specific in the siginfo structure then it should
2115 * have updated *info via PTRACE_SETSIGINFO.
2116 */
2117 if (signr != info->si_signo) {
2118 info->si_signo = signr;
2119 info->si_errno = 0;
2120 info->si_code = SI_USER;
2121 info->si_pid = task_pid_vnr(current->parent);
2122 info->si_uid = task_uid(current->parent);
2123 }
2124
2125 /* If the (new) signal is now blocked, requeue it. */
2126 if (sigismember(&current->blocked, signr)) {
2127 specific_send_sig_info(signr, info, current);
2128 signr = 0;
2129 }
2130
2131 return signr;
2132 }
2133
2134 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2135 struct pt_regs *regs, void *cookie)
2136 {
2137 struct sighand_struct *sighand = current->sighand;
2138 struct signal_struct *signal = current->signal;
2139 int signr;
2140
2141 relock:
2142 /*
2143 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2144 * While in TASK_STOPPED, we were considered "frozen enough".
2145 * Now that we woke up, it's crucial if we're supposed to be
2146 * frozen that we freeze now before running anything substantial.
2147 */
2148 try_to_freeze();
2149
2150 spin_lock_irq(&sighand->siglock);
2151 /*
2152 * Every stopped thread goes here after wakeup. Check to see if
2153 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155 */
2156 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157 struct task_struct *leader;
2158 int why;
2159
2160 if (signal->flags & SIGNAL_CLD_CONTINUED)
2161 why = CLD_CONTINUED;
2162 else
2163 why = CLD_STOPPED;
2164
2165 signal->flags &= ~SIGNAL_CLD_MASK;
2166
2167 spin_unlock_irq(&sighand->siglock);
2168
2169 /*
2170 * Notify the parent that we're continuing. This event is
2171 * always per-process and doesn't make whole lot of sense
2172 * for ptracers, who shouldn't consume the state via
2173 * wait(2) either, but, for backward compatibility, notify
2174 * the ptracer of the group leader too unless it's gonna be
2175 * a duplicate.
2176 */
2177 read_lock(&tasklist_lock);
2178
2179 do_notify_parent_cldstop(current, false, why);
2180
2181 leader = current->group_leader;
2182 if (leader->ptrace && !real_parent_is_ptracer(leader))
2183 do_notify_parent_cldstop(leader, true, why);
2184
2185 read_unlock(&tasklist_lock);
2186
2187 goto relock;
2188 }
2189
2190 for (;;) {
2191 struct k_sigaction *ka;
2192
2193 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194 do_signal_stop(0))
2195 goto relock;
2196
2197 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198 do_jobctl_trap();
2199 spin_unlock_irq(&sighand->siglock);
2200 goto relock;
2201 }
2202
2203 signr = dequeue_signal(current, &current->blocked, info);
2204
2205 if (!signr)
2206 break; /* will return 0 */
2207
2208 if (signr != SIGKILL) {
2209 signr = ptrace_signal(signr, info,
2210 regs, cookie);
2211 if (!signr)
2212 continue;
2213 }
2214
2215 ka = &sighand->action[signr-1];
2216
2217 /* Trace actually delivered signals. */
2218 trace_signal_deliver(signr, info, ka);
2219
2220 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2221 continue;
2222 if (ka->sa.sa_handler != SIG_DFL) {
2223 /* Run the handler. */
2224 *return_ka = *ka;
2225
2226 if (ka->sa.sa_flags & SA_ONESHOT)
2227 ka->sa.sa_handler = SIG_DFL;
2228
2229 break; /* will return non-zero "signr" value */
2230 }
2231
2232 /*
2233 * Now we are doing the default action for this signal.
2234 */
2235 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236 continue;
2237
2238 /*
2239 * Global init gets no signals it doesn't want.
2240 * Container-init gets no signals it doesn't want from same
2241 * container.
2242 *
2243 * Note that if global/container-init sees a sig_kernel_only()
2244 * signal here, the signal must have been generated internally
2245 * or must have come from an ancestor namespace. In either
2246 * case, the signal cannot be dropped.
2247 */
2248 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249 !sig_kernel_only(signr))
2250 continue;
2251
2252 if (sig_kernel_stop(signr)) {
2253 /*
2254 * The default action is to stop all threads in
2255 * the thread group. The job control signals
2256 * do nothing in an orphaned pgrp, but SIGSTOP
2257 * always works. Note that siglock needs to be
2258 * dropped during the call to is_orphaned_pgrp()
2259 * because of lock ordering with tasklist_lock.
2260 * This allows an intervening SIGCONT to be posted.
2261 * We need to check for that and bail out if necessary.
2262 */
2263 if (signr != SIGSTOP) {
2264 spin_unlock_irq(&sighand->siglock);
2265
2266 /* signals can be posted during this window */
2267
2268 if (is_current_pgrp_orphaned())
2269 goto relock;
2270
2271 spin_lock_irq(&sighand->siglock);
2272 }
2273
2274 if (likely(do_signal_stop(info->si_signo))) {
2275 /* It released the siglock. */
2276 goto relock;
2277 }
2278
2279 /*
2280 * We didn't actually stop, due to a race
2281 * with SIGCONT or something like that.
2282 */
2283 continue;
2284 }
2285
2286 spin_unlock_irq(&sighand->siglock);
2287
2288 /*
2289 * Anything else is fatal, maybe with a core dump.
2290 */
2291 current->flags |= PF_SIGNALED;
2292
2293 if (sig_kernel_coredump(signr)) {
2294 if (print_fatal_signals)
2295 print_fatal_signal(regs, info->si_signo);
2296 /*
2297 * If it was able to dump core, this kills all
2298 * other threads in the group and synchronizes with
2299 * their demise. If we lost the race with another
2300 * thread getting here, it set group_exit_code
2301 * first and our do_group_exit call below will use
2302 * that value and ignore the one we pass it.
2303 */
2304 do_coredump(info->si_signo, info->si_signo, regs);
2305 }
2306
2307 /*
2308 * Death signals, no core dump.
2309 */
2310 do_group_exit(info->si_signo);
2311 /* NOTREACHED */
2312 }
2313 spin_unlock_irq(&sighand->siglock);
2314 return signr;
2315 }
2316
2317 /*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323 {
2324 sigset_t retarget;
2325 struct task_struct *t;
2326
2327 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328 if (sigisemptyset(&retarget))
2329 return;
2330
2331 t = tsk;
2332 while_each_thread(tsk, t) {
2333 if (t->flags & PF_EXITING)
2334 continue;
2335
2336 if (!has_pending_signals(&retarget, &t->blocked))
2337 continue;
2338 /* Remove the signals this thread can handle. */
2339 sigandsets(&retarget, &retarget, &t->blocked);
2340
2341 if (!signal_pending(t))
2342 signal_wake_up(t, 0);
2343
2344 if (sigisemptyset(&retarget))
2345 break;
2346 }
2347 }
2348
2349 void exit_signals(struct task_struct *tsk)
2350 {
2351 int group_stop = 0;
2352 sigset_t unblocked;
2353
2354 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355 tsk->flags |= PF_EXITING;
2356 return;
2357 }
2358
2359 spin_lock_irq(&tsk->sighand->siglock);
2360 /*
2361 * From now this task is not visible for group-wide signals,
2362 * see wants_signal(), do_signal_stop().
2363 */
2364 tsk->flags |= PF_EXITING;
2365 if (!signal_pending(tsk))
2366 goto out;
2367
2368 unblocked = tsk->blocked;
2369 signotset(&unblocked);
2370 retarget_shared_pending(tsk, &unblocked);
2371
2372 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373 task_participate_group_stop(tsk))
2374 group_stop = CLD_STOPPED;
2375 out:
2376 spin_unlock_irq(&tsk->sighand->siglock);
2377
2378 /*
2379 * If group stop has completed, deliver the notification. This
2380 * should always go to the real parent of the group leader.
2381 */
2382 if (unlikely(group_stop)) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(tsk, false, group_stop);
2385 read_unlock(&tasklist_lock);
2386 }
2387 }
2388
2389 EXPORT_SYMBOL(recalc_sigpending);
2390 EXPORT_SYMBOL_GPL(dequeue_signal);
2391 EXPORT_SYMBOL(flush_signals);
2392 EXPORT_SYMBOL(force_sig);
2393 EXPORT_SYMBOL(send_sig);
2394 EXPORT_SYMBOL(send_sig_info);
2395 EXPORT_SYMBOL(sigprocmask);
2396 EXPORT_SYMBOL(block_all_signals);
2397 EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400 /*
2401 * System call entry points.
2402 */
2403
2404 /**
2405 * sys_restart_syscall - restart a system call
2406 */
2407 SYSCALL_DEFINE0(restart_syscall)
2408 {
2409 struct restart_block *restart = &current_thread_info()->restart_block;
2410 return restart->fn(restart);
2411 }
2412
2413 long do_no_restart_syscall(struct restart_block *param)
2414 {
2415 return -EINTR;
2416 }
2417
2418 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419 {
2420 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421 sigset_t newblocked;
2422 /* A set of now blocked but previously unblocked signals. */
2423 sigandnsets(&newblocked, newset, &current->blocked);
2424 retarget_shared_pending(tsk, &newblocked);
2425 }
2426 tsk->blocked = *newset;
2427 recalc_sigpending();
2428 }
2429
2430 /**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437 void set_current_blocked(const sigset_t *newset)
2438 {
2439 struct task_struct *tsk = current;
2440
2441 spin_lock_irq(&tsk->sighand->siglock);
2442 __set_task_blocked(tsk, newset);
2443 spin_unlock_irq(&tsk->sighand->siglock);
2444 }
2445
2446 /*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455 {
2456 struct task_struct *tsk = current;
2457 sigset_t newset;
2458
2459 /* Lockless, only current can change ->blocked, never from irq */
2460 if (oldset)
2461 *oldset = tsk->blocked;
2462
2463 switch (how) {
2464 case SIG_BLOCK:
2465 sigorsets(&newset, &tsk->blocked, set);
2466 break;
2467 case SIG_UNBLOCK:
2468 sigandnsets(&newset, &tsk->blocked, set);
2469 break;
2470 case SIG_SETMASK:
2471 newset = *set;
2472 break;
2473 default:
2474 return -EINVAL;
2475 }
2476
2477 set_current_blocked(&newset);
2478 return 0;
2479 }
2480
2481 /**
2482 * sys_rt_sigprocmask - change the list of currently blocked signals
2483 * @how: whether to add, remove, or set signals
2484 * @set: stores pending signals
2485 * @oset: previous value of signal mask if non-null
2486 * @sigsetsize: size of sigset_t type
2487 */
2488 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489 sigset_t __user *, oset, size_t, sigsetsize)
2490 {
2491 sigset_t old_set, new_set;
2492 int error;
2493
2494 /* XXX: Don't preclude handling different sized sigset_t's. */
2495 if (sigsetsize != sizeof(sigset_t))
2496 return -EINVAL;
2497
2498 old_set = current->blocked;
2499
2500 if (nset) {
2501 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502 return -EFAULT;
2503 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505 error = sigprocmask(how, &new_set, NULL);
2506 if (error)
2507 return error;
2508 }
2509
2510 if (oset) {
2511 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512 return -EFAULT;
2513 }
2514
2515 return 0;
2516 }
2517
2518 long do_sigpending(void __user *set, unsigned long sigsetsize)
2519 {
2520 long error = -EINVAL;
2521 sigset_t pending;
2522
2523 if (sigsetsize > sizeof(sigset_t))
2524 goto out;
2525
2526 spin_lock_irq(&current->sighand->siglock);
2527 sigorsets(&pending, &current->pending.signal,
2528 &current->signal->shared_pending.signal);
2529 spin_unlock_irq(&current->sighand->siglock);
2530
2531 /* Outside the lock because only this thread touches it. */
2532 sigandsets(&pending, &current->blocked, &pending);
2533
2534 error = -EFAULT;
2535 if (!copy_to_user(set, &pending, sigsetsize))
2536 error = 0;
2537
2538 out:
2539 return error;
2540 }
2541
2542 /**
2543 * sys_rt_sigpending - examine a pending signal that has been raised
2544 * while blocked
2545 * @set: stores pending signals
2546 * @sigsetsize: size of sigset_t type or larger
2547 */
2548 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549 {
2550 return do_sigpending(set, sigsetsize);
2551 }
2552
2553 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556 {
2557 int err;
2558
2559 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560 return -EFAULT;
2561 if (from->si_code < 0)
2562 return __copy_to_user(to, from, sizeof(siginfo_t))
2563 ? -EFAULT : 0;
2564 /*
2565 * If you change siginfo_t structure, please be sure
2566 * this code is fixed accordingly.
2567 * Please remember to update the signalfd_copyinfo() function
2568 * inside fs/signalfd.c too, in case siginfo_t changes.
2569 * It should never copy any pad contained in the structure
2570 * to avoid security leaks, but must copy the generic
2571 * 3 ints plus the relevant union member.
2572 */
2573 err = __put_user(from->si_signo, &to->si_signo);
2574 err |= __put_user(from->si_errno, &to->si_errno);
2575 err |= __put_user((short)from->si_code, &to->si_code);
2576 switch (from->si_code & __SI_MASK) {
2577 case __SI_KILL:
2578 err |= __put_user(from->si_pid, &to->si_pid);
2579 err |= __put_user(from->si_uid, &to->si_uid);
2580 break;
2581 case __SI_TIMER:
2582 err |= __put_user(from->si_tid, &to->si_tid);
2583 err |= __put_user(from->si_overrun, &to->si_overrun);
2584 err |= __put_user(from->si_ptr, &to->si_ptr);
2585 break;
2586 case __SI_POLL:
2587 err |= __put_user(from->si_band, &to->si_band);
2588 err |= __put_user(from->si_fd, &to->si_fd);
2589 break;
2590 case __SI_FAULT:
2591 err |= __put_user(from->si_addr, &to->si_addr);
2592 #ifdef __ARCH_SI_TRAPNO
2593 err |= __put_user(from->si_trapno, &to->si_trapno);
2594 #endif
2595 #ifdef BUS_MCEERR_AO
2596 /*
2597 * Other callers might not initialize the si_lsb field,
2598 * so check explicitly for the right codes here.
2599 */
2600 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602 #endif
2603 break;
2604 case __SI_CHLD:
2605 err |= __put_user(from->si_pid, &to->si_pid);
2606 err |= __put_user(from->si_uid, &to->si_uid);
2607 err |= __put_user(from->si_status, &to->si_status);
2608 err |= __put_user(from->si_utime, &to->si_utime);
2609 err |= __put_user(from->si_stime, &to->si_stime);
2610 break;
2611 case __SI_RT: /* This is not generated by the kernel as of now. */
2612 case __SI_MESGQ: /* But this is */
2613 err |= __put_user(from->si_pid, &to->si_pid);
2614 err |= __put_user(from->si_uid, &to->si_uid);
2615 err |= __put_user(from->si_ptr, &to->si_ptr);
2616 break;
2617 default: /* this is just in case for now ... */
2618 err |= __put_user(from->si_pid, &to->si_pid);
2619 err |= __put_user(from->si_uid, &to->si_uid);
2620 break;
2621 }
2622 return err;
2623 }
2624
2625 #endif
2626
2627 /**
2628 * do_sigtimedwait - wait for queued signals specified in @which
2629 * @which: queued signals to wait for
2630 * @info: if non-null, the signal's siginfo is returned here
2631 * @ts: upper bound on process time suspension
2632 */
2633 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634 const struct timespec *ts)
2635 {
2636 struct task_struct *tsk = current;
2637 long timeout = MAX_SCHEDULE_TIMEOUT;
2638 sigset_t mask = *which;
2639 int sig;
2640
2641 if (ts) {
2642 if (!timespec_valid(ts))
2643 return -EINVAL;
2644 timeout = timespec_to_jiffies(ts);
2645 /*
2646 * We can be close to the next tick, add another one
2647 * to ensure we will wait at least the time asked for.
2648 */
2649 if (ts->tv_sec || ts->tv_nsec)
2650 timeout++;
2651 }
2652
2653 /*
2654 * Invert the set of allowed signals to get those we want to block.
2655 */
2656 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657 signotset(&mask);
2658
2659 spin_lock_irq(&tsk->sighand->siglock);
2660 sig = dequeue_signal(tsk, &mask, info);
2661 if (!sig && timeout) {
2662 /*
2663 * None ready, temporarily unblock those we're interested
2664 * while we are sleeping in so that we'll be awakened when
2665 * they arrive. Unblocking is always fine, we can avoid
2666 * set_current_blocked().
2667 */
2668 tsk->real_blocked = tsk->blocked;
2669 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670 recalc_sigpending();
2671 spin_unlock_irq(&tsk->sighand->siglock);
2672
2673 timeout = schedule_timeout_interruptible(timeout);
2674
2675 spin_lock_irq(&tsk->sighand->siglock);
2676 __set_task_blocked(tsk, &tsk->real_blocked);
2677 siginitset(&tsk->real_blocked, 0);
2678 sig = dequeue_signal(tsk, &mask, info);
2679 }
2680 spin_unlock_irq(&tsk->sighand->siglock);
2681
2682 if (sig)
2683 return sig;
2684 return timeout ? -EINTR : -EAGAIN;
2685 }
2686
2687 /**
2688 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 * in @uthese
2690 * @uthese: queued signals to wait for
2691 * @uinfo: if non-null, the signal's siginfo is returned here
2692 * @uts: upper bound on process time suspension
2693 * @sigsetsize: size of sigset_t type
2694 */
2695 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697 size_t, sigsetsize)
2698 {
2699 sigset_t these;
2700 struct timespec ts;
2701 siginfo_t info;
2702 int ret;
2703
2704 /* XXX: Don't preclude handling different sized sigset_t's. */
2705 if (sigsetsize != sizeof(sigset_t))
2706 return -EINVAL;
2707
2708 if (copy_from_user(&these, uthese, sizeof(these)))
2709 return -EFAULT;
2710
2711 if (uts) {
2712 if (copy_from_user(&ts, uts, sizeof(ts)))
2713 return -EFAULT;
2714 }
2715
2716 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718 if (ret > 0 && uinfo) {
2719 if (copy_siginfo_to_user(uinfo, &info))
2720 ret = -EFAULT;
2721 }
2722
2723 return ret;
2724 }
2725
2726 /**
2727 * sys_kill - send a signal to a process
2728 * @pid: the PID of the process
2729 * @sig: signal to be sent
2730 */
2731 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732 {
2733 struct siginfo info;
2734
2735 info.si_signo = sig;
2736 info.si_errno = 0;
2737 info.si_code = SI_USER;
2738 info.si_pid = task_tgid_vnr(current);
2739 info.si_uid = current_uid();
2740
2741 return kill_something_info(sig, &info, pid);
2742 }
2743
2744 static int
2745 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746 {
2747 struct task_struct *p;
2748 int error = -ESRCH;
2749
2750 rcu_read_lock();
2751 p = find_task_by_vpid(pid);
2752 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753 error = check_kill_permission(sig, info, p);
2754 /*
2755 * The null signal is a permissions and process existence
2756 * probe. No signal is actually delivered.
2757 */
2758 if (!error && sig) {
2759 error = do_send_sig_info(sig, info, p, false);
2760 /*
2761 * If lock_task_sighand() failed we pretend the task
2762 * dies after receiving the signal. The window is tiny,
2763 * and the signal is private anyway.
2764 */
2765 if (unlikely(error == -ESRCH))
2766 error = 0;
2767 }
2768 }
2769 rcu_read_unlock();
2770
2771 return error;
2772 }
2773
2774 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775 {
2776 struct siginfo info;
2777
2778 info.si_signo = sig;
2779 info.si_errno = 0;
2780 info.si_code = SI_TKILL;
2781 info.si_pid = task_tgid_vnr(current);
2782 info.si_uid = current_uid();
2783
2784 return do_send_specific(tgid, pid, sig, &info);
2785 }
2786
2787 /**
2788 * sys_tgkill - send signal to one specific thread
2789 * @tgid: the thread group ID of the thread
2790 * @pid: the PID of the thread
2791 * @sig: signal to be sent
2792 *
2793 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 * exists but it's not belonging to the target process anymore. This
2795 * method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798 {
2799 /* This is only valid for single tasks */
2800 if (pid <= 0 || tgid <= 0)
2801 return -EINVAL;
2802
2803 return do_tkill(tgid, pid, sig);
2804 }
2805
2806 /**
2807 * sys_tkill - send signal to one specific task
2808 * @pid: the PID of the task
2809 * @sig: signal to be sent
2810 *
2811 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814 {
2815 /* This is only valid for single tasks */
2816 if (pid <= 0)
2817 return -EINVAL;
2818
2819 return do_tkill(0, pid, sig);
2820 }
2821
2822 /**
2823 * sys_rt_sigqueueinfo - send signal information to a signal
2824 * @pid: the PID of the thread
2825 * @sig: signal to be sent
2826 * @uinfo: signal info to be sent
2827 */
2828 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829 siginfo_t __user *, uinfo)
2830 {
2831 siginfo_t info;
2832
2833 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834 return -EFAULT;
2835
2836 /* Not even root can pretend to send signals from the kernel.
2837 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838 */
2839 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840 /* We used to allow any < 0 si_code */
2841 WARN_ON_ONCE(info.si_code < 0);
2842 return -EPERM;
2843 }
2844 info.si_signo = sig;
2845
2846 /* POSIX.1b doesn't mention process groups. */
2847 return kill_proc_info(sig, &info, pid);
2848 }
2849
2850 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851 {
2852 /* This is only valid for single tasks */
2853 if (pid <= 0 || tgid <= 0)
2854 return -EINVAL;
2855
2856 /* Not even root can pretend to send signals from the kernel.
2857 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858 */
2859 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860 /* We used to allow any < 0 si_code */
2861 WARN_ON_ONCE(info->si_code < 0);
2862 return -EPERM;
2863 }
2864 info->si_signo = sig;
2865
2866 return do_send_specific(tgid, pid, sig, info);
2867 }
2868
2869 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870 siginfo_t __user *, uinfo)
2871 {
2872 siginfo_t info;
2873
2874 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875 return -EFAULT;
2876
2877 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878 }
2879
2880 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881 {
2882 struct task_struct *t = current;
2883 struct k_sigaction *k;
2884 sigset_t mask;
2885
2886 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887 return -EINVAL;
2888
2889 k = &t->sighand->action[sig-1];
2890
2891 spin_lock_irq(&current->sighand->siglock);
2892 if (oact)
2893 *oact = *k;
2894
2895 if (act) {
2896 sigdelsetmask(&act->sa.sa_mask,
2897 sigmask(SIGKILL) | sigmask(SIGSTOP));
2898 *k = *act;
2899 /*
2900 * POSIX 3.3.1.3:
2901 * "Setting a signal action to SIG_IGN for a signal that is
2902 * pending shall cause the pending signal to be discarded,
2903 * whether or not it is blocked."
2904 *
2905 * "Setting a signal action to SIG_DFL for a signal that is
2906 * pending and whose default action is to ignore the signal
2907 * (for example, SIGCHLD), shall cause the pending signal to
2908 * be discarded, whether or not it is blocked"
2909 */
2910 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911 sigemptyset(&mask);
2912 sigaddset(&mask, sig);
2913 rm_from_queue_full(&mask, &t->signal->shared_pending);
2914 do {
2915 rm_from_queue_full(&mask, &t->pending);
2916 t = next_thread(t);
2917 } while (t != current);
2918 }
2919 }
2920
2921 spin_unlock_irq(&current->sighand->siglock);
2922 return 0;
2923 }
2924
2925 int
2926 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927 {
2928 stack_t oss;
2929 int error;
2930
2931 oss.ss_sp = (void __user *) current->sas_ss_sp;
2932 oss.ss_size = current->sas_ss_size;
2933 oss.ss_flags = sas_ss_flags(sp);
2934
2935 if (uss) {
2936 void __user *ss_sp;
2937 size_t ss_size;
2938 int ss_flags;
2939
2940 error = -EFAULT;
2941 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942 goto out;
2943 error = __get_user(ss_sp, &uss->ss_sp) |
2944 __get_user(ss_flags, &uss->ss_flags) |
2945 __get_user(ss_size, &uss->ss_size);
2946 if (error)
2947 goto out;
2948
2949 error = -EPERM;
2950 if (on_sig_stack(sp))
2951 goto out;
2952
2953 error = -EINVAL;
2954 /*
2955 * Note - this code used to test ss_flags incorrectly:
2956 * old code may have been written using ss_flags==0
2957 * to mean ss_flags==SS_ONSTACK (as this was the only
2958 * way that worked) - this fix preserves that older
2959 * mechanism.
2960 */
2961 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962 goto out;
2963
2964 if (ss_flags == SS_DISABLE) {
2965 ss_size = 0;
2966 ss_sp = NULL;
2967 } else {
2968 error = -ENOMEM;
2969 if (ss_size < MINSIGSTKSZ)
2970 goto out;
2971 }
2972
2973 current->sas_ss_sp = (unsigned long) ss_sp;
2974 current->sas_ss_size = ss_size;
2975 }
2976
2977 error = 0;
2978 if (uoss) {
2979 error = -EFAULT;
2980 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981 goto out;
2982 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983 __put_user(oss.ss_size, &uoss->ss_size) |
2984 __put_user(oss.ss_flags, &uoss->ss_flags);
2985 }
2986
2987 out:
2988 return error;
2989 }
2990
2991 #ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993 /**
2994 * sys_sigpending - examine pending signals
2995 * @set: where mask of pending signal is returned
2996 */
2997 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998 {
2999 return do_sigpending(set, sizeof(*set));
3000 }
3001
3002 #endif
3003
3004 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005 /**
3006 * sys_sigprocmask - examine and change blocked signals
3007 * @how: whether to add, remove, or set signals
3008 * @nset: signals to add or remove (if non-null)
3009 * @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016 old_sigset_t __user *, oset)
3017 {
3018 old_sigset_t old_set, new_set;
3019 sigset_t new_blocked;
3020
3021 old_set = current->blocked.sig[0];
3022
3023 if (nset) {
3024 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025 return -EFAULT;
3026 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028 new_blocked = current->blocked;
3029
3030 switch (how) {
3031 case SIG_BLOCK:
3032 sigaddsetmask(&new_blocked, new_set);
3033 break;
3034 case SIG_UNBLOCK:
3035 sigdelsetmask(&new_blocked, new_set);
3036 break;
3037 case SIG_SETMASK:
3038 new_blocked.sig[0] = new_set;
3039 break;
3040 default:
3041 return -EINVAL;
3042 }
3043
3044 set_current_blocked(&new_blocked);
3045 }
3046
3047 if (oset) {
3048 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049 return -EFAULT;
3050 }
3051
3052 return 0;
3053 }
3054 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057 /**
3058 * sys_rt_sigaction - alter an action taken by a process
3059 * @sig: signal to be sent
3060 * @act: new sigaction
3061 * @oact: used to save the previous sigaction
3062 * @sigsetsize: size of sigset_t type
3063 */
3064 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065 const struct sigaction __user *, act,
3066 struct sigaction __user *, oact,
3067 size_t, sigsetsize)
3068 {
3069 struct k_sigaction new_sa, old_sa;
3070 int ret = -EINVAL;
3071
3072 /* XXX: Don't preclude handling different sized sigset_t's. */
3073 if (sigsetsize != sizeof(sigset_t))
3074 goto out;
3075
3076 if (act) {
3077 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078 return -EFAULT;
3079 }
3080
3081 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083 if (!ret && oact) {
3084 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085 return -EFAULT;
3086 }
3087 out:
3088 return ret;
3089 }
3090 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092 #ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094 /*
3095 * For backwards compatibility. Functionality superseded by sigprocmask.
3096 */
3097 SYSCALL_DEFINE0(sgetmask)
3098 {
3099 /* SMP safe */
3100 return current->blocked.sig[0];
3101 }
3102
3103 SYSCALL_DEFINE1(ssetmask, int, newmask)
3104 {
3105 int old;
3106
3107 spin_lock_irq(&current->sighand->siglock);
3108 old = current->blocked.sig[0];
3109
3110 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
3111 sigmask(SIGSTOP)));
3112 recalc_sigpending();
3113 spin_unlock_irq(&current->sighand->siglock);
3114
3115 return old;
3116 }
3117 #endif /* __ARCH_WANT_SGETMASK */
3118
3119 #ifdef __ARCH_WANT_SYS_SIGNAL
3120 /*
3121 * For backwards compatibility. Functionality superseded by sigaction.
3122 */
3123 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3124 {
3125 struct k_sigaction new_sa, old_sa;
3126 int ret;
3127
3128 new_sa.sa.sa_handler = handler;
3129 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3130 sigemptyset(&new_sa.sa.sa_mask);
3131
3132 ret = do_sigaction(sig, &new_sa, &old_sa);
3133
3134 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3135 }
3136 #endif /* __ARCH_WANT_SYS_SIGNAL */
3137
3138 #ifdef __ARCH_WANT_SYS_PAUSE
3139
3140 SYSCALL_DEFINE0(pause)
3141 {
3142 while (!signal_pending(current)) {
3143 current->state = TASK_INTERRUPTIBLE;
3144 schedule();
3145 }
3146 return -ERESTARTNOHAND;
3147 }
3148
3149 #endif
3150
3151 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3152 /**
3153 * sys_rt_sigsuspend - replace the signal mask for a value with the
3154 * @unewset value until a signal is received
3155 * @unewset: new signal mask value
3156 * @sigsetsize: size of sigset_t type
3157 */
3158 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3159 {
3160 sigset_t newset;
3161
3162 /* XXX: Don't preclude handling different sized sigset_t's. */
3163 if (sigsetsize != sizeof(sigset_t))
3164 return -EINVAL;
3165
3166 if (copy_from_user(&newset, unewset, sizeof(newset)))
3167 return -EFAULT;
3168 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3169
3170 spin_lock_irq(&current->sighand->siglock);
3171 current->saved_sigmask = current->blocked;
3172 current->blocked = newset;
3173 recalc_sigpending();
3174 spin_unlock_irq(&current->sighand->siglock);
3175
3176 current->state = TASK_INTERRUPTIBLE;
3177 schedule();
3178 set_restore_sigmask();
3179 return -ERESTARTNOHAND;
3180 }
3181 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3182
3183 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3184 {
3185 return NULL;
3186 }
3187
3188 void __init signals_init(void)
3189 {
3190 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3191 }
3192
3193 #ifdef CONFIG_KGDB_KDB
3194 #include <linux/kdb.h>
3195 /*
3196 * kdb_send_sig_info - Allows kdb to send signals without exposing
3197 * signal internals. This function checks if the required locks are
3198 * available before calling the main signal code, to avoid kdb
3199 * deadlocks.
3200 */
3201 void
3202 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3203 {
3204 static struct task_struct *kdb_prev_t;
3205 int sig, new_t;
3206 if (!spin_trylock(&t->sighand->siglock)) {
3207 kdb_printf("Can't do kill command now.\n"
3208 "The sigmask lock is held somewhere else in "
3209 "kernel, try again later\n");
3210 return;
3211 }
3212 spin_unlock(&t->sighand->siglock);
3213 new_t = kdb_prev_t != t;
3214 kdb_prev_t = t;
3215 if (t->state != TASK_RUNNING && new_t) {
3216 kdb_printf("Process is not RUNNING, sending a signal from "
3217 "kdb risks deadlock\n"
3218 "on the run queue locks. "
3219 "The signal has _not_ been sent.\n"
3220 "Reissue the kill command if you want to risk "
3221 "the deadlock.\n");
3222 return;
3223 }
3224 sig = info->si_signo;
3225 if (send_sig_info(sig, info, t))
3226 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3227 sig, t->pid);
3228 else
3229 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3230 }
3231 #endif /* CONFIG_KGDB_KDB */
This page took 0.098376 seconds and 5 git commands to generate.