BUG_ON() Conversion in kernel/signal.c
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/audit.h>
27 #include <linux/capability.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150
151 #define sig_user_defined(t, signr) \
152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154
155 #define sig_fatal(t, signr) \
156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158
159 static int sig_ignored(struct task_struct *t, int sig)
160 {
161 void __user * handler;
162
163 /*
164 * Tracers always want to know about signals..
165 */
166 if (t->ptrace & PT_PTRACED)
167 return 0;
168
169 /*
170 * Blocked signals are never ignored, since the
171 * signal handler may change by the time it is
172 * unblocked.
173 */
174 if (sigismember(&t->blocked, sig))
175 return 0;
176
177 /* Is it explicitly or implicitly ignored? */
178 handler = t->sighand->action[sig-1].sa.sa_handler;
179 return handler == SIG_IGN ||
180 (handler == SIG_DFL && sig_kernel_ignore(sig));
181 }
182
183 /*
184 * Re-calculate pending state from the set of locally pending
185 * signals, globally pending signals, and blocked signals.
186 */
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 {
189 unsigned long ready;
190 long i;
191
192 switch (_NSIG_WORDS) {
193 default:
194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 ready |= signal->sig[i] &~ blocked->sig[i];
196 break;
197
198 case 4: ready = signal->sig[3] &~ blocked->sig[3];
199 ready |= signal->sig[2] &~ blocked->sig[2];
200 ready |= signal->sig[1] &~ blocked->sig[1];
201 ready |= signal->sig[0] &~ blocked->sig[0];
202 break;
203
204 case 2: ready = signal->sig[1] &~ blocked->sig[1];
205 ready |= signal->sig[0] &~ blocked->sig[0];
206 break;
207
208 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 }
210 return ready != 0;
211 }
212
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 {
217 if (t->signal->group_stop_count > 0 ||
218 (freezing(t)) ||
219 PENDING(&t->pending, &t->blocked) ||
220 PENDING(&t->signal->shared_pending, &t->blocked))
221 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 else
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 }
225
226 void recalc_sigpending(void)
227 {
228 recalc_sigpending_tsk(current);
229 }
230
231 /* Given the mask, find the first available signal that should be serviced. */
232
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
235 {
236 unsigned long i, *s, *m, x;
237 int sig = 0;
238
239 s = pending->signal.sig;
240 m = mask->sig;
241 switch (_NSIG_WORDS) {
242 default:
243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 if ((x = *s &~ *m) != 0) {
245 sig = ffz(~x) + i*_NSIG_BPW + 1;
246 break;
247 }
248 break;
249
250 case 2: if ((x = s[0] &~ m[0]) != 0)
251 sig = 1;
252 else if ((x = s[1] &~ m[1]) != 0)
253 sig = _NSIG_BPW + 1;
254 else
255 break;
256 sig += ffz(~x);
257 break;
258
259 case 1: if ((x = *s &~ *m) != 0)
260 sig = ffz(~x) + 1;
261 break;
262 }
263
264 return sig;
265 }
266
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 int override_rlimit)
269 {
270 struct sigqueue *q = NULL;
271
272 atomic_inc(&t->user->sigpending);
273 if (override_rlimit ||
274 atomic_read(&t->user->sigpending) <=
275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 q = kmem_cache_alloc(sigqueue_cachep, flags);
277 if (unlikely(q == NULL)) {
278 atomic_dec(&t->user->sigpending);
279 } else {
280 INIT_LIST_HEAD(&q->list);
281 q->flags = 0;
282 q->user = get_uid(t->user);
283 }
284 return(q);
285 }
286
287 static void __sigqueue_free(struct sigqueue *q)
288 {
289 if (q->flags & SIGQUEUE_PREALLOC)
290 return;
291 atomic_dec(&q->user->sigpending);
292 free_uid(q->user);
293 kmem_cache_free(sigqueue_cachep, q);
294 }
295
296 void flush_sigqueue(struct sigpending *queue)
297 {
298 struct sigqueue *q;
299
300 sigemptyset(&queue->signal);
301 while (!list_empty(&queue->list)) {
302 q = list_entry(queue->list.next, struct sigqueue , list);
303 list_del_init(&q->list);
304 __sigqueue_free(q);
305 }
306 }
307
308 /*
309 * Flush all pending signals for a task.
310 */
311 void flush_signals(struct task_struct *t)
312 {
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323 * Flush all handlers for a task.
324 */
325
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
328 {
329 int i;
330 struct k_sigaction *ka = &t->sighand->action[0];
331 for (i = _NSIG ; i != 0 ; i--) {
332 if (force_default || ka->sa.sa_handler != SIG_IGN)
333 ka->sa.sa_handler = SIG_DFL;
334 ka->sa.sa_flags = 0;
335 sigemptyset(&ka->sa.sa_mask);
336 ka++;
337 }
338 }
339
340
341 /* Notify the system that a driver wants to block all signals for this
342 * process, and wants to be notified if any signals at all were to be
343 * sent/acted upon. If the notifier routine returns non-zero, then the
344 * signal will be acted upon after all. If the notifier routine returns 0,
345 * then then signal will be blocked. Only one block per process is
346 * allowed. priv is a pointer to private data that the notifier routine
347 * can use to determine if the signal should be blocked or not. */
348
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(&current->sighand->siglock, flags);
355 current->notifier_mask = mask;
356 current->notifier_data = priv;
357 current->notifier = notifier;
358 spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 }
360
361 /* Notify the system that blocking has ended. */
362
363 void
364 unblock_all_signals(void)
365 {
366 unsigned long flags;
367
368 spin_lock_irqsave(&current->sighand->siglock, flags);
369 current->notifier = NULL;
370 current->notifier_data = NULL;
371 recalc_sigpending();
372 spin_unlock_irqrestore(&current->sighand->siglock, flags);
373 }
374
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 {
377 struct sigqueue *q, *first = NULL;
378 int still_pending = 0;
379
380 if (unlikely(!sigismember(&list->signal, sig)))
381 return 0;
382
383 /*
384 * Collect the siginfo appropriate to this signal. Check if
385 * there is another siginfo for the same signal.
386 */
387 list_for_each_entry(q, &list->list, list) {
388 if (q->info.si_signo == sig) {
389 if (first) {
390 still_pending = 1;
391 break;
392 }
393 first = q;
394 }
395 }
396 if (first) {
397 list_del_init(&first->list);
398 copy_siginfo(info, &first->info);
399 __sigqueue_free(first);
400 if (!still_pending)
401 sigdelset(&list->signal, sig);
402 } else {
403
404 /* Ok, it wasn't in the queue. This must be
405 a fast-pathed signal or we must have been
406 out of queue space. So zero out the info.
407 */
408 sigdelset(&list->signal, sig);
409 info->si_signo = sig;
410 info->si_errno = 0;
411 info->si_code = 0;
412 info->si_pid = 0;
413 info->si_uid = 0;
414 }
415 return 1;
416 }
417
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 siginfo_t *info)
420 {
421 int sig = 0;
422
423 sig = next_signal(pending, mask);
424 if (sig) {
425 if (current->notifier) {
426 if (sigismember(current->notifier_mask, sig)) {
427 if (!(current->notifier)(current->notifier_data)) {
428 clear_thread_flag(TIF_SIGPENDING);
429 return 0;
430 }
431 }
432 }
433
434 if (!collect_signal(sig, pending, info))
435 sig = 0;
436
437 }
438 recalc_sigpending();
439
440 return sig;
441 }
442
443 /*
444 * Dequeue a signal and return the element to the caller, which is
445 * expected to free it.
446 *
447 * All callers have to hold the siglock.
448 */
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 {
451 int signr = __dequeue_signal(&tsk->pending, mask, info);
452 if (!signr)
453 signr = __dequeue_signal(&tsk->signal->shared_pending,
454 mask, info);
455 if (signr && unlikely(sig_kernel_stop(signr))) {
456 /*
457 * Set a marker that we have dequeued a stop signal. Our
458 * caller might release the siglock and then the pending
459 * stop signal it is about to process is no longer in the
460 * pending bitmasks, but must still be cleared by a SIGCONT
461 * (and overruled by a SIGKILL). So those cases clear this
462 * shared flag after we've set it. Note that this flag may
463 * remain set after the signal we return is ignored or
464 * handled. That doesn't matter because its only purpose
465 * is to alert stop-signal processing code when another
466 * processor has come along and cleared the flag.
467 */
468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470 }
471 if ( signr &&
472 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 info->si_sys_private){
474 /*
475 * Release the siglock to ensure proper locking order
476 * of timer locks outside of siglocks. Note, we leave
477 * irqs disabled here, since the posix-timers code is
478 * about to disable them again anyway.
479 */
480 spin_unlock(&tsk->sighand->siglock);
481 do_schedule_next_timer(info);
482 spin_lock(&tsk->sighand->siglock);
483 }
484 return signr;
485 }
486
487 /*
488 * Tell a process that it has a new active signal..
489 *
490 * NOTE! we rely on the previous spin_lock to
491 * lock interrupts for us! We can only be called with
492 * "siglock" held, and the local interrupt must
493 * have been disabled when that got acquired!
494 *
495 * No need to set need_resched since signal event passing
496 * goes through ->blocked
497 */
498 void signal_wake_up(struct task_struct *t, int resume)
499 {
500 unsigned int mask;
501
502 set_tsk_thread_flag(t, TIF_SIGPENDING);
503
504 /*
505 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 * We don't check t->state here because there is a race with it
507 * executing another processor and just now entering stopped state.
508 * By using wake_up_state, we ensure the process will wake up and
509 * handle its death signal.
510 */
511 mask = TASK_INTERRUPTIBLE;
512 if (resume)
513 mask |= TASK_STOPPED | TASK_TRACED;
514 if (!wake_up_state(t, mask))
515 kick_process(t);
516 }
517
518 /*
519 * Remove signals in mask from the pending set and queue.
520 * Returns 1 if any signals were found.
521 *
522 * All callers must be holding the siglock.
523 *
524 * This version takes a sigset mask and looks at all signals,
525 * not just those in the first mask word.
526 */
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 {
529 struct sigqueue *q, *n;
530 sigset_t m;
531
532 sigandsets(&m, mask, &s->signal);
533 if (sigisemptyset(&m))
534 return 0;
535
536 signandsets(&s->signal, &s->signal, mask);
537 list_for_each_entry_safe(q, n, &s->list, list) {
538 if (sigismember(mask, q->info.si_signo)) {
539 list_del_init(&q->list);
540 __sigqueue_free(q);
541 }
542 }
543 return 1;
544 }
545 /*
546 * Remove signals in mask from the pending set and queue.
547 * Returns 1 if any signals were found.
548 *
549 * All callers must be holding the siglock.
550 */
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 {
553 struct sigqueue *q, *n;
554
555 if (!sigtestsetmask(&s->signal, mask))
556 return 0;
557
558 sigdelsetmask(&s->signal, mask);
559 list_for_each_entry_safe(q, n, &s->list, list) {
560 if (q->info.si_signo < SIGRTMIN &&
561 (mask & sigmask(q->info.si_signo))) {
562 list_del_init(&q->list);
563 __sigqueue_free(q);
564 }
565 }
566 return 1;
567 }
568
569 /*
570 * Bad permissions for sending the signal
571 */
572 static int check_kill_permission(int sig, struct siginfo *info,
573 struct task_struct *t)
574 {
575 int error = -EINVAL;
576 if (!valid_signal(sig))
577 return error;
578 error = -EPERM;
579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 && ((sig != SIGCONT) ||
581 (current->signal->session != t->signal->session))
582 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 && !capable(CAP_KILL))
585 return error;
586
587 error = security_task_kill(t, info, sig);
588 if (!error)
589 audit_signal_info(sig, t); /* Let audit system see the signal */
590 return error;
591 }
592
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
595
596 /*
597 * Handle magic process-wide effects of stop/continue signals.
598 * Unlike the signal actions, these happen immediately at signal-generation
599 * time regardless of blocking, ignoring, or handling. This does the
600 * actual continuing for SIGCONT, but not the actual stopping for stop
601 * signals. The process stop is done as a signal action for SIG_DFL.
602 */
603 static void handle_stop_signal(int sig, struct task_struct *p)
604 {
605 struct task_struct *t;
606
607 if (p->signal->flags & SIGNAL_GROUP_EXIT)
608 /*
609 * The process is in the middle of dying already.
610 */
611 return;
612
613 if (sig_kernel_stop(sig)) {
614 /*
615 * This is a stop signal. Remove SIGCONT from all queues.
616 */
617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
618 t = p;
619 do {
620 rm_from_queue(sigmask(SIGCONT), &t->pending);
621 t = next_thread(t);
622 } while (t != p);
623 } else if (sig == SIGCONT) {
624 /*
625 * Remove all stop signals from all queues,
626 * and wake all threads.
627 */
628 if (unlikely(p->signal->group_stop_count > 0)) {
629 /*
630 * There was a group stop in progress. We'll
631 * pretend it finished before we got here. We are
632 * obliged to report it to the parent: if the
633 * SIGSTOP happened "after" this SIGCONT, then it
634 * would have cleared this pending SIGCONT. If it
635 * happened "before" this SIGCONT, then the parent
636 * got the SIGCHLD about the stop finishing before
637 * the continue happened. We do the notification
638 * now, and it's as if the stop had finished and
639 * the SIGCHLD was pending on entry to this kill.
640 */
641 p->signal->group_stop_count = 0;
642 p->signal->flags = SIGNAL_STOP_CONTINUED;
643 spin_unlock(&p->sighand->siglock);
644 do_notify_parent_cldstop(p, CLD_STOPPED);
645 spin_lock(&p->sighand->siglock);
646 }
647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 t = p;
649 do {
650 unsigned int state;
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
652
653 /*
654 * If there is a handler for SIGCONT, we must make
655 * sure that no thread returns to user mode before
656 * we post the signal, in case it was the only
657 * thread eligible to run the signal handler--then
658 * it must not do anything between resuming and
659 * running the handler. With the TIF_SIGPENDING
660 * flag set, the thread will pause and acquire the
661 * siglock that we hold now and until we've queued
662 * the pending signal.
663 *
664 * Wake up the stopped thread _after_ setting
665 * TIF_SIGPENDING
666 */
667 state = TASK_STOPPED;
668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
669 set_tsk_thread_flag(t, TIF_SIGPENDING);
670 state |= TASK_INTERRUPTIBLE;
671 }
672 wake_up_state(t, state);
673
674 t = next_thread(t);
675 } while (t != p);
676
677 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
678 /*
679 * We were in fact stopped, and are now continued.
680 * Notify the parent with CLD_CONTINUED.
681 */
682 p->signal->flags = SIGNAL_STOP_CONTINUED;
683 p->signal->group_exit_code = 0;
684 spin_unlock(&p->sighand->siglock);
685 do_notify_parent_cldstop(p, CLD_CONTINUED);
686 spin_lock(&p->sighand->siglock);
687 } else {
688 /*
689 * We are not stopped, but there could be a stop
690 * signal in the middle of being processed after
691 * being removed from the queue. Clear that too.
692 */
693 p->signal->flags = 0;
694 }
695 } else if (sig == SIGKILL) {
696 /*
697 * Make sure that any pending stop signal already dequeued
698 * is undone by the wakeup for SIGKILL.
699 */
700 p->signal->flags = 0;
701 }
702 }
703
704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
705 struct sigpending *signals)
706 {
707 struct sigqueue * q = NULL;
708 int ret = 0;
709
710 /*
711 * fast-pathed signals for kernel-internal things like SIGSTOP
712 * or SIGKILL.
713 */
714 if (info == SEND_SIG_FORCED)
715 goto out_set;
716
717 /* Real-time signals must be queued if sent by sigqueue, or
718 some other real-time mechanism. It is implementation
719 defined whether kill() does so. We attempt to do so, on
720 the principle of least surprise, but since kill is not
721 allowed to fail with EAGAIN when low on memory we just
722 make sure at least one signal gets delivered and don't
723 pass on the info struct. */
724
725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
726 (is_si_special(info) ||
727 info->si_code >= 0)));
728 if (q) {
729 list_add_tail(&q->list, &signals->list);
730 switch ((unsigned long) info) {
731 case (unsigned long) SEND_SIG_NOINFO:
732 q->info.si_signo = sig;
733 q->info.si_errno = 0;
734 q->info.si_code = SI_USER;
735 q->info.si_pid = current->pid;
736 q->info.si_uid = current->uid;
737 break;
738 case (unsigned long) SEND_SIG_PRIV:
739 q->info.si_signo = sig;
740 q->info.si_errno = 0;
741 q->info.si_code = SI_KERNEL;
742 q->info.si_pid = 0;
743 q->info.si_uid = 0;
744 break;
745 default:
746 copy_siginfo(&q->info, info);
747 break;
748 }
749 } else if (!is_si_special(info)) {
750 if (sig >= SIGRTMIN && info->si_code != SI_USER)
751 /*
752 * Queue overflow, abort. We may abort if the signal was rt
753 * and sent by user using something other than kill().
754 */
755 return -EAGAIN;
756 }
757
758 out_set:
759 sigaddset(&signals->signal, sig);
760 return ret;
761 }
762
763 #define LEGACY_QUEUE(sigptr, sig) \
764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
765
766
767 static int
768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 {
770 int ret = 0;
771
772 BUG_ON(!irqs_disabled());
773 assert_spin_locked(&t->sighand->siglock);
774
775 /* Short-circuit ignored signals. */
776 if (sig_ignored(t, sig))
777 goto out;
778
779 /* Support queueing exactly one non-rt signal, so that we
780 can get more detailed information about the cause of
781 the signal. */
782 if (LEGACY_QUEUE(&t->pending, sig))
783 goto out;
784
785 ret = send_signal(sig, info, t, &t->pending);
786 if (!ret && !sigismember(&t->blocked, sig))
787 signal_wake_up(t, sig == SIGKILL);
788 out:
789 return ret;
790 }
791
792 /*
793 * Force a signal that the process can't ignore: if necessary
794 * we unblock the signal and change any SIG_IGN to SIG_DFL.
795 */
796
797 int
798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
799 {
800 unsigned long int flags;
801 int ret;
802
803 spin_lock_irqsave(&t->sighand->siglock, flags);
804 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
805 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
806 }
807 if (sigismember(&t->blocked, sig)) {
808 sigdelset(&t->blocked, sig);
809 }
810 recalc_sigpending_tsk(t);
811 ret = specific_send_sig_info(sig, info, t);
812 spin_unlock_irqrestore(&t->sighand->siglock, flags);
813
814 return ret;
815 }
816
817 void
818 force_sig_specific(int sig, struct task_struct *t)
819 {
820 force_sig_info(sig, SEND_SIG_FORCED, t);
821 }
822
823 /*
824 * Test if P wants to take SIG. After we've checked all threads with this,
825 * it's equivalent to finding no threads not blocking SIG. Any threads not
826 * blocking SIG were ruled out because they are not running and already
827 * have pending signals. Such threads will dequeue from the shared queue
828 * as soon as they're available, so putting the signal on the shared queue
829 * will be equivalent to sending it to one such thread.
830 */
831 static inline int wants_signal(int sig, struct task_struct *p)
832 {
833 if (sigismember(&p->blocked, sig))
834 return 0;
835 if (p->flags & PF_EXITING)
836 return 0;
837 if (sig == SIGKILL)
838 return 1;
839 if (p->state & (TASK_STOPPED | TASK_TRACED))
840 return 0;
841 return task_curr(p) || !signal_pending(p);
842 }
843
844 static void
845 __group_complete_signal(int sig, struct task_struct *p)
846 {
847 struct task_struct *t;
848
849 /*
850 * Now find a thread we can wake up to take the signal off the queue.
851 *
852 * If the main thread wants the signal, it gets first crack.
853 * Probably the least surprising to the average bear.
854 */
855 if (wants_signal(sig, p))
856 t = p;
857 else if (thread_group_empty(p))
858 /*
859 * There is just one thread and it does not need to be woken.
860 * It will dequeue unblocked signals before it runs again.
861 */
862 return;
863 else {
864 /*
865 * Otherwise try to find a suitable thread.
866 */
867 t = p->signal->curr_target;
868 if (t == NULL)
869 /* restart balancing at this thread */
870 t = p->signal->curr_target = p;
871 BUG_ON(t->tgid != p->tgid);
872
873 while (!wants_signal(sig, t)) {
874 t = next_thread(t);
875 if (t == p->signal->curr_target)
876 /*
877 * No thread needs to be woken.
878 * Any eligible threads will see
879 * the signal in the queue soon.
880 */
881 return;
882 }
883 p->signal->curr_target = t;
884 }
885
886 /*
887 * Found a killable thread. If the signal will be fatal,
888 * then start taking the whole group down immediately.
889 */
890 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
891 !sigismember(&t->real_blocked, sig) &&
892 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
893 /*
894 * This signal will be fatal to the whole group.
895 */
896 if (!sig_kernel_coredump(sig)) {
897 /*
898 * Start a group exit and wake everybody up.
899 * This way we don't have other threads
900 * running and doing things after a slower
901 * thread has the fatal signal pending.
902 */
903 p->signal->flags = SIGNAL_GROUP_EXIT;
904 p->signal->group_exit_code = sig;
905 p->signal->group_stop_count = 0;
906 t = p;
907 do {
908 sigaddset(&t->pending.signal, SIGKILL);
909 signal_wake_up(t, 1);
910 t = next_thread(t);
911 } while (t != p);
912 return;
913 }
914
915 /*
916 * There will be a core dump. We make all threads other
917 * than the chosen one go into a group stop so that nothing
918 * happens until it gets scheduled, takes the signal off
919 * the shared queue, and does the core dump. This is a
920 * little more complicated than strictly necessary, but it
921 * keeps the signal state that winds up in the core dump
922 * unchanged from the death state, e.g. which thread had
923 * the core-dump signal unblocked.
924 */
925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 p->signal->group_stop_count = 0;
928 p->signal->group_exit_task = t;
929 t = p;
930 do {
931 p->signal->group_stop_count++;
932 signal_wake_up(t, 0);
933 t = next_thread(t);
934 } while (t != p);
935 wake_up_process(p->signal->group_exit_task);
936 return;
937 }
938
939 /*
940 * The signal is already in the shared-pending queue.
941 * Tell the chosen thread to wake up and dequeue it.
942 */
943 signal_wake_up(t, sig == SIGKILL);
944 return;
945 }
946
947 int
948 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
949 {
950 int ret = 0;
951
952 assert_spin_locked(&p->sighand->siglock);
953 handle_stop_signal(sig, p);
954
955 /* Short-circuit ignored signals. */
956 if (sig_ignored(p, sig))
957 return ret;
958
959 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
960 /* This is a non-RT signal and we already have one queued. */
961 return ret;
962
963 /*
964 * Put this signal on the shared-pending queue, or fail with EAGAIN.
965 * We always use the shared queue for process-wide signals,
966 * to avoid several races.
967 */
968 ret = send_signal(sig, info, p, &p->signal->shared_pending);
969 if (unlikely(ret))
970 return ret;
971
972 __group_complete_signal(sig, p);
973 return 0;
974 }
975
976 /*
977 * Nuke all other threads in the group.
978 */
979 void zap_other_threads(struct task_struct *p)
980 {
981 struct task_struct *t;
982
983 p->signal->flags = SIGNAL_GROUP_EXIT;
984 p->signal->group_stop_count = 0;
985
986 if (thread_group_empty(p))
987 return;
988
989 for (t = next_thread(p); t != p; t = next_thread(t)) {
990 /*
991 * Don't bother with already dead threads
992 */
993 if (t->exit_state)
994 continue;
995
996 /*
997 * We don't want to notify the parent, since we are
998 * killed as part of a thread group due to another
999 * thread doing an execve() or similar. So set the
1000 * exit signal to -1 to allow immediate reaping of
1001 * the process. But don't detach the thread group
1002 * leader.
1003 */
1004 if (t != p->group_leader)
1005 t->exit_signal = -1;
1006
1007 /* SIGKILL will be handled before any pending SIGSTOP */
1008 sigaddset(&t->pending.signal, SIGKILL);
1009 signal_wake_up(t, 1);
1010 }
1011 }
1012
1013 /*
1014 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1015 */
1016 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1017 {
1018 struct sighand_struct *sighand;
1019
1020 for (;;) {
1021 sighand = rcu_dereference(tsk->sighand);
1022 if (unlikely(sighand == NULL))
1023 break;
1024
1025 spin_lock_irqsave(&sighand->siglock, *flags);
1026 if (likely(sighand == tsk->sighand))
1027 break;
1028 spin_unlock_irqrestore(&sighand->siglock, *flags);
1029 }
1030
1031 return sighand;
1032 }
1033
1034 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1035 {
1036 unsigned long flags;
1037 int ret;
1038
1039 ret = check_kill_permission(sig, info, p);
1040
1041 if (!ret && sig) {
1042 ret = -ESRCH;
1043 if (lock_task_sighand(p, &flags)) {
1044 ret = __group_send_sig_info(sig, info, p);
1045 unlock_task_sighand(p, &flags);
1046 }
1047 }
1048
1049 return ret;
1050 }
1051
1052 /*
1053 * kill_pg_info() sends a signal to a process group: this is what the tty
1054 * control characters do (^C, ^Z etc)
1055 */
1056
1057 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1058 {
1059 struct task_struct *p = NULL;
1060 int retval, success;
1061
1062 if (pgrp <= 0)
1063 return -EINVAL;
1064
1065 success = 0;
1066 retval = -ESRCH;
1067 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1068 int err = group_send_sig_info(sig, info, p);
1069 success |= !err;
1070 retval = err;
1071 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1072 return success ? 0 : retval;
1073 }
1074
1075 int
1076 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1077 {
1078 int retval;
1079
1080 read_lock(&tasklist_lock);
1081 retval = __kill_pg_info(sig, info, pgrp);
1082 read_unlock(&tasklist_lock);
1083
1084 return retval;
1085 }
1086
1087 int
1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1089 {
1090 int error;
1091 int acquired_tasklist_lock = 0;
1092 struct task_struct *p;
1093
1094 rcu_read_lock();
1095 if (unlikely(sig_needs_tasklist(sig))) {
1096 read_lock(&tasklist_lock);
1097 acquired_tasklist_lock = 1;
1098 }
1099 p = find_task_by_pid(pid);
1100 error = -ESRCH;
1101 if (p)
1102 error = group_send_sig_info(sig, info, p);
1103 if (unlikely(acquired_tasklist_lock))
1104 read_unlock(&tasklist_lock);
1105 rcu_read_unlock();
1106 return error;
1107 }
1108
1109 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1110 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1111 uid_t uid, uid_t euid)
1112 {
1113 int ret = -EINVAL;
1114 struct task_struct *p;
1115
1116 if (!valid_signal(sig))
1117 return ret;
1118
1119 read_lock(&tasklist_lock);
1120 p = find_task_by_pid(pid);
1121 if (!p) {
1122 ret = -ESRCH;
1123 goto out_unlock;
1124 }
1125 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1126 && (euid != p->suid) && (euid != p->uid)
1127 && (uid != p->suid) && (uid != p->uid)) {
1128 ret = -EPERM;
1129 goto out_unlock;
1130 }
1131 if (sig && p->sighand) {
1132 unsigned long flags;
1133 spin_lock_irqsave(&p->sighand->siglock, flags);
1134 ret = __group_send_sig_info(sig, info, p);
1135 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 }
1137 out_unlock:
1138 read_unlock(&tasklist_lock);
1139 return ret;
1140 }
1141 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1142
1143 /*
1144 * kill_something_info() interprets pid in interesting ways just like kill(2).
1145 *
1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1147 * is probably wrong. Should make it like BSD or SYSV.
1148 */
1149
1150 static int kill_something_info(int sig, struct siginfo *info, int pid)
1151 {
1152 if (!pid) {
1153 return kill_pg_info(sig, info, process_group(current));
1154 } else if (pid == -1) {
1155 int retval = 0, count = 0;
1156 struct task_struct * p;
1157
1158 read_lock(&tasklist_lock);
1159 for_each_process(p) {
1160 if (p->pid > 1 && p->tgid != current->tgid) {
1161 int err = group_send_sig_info(sig, info, p);
1162 ++count;
1163 if (err != -EPERM)
1164 retval = err;
1165 }
1166 }
1167 read_unlock(&tasklist_lock);
1168 return count ? retval : -ESRCH;
1169 } else if (pid < 0) {
1170 return kill_pg_info(sig, info, -pid);
1171 } else {
1172 return kill_proc_info(sig, info, pid);
1173 }
1174 }
1175
1176 /*
1177 * These are for backward compatibility with the rest of the kernel source.
1178 */
1179
1180 /*
1181 * These two are the most common entry points. They send a signal
1182 * just to the specific thread.
1183 */
1184 int
1185 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1186 {
1187 int ret;
1188 unsigned long flags;
1189
1190 /*
1191 * Make sure legacy kernel users don't send in bad values
1192 * (normal paths check this in check_kill_permission).
1193 */
1194 if (!valid_signal(sig))
1195 return -EINVAL;
1196
1197 /*
1198 * We need the tasklist lock even for the specific
1199 * thread case (when we don't need to follow the group
1200 * lists) in order to avoid races with "p->sighand"
1201 * going away or changing from under us.
1202 */
1203 read_lock(&tasklist_lock);
1204 spin_lock_irqsave(&p->sighand->siglock, flags);
1205 ret = specific_send_sig_info(sig, info, p);
1206 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207 read_unlock(&tasklist_lock);
1208 return ret;
1209 }
1210
1211 #define __si_special(priv) \
1212 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1213
1214 int
1215 send_sig(int sig, struct task_struct *p, int priv)
1216 {
1217 return send_sig_info(sig, __si_special(priv), p);
1218 }
1219
1220 /*
1221 * This is the entry point for "process-wide" signals.
1222 * They will go to an appropriate thread in the thread group.
1223 */
1224 int
1225 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1226 {
1227 int ret;
1228 read_lock(&tasklist_lock);
1229 ret = group_send_sig_info(sig, info, p);
1230 read_unlock(&tasklist_lock);
1231 return ret;
1232 }
1233
1234 void
1235 force_sig(int sig, struct task_struct *p)
1236 {
1237 force_sig_info(sig, SEND_SIG_PRIV, p);
1238 }
1239
1240 /*
1241 * When things go south during signal handling, we
1242 * will force a SIGSEGV. And if the signal that caused
1243 * the problem was already a SIGSEGV, we'll want to
1244 * make sure we don't even try to deliver the signal..
1245 */
1246 int
1247 force_sigsegv(int sig, struct task_struct *p)
1248 {
1249 if (sig == SIGSEGV) {
1250 unsigned long flags;
1251 spin_lock_irqsave(&p->sighand->siglock, flags);
1252 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1253 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1254 }
1255 force_sig(SIGSEGV, p);
1256 return 0;
1257 }
1258
1259 int
1260 kill_pg(pid_t pgrp, int sig, int priv)
1261 {
1262 return kill_pg_info(sig, __si_special(priv), pgrp);
1263 }
1264
1265 int
1266 kill_proc(pid_t pid, int sig, int priv)
1267 {
1268 return kill_proc_info(sig, __si_special(priv), pid);
1269 }
1270
1271 /*
1272 * These functions support sending signals using preallocated sigqueue
1273 * structures. This is needed "because realtime applications cannot
1274 * afford to lose notifications of asynchronous events, like timer
1275 * expirations or I/O completions". In the case of Posix Timers
1276 * we allocate the sigqueue structure from the timer_create. If this
1277 * allocation fails we are able to report the failure to the application
1278 * with an EAGAIN error.
1279 */
1280
1281 struct sigqueue *sigqueue_alloc(void)
1282 {
1283 struct sigqueue *q;
1284
1285 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1286 q->flags |= SIGQUEUE_PREALLOC;
1287 return(q);
1288 }
1289
1290 void sigqueue_free(struct sigqueue *q)
1291 {
1292 unsigned long flags;
1293 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1294 /*
1295 * If the signal is still pending remove it from the
1296 * pending queue.
1297 */
1298 if (unlikely(!list_empty(&q->list))) {
1299 spinlock_t *lock = &current->sighand->siglock;
1300 read_lock(&tasklist_lock);
1301 spin_lock_irqsave(lock, flags);
1302 if (!list_empty(&q->list))
1303 list_del_init(&q->list);
1304 spin_unlock_irqrestore(lock, flags);
1305 read_unlock(&tasklist_lock);
1306 }
1307 q->flags &= ~SIGQUEUE_PREALLOC;
1308 __sigqueue_free(q);
1309 }
1310
1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1312 {
1313 unsigned long flags;
1314 int ret = 0;
1315
1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317
1318 /*
1319 * The rcu based delayed sighand destroy makes it possible to
1320 * run this without tasklist lock held. The task struct itself
1321 * cannot go away as create_timer did get_task_struct().
1322 *
1323 * We return -1, when the task is marked exiting, so
1324 * posix_timer_event can redirect it to the group leader
1325 */
1326 rcu_read_lock();
1327
1328 if (!likely(lock_task_sighand(p, &flags))) {
1329 ret = -1;
1330 goto out_err;
1331 }
1332
1333 if (unlikely(!list_empty(&q->list))) {
1334 /*
1335 * If an SI_TIMER entry is already queue just increment
1336 * the overrun count.
1337 */
1338 BUG_ON(q->info.si_code != SI_TIMER);
1339 q->info.si_overrun++;
1340 goto out;
1341 }
1342 /* Short-circuit ignored signals. */
1343 if (sig_ignored(p, sig)) {
1344 ret = 1;
1345 goto out;
1346 }
1347
1348 list_add_tail(&q->list, &p->pending.list);
1349 sigaddset(&p->pending.signal, sig);
1350 if (!sigismember(&p->blocked, sig))
1351 signal_wake_up(p, sig == SIGKILL);
1352
1353 out:
1354 unlock_task_sighand(p, &flags);
1355 out_err:
1356 rcu_read_unlock();
1357
1358 return ret;
1359 }
1360
1361 int
1362 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 {
1364 unsigned long flags;
1365 int ret = 0;
1366
1367 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368
1369 read_lock(&tasklist_lock);
1370 /* Since it_lock is held, p->sighand cannot be NULL. */
1371 spin_lock_irqsave(&p->sighand->siglock, flags);
1372 handle_stop_signal(sig, p);
1373
1374 /* Short-circuit ignored signals. */
1375 if (sig_ignored(p, sig)) {
1376 ret = 1;
1377 goto out;
1378 }
1379
1380 if (unlikely(!list_empty(&q->list))) {
1381 /*
1382 * If an SI_TIMER entry is already queue just increment
1383 * the overrun count. Other uses should not try to
1384 * send the signal multiple times.
1385 */
1386 BUG_ON(q->info.si_code != SI_TIMER);
1387 q->info.si_overrun++;
1388 goto out;
1389 }
1390
1391 /*
1392 * Put this signal on the shared-pending queue.
1393 * We always use the shared queue for process-wide signals,
1394 * to avoid several races.
1395 */
1396 list_add_tail(&q->list, &p->signal->shared_pending.list);
1397 sigaddset(&p->signal->shared_pending.signal, sig);
1398
1399 __group_complete_signal(sig, p);
1400 out:
1401 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1402 read_unlock(&tasklist_lock);
1403 return ret;
1404 }
1405
1406 /*
1407 * Wake up any threads in the parent blocked in wait* syscalls.
1408 */
1409 static inline void __wake_up_parent(struct task_struct *p,
1410 struct task_struct *parent)
1411 {
1412 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1413 }
1414
1415 /*
1416 * Let a parent know about the death of a child.
1417 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1418 */
1419
1420 void do_notify_parent(struct task_struct *tsk, int sig)
1421 {
1422 struct siginfo info;
1423 unsigned long flags;
1424 struct sighand_struct *psig;
1425
1426 BUG_ON(sig == -1);
1427
1428 /* do_notify_parent_cldstop should have been called instead. */
1429 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1430
1431 BUG_ON(!tsk->ptrace &&
1432 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1433
1434 info.si_signo = sig;
1435 info.si_errno = 0;
1436 info.si_pid = tsk->pid;
1437 info.si_uid = tsk->uid;
1438
1439 /* FIXME: find out whether or not this is supposed to be c*time. */
1440 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1441 tsk->signal->utime));
1442 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1443 tsk->signal->stime));
1444
1445 info.si_status = tsk->exit_code & 0x7f;
1446 if (tsk->exit_code & 0x80)
1447 info.si_code = CLD_DUMPED;
1448 else if (tsk->exit_code & 0x7f)
1449 info.si_code = CLD_KILLED;
1450 else {
1451 info.si_code = CLD_EXITED;
1452 info.si_status = tsk->exit_code >> 8;
1453 }
1454
1455 psig = tsk->parent->sighand;
1456 spin_lock_irqsave(&psig->siglock, flags);
1457 if (!tsk->ptrace && sig == SIGCHLD &&
1458 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1459 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1460 /*
1461 * We are exiting and our parent doesn't care. POSIX.1
1462 * defines special semantics for setting SIGCHLD to SIG_IGN
1463 * or setting the SA_NOCLDWAIT flag: we should be reaped
1464 * automatically and not left for our parent's wait4 call.
1465 * Rather than having the parent do it as a magic kind of
1466 * signal handler, we just set this to tell do_exit that we
1467 * can be cleaned up without becoming a zombie. Note that
1468 * we still call __wake_up_parent in this case, because a
1469 * blocked sys_wait4 might now return -ECHILD.
1470 *
1471 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1472 * is implementation-defined: we do (if you don't want
1473 * it, just use SIG_IGN instead).
1474 */
1475 tsk->exit_signal = -1;
1476 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1477 sig = 0;
1478 }
1479 if (valid_signal(sig) && sig > 0)
1480 __group_send_sig_info(sig, &info, tsk->parent);
1481 __wake_up_parent(tsk, tsk->parent);
1482 spin_unlock_irqrestore(&psig->siglock, flags);
1483 }
1484
1485 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1486 {
1487 struct siginfo info;
1488 unsigned long flags;
1489 struct task_struct *parent;
1490 struct sighand_struct *sighand;
1491
1492 if (tsk->ptrace & PT_PTRACED)
1493 parent = tsk->parent;
1494 else {
1495 tsk = tsk->group_leader;
1496 parent = tsk->real_parent;
1497 }
1498
1499 info.si_signo = SIGCHLD;
1500 info.si_errno = 0;
1501 info.si_pid = tsk->pid;
1502 info.si_uid = tsk->uid;
1503
1504 /* FIXME: find out whether or not this is supposed to be c*time. */
1505 info.si_utime = cputime_to_jiffies(tsk->utime);
1506 info.si_stime = cputime_to_jiffies(tsk->stime);
1507
1508 info.si_code = why;
1509 switch (why) {
1510 case CLD_CONTINUED:
1511 info.si_status = SIGCONT;
1512 break;
1513 case CLD_STOPPED:
1514 info.si_status = tsk->signal->group_exit_code & 0x7f;
1515 break;
1516 case CLD_TRAPPED:
1517 info.si_status = tsk->exit_code & 0x7f;
1518 break;
1519 default:
1520 BUG();
1521 }
1522
1523 sighand = parent->sighand;
1524 spin_lock_irqsave(&sighand->siglock, flags);
1525 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1526 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1527 __group_send_sig_info(SIGCHLD, &info, parent);
1528 /*
1529 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1530 */
1531 __wake_up_parent(tsk, parent);
1532 spin_unlock_irqrestore(&sighand->siglock, flags);
1533 }
1534
1535 /*
1536 * This must be called with current->sighand->siglock held.
1537 *
1538 * This should be the path for all ptrace stops.
1539 * We always set current->last_siginfo while stopped here.
1540 * That makes it a way to test a stopped process for
1541 * being ptrace-stopped vs being job-control-stopped.
1542 *
1543 * If we actually decide not to stop at all because the tracer is gone,
1544 * we leave nostop_code in current->exit_code.
1545 */
1546 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1547 {
1548 /*
1549 * If there is a group stop in progress,
1550 * we must participate in the bookkeeping.
1551 */
1552 if (current->signal->group_stop_count > 0)
1553 --current->signal->group_stop_count;
1554
1555 current->last_siginfo = info;
1556 current->exit_code = exit_code;
1557
1558 /* Let the debugger run. */
1559 set_current_state(TASK_TRACED);
1560 spin_unlock_irq(&current->sighand->siglock);
1561 try_to_freeze();
1562 read_lock(&tasklist_lock);
1563 if (likely(current->ptrace & PT_PTRACED) &&
1564 likely(current->parent != current->real_parent ||
1565 !(current->ptrace & PT_ATTACHED)) &&
1566 (likely(current->parent->signal != current->signal) ||
1567 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1568 do_notify_parent_cldstop(current, CLD_TRAPPED);
1569 read_unlock(&tasklist_lock);
1570 schedule();
1571 } else {
1572 /*
1573 * By the time we got the lock, our tracer went away.
1574 * Don't stop here.
1575 */
1576 read_unlock(&tasklist_lock);
1577 set_current_state(TASK_RUNNING);
1578 current->exit_code = nostop_code;
1579 }
1580
1581 /*
1582 * We are back. Now reacquire the siglock before touching
1583 * last_siginfo, so that we are sure to have synchronized with
1584 * any signal-sending on another CPU that wants to examine it.
1585 */
1586 spin_lock_irq(&current->sighand->siglock);
1587 current->last_siginfo = NULL;
1588
1589 /*
1590 * Queued signals ignored us while we were stopped for tracing.
1591 * So check for any that we should take before resuming user mode.
1592 */
1593 recalc_sigpending();
1594 }
1595
1596 void ptrace_notify(int exit_code)
1597 {
1598 siginfo_t info;
1599
1600 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1601
1602 memset(&info, 0, sizeof info);
1603 info.si_signo = SIGTRAP;
1604 info.si_code = exit_code;
1605 info.si_pid = current->pid;
1606 info.si_uid = current->uid;
1607
1608 /* Let the debugger run. */
1609 spin_lock_irq(&current->sighand->siglock);
1610 ptrace_stop(exit_code, 0, &info);
1611 spin_unlock_irq(&current->sighand->siglock);
1612 }
1613
1614 static void
1615 finish_stop(int stop_count)
1616 {
1617 /*
1618 * If there are no other threads in the group, or if there is
1619 * a group stop in progress and we are the last to stop,
1620 * report to the parent. When ptraced, every thread reports itself.
1621 */
1622 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1623 read_lock(&tasklist_lock);
1624 do_notify_parent_cldstop(current, CLD_STOPPED);
1625 read_unlock(&tasklist_lock);
1626 }
1627
1628 schedule();
1629 /*
1630 * Now we don't run again until continued.
1631 */
1632 current->exit_code = 0;
1633 }
1634
1635 /*
1636 * This performs the stopping for SIGSTOP and other stop signals.
1637 * We have to stop all threads in the thread group.
1638 * Returns nonzero if we've actually stopped and released the siglock.
1639 * Returns zero if we didn't stop and still hold the siglock.
1640 */
1641 static int do_signal_stop(int signr)
1642 {
1643 struct signal_struct *sig = current->signal;
1644 int stop_count;
1645
1646 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1647 return 0;
1648
1649 if (sig->group_stop_count > 0) {
1650 /*
1651 * There is a group stop in progress. We don't need to
1652 * start another one.
1653 */
1654 stop_count = --sig->group_stop_count;
1655 } else {
1656 /*
1657 * There is no group stop already in progress.
1658 * We must initiate one now.
1659 */
1660 struct task_struct *t;
1661
1662 sig->group_exit_code = signr;
1663
1664 stop_count = 0;
1665 for (t = next_thread(current); t != current; t = next_thread(t))
1666 /*
1667 * Setting state to TASK_STOPPED for a group
1668 * stop is always done with the siglock held,
1669 * so this check has no races.
1670 */
1671 if (!t->exit_state &&
1672 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1673 stop_count++;
1674 signal_wake_up(t, 0);
1675 }
1676 sig->group_stop_count = stop_count;
1677 }
1678
1679 if (stop_count == 0)
1680 sig->flags = SIGNAL_STOP_STOPPED;
1681 current->exit_code = sig->group_exit_code;
1682 __set_current_state(TASK_STOPPED);
1683
1684 spin_unlock_irq(&current->sighand->siglock);
1685 finish_stop(stop_count);
1686 return 1;
1687 }
1688
1689 /*
1690 * Do appropriate magic when group_stop_count > 0.
1691 * We return nonzero if we stopped, after releasing the siglock.
1692 * We return zero if we still hold the siglock and should look
1693 * for another signal without checking group_stop_count again.
1694 */
1695 static int handle_group_stop(void)
1696 {
1697 int stop_count;
1698
1699 if (current->signal->group_exit_task == current) {
1700 /*
1701 * Group stop is so we can do a core dump,
1702 * We are the initiating thread, so get on with it.
1703 */
1704 current->signal->group_exit_task = NULL;
1705 return 0;
1706 }
1707
1708 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1709 /*
1710 * Group stop is so another thread can do a core dump,
1711 * or else we are racing against a death signal.
1712 * Just punt the stop so we can get the next signal.
1713 */
1714 return 0;
1715
1716 /*
1717 * There is a group stop in progress. We stop
1718 * without any associated signal being in our queue.
1719 */
1720 stop_count = --current->signal->group_stop_count;
1721 if (stop_count == 0)
1722 current->signal->flags = SIGNAL_STOP_STOPPED;
1723 current->exit_code = current->signal->group_exit_code;
1724 set_current_state(TASK_STOPPED);
1725 spin_unlock_irq(&current->sighand->siglock);
1726 finish_stop(stop_count);
1727 return 1;
1728 }
1729
1730 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1731 struct pt_regs *regs, void *cookie)
1732 {
1733 sigset_t *mask = &current->blocked;
1734 int signr = 0;
1735
1736 try_to_freeze();
1737
1738 relock:
1739 spin_lock_irq(&current->sighand->siglock);
1740 for (;;) {
1741 struct k_sigaction *ka;
1742
1743 if (unlikely(current->signal->group_stop_count > 0) &&
1744 handle_group_stop())
1745 goto relock;
1746
1747 signr = dequeue_signal(current, mask, info);
1748
1749 if (!signr)
1750 break; /* will return 0 */
1751
1752 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1753 ptrace_signal_deliver(regs, cookie);
1754
1755 /* Let the debugger run. */
1756 ptrace_stop(signr, signr, info);
1757
1758 /* We're back. Did the debugger cancel the sig or group_exit? */
1759 signr = current->exit_code;
1760 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1761 continue;
1762
1763 current->exit_code = 0;
1764
1765 /* Update the siginfo structure if the signal has
1766 changed. If the debugger wanted something
1767 specific in the siginfo structure then it should
1768 have updated *info via PTRACE_SETSIGINFO. */
1769 if (signr != info->si_signo) {
1770 info->si_signo = signr;
1771 info->si_errno = 0;
1772 info->si_code = SI_USER;
1773 info->si_pid = current->parent->pid;
1774 info->si_uid = current->parent->uid;
1775 }
1776
1777 /* If the (new) signal is now blocked, requeue it. */
1778 if (sigismember(&current->blocked, signr)) {
1779 specific_send_sig_info(signr, info, current);
1780 continue;
1781 }
1782 }
1783
1784 ka = &current->sighand->action[signr-1];
1785 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1786 continue;
1787 if (ka->sa.sa_handler != SIG_DFL) {
1788 /* Run the handler. */
1789 *return_ka = *ka;
1790
1791 if (ka->sa.sa_flags & SA_ONESHOT)
1792 ka->sa.sa_handler = SIG_DFL;
1793
1794 break; /* will return non-zero "signr" value */
1795 }
1796
1797 /*
1798 * Now we are doing the default action for this signal.
1799 */
1800 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1801 continue;
1802
1803 /* Init gets no signals it doesn't want. */
1804 if (current == child_reaper)
1805 continue;
1806
1807 if (sig_kernel_stop(signr)) {
1808 /*
1809 * The default action is to stop all threads in
1810 * the thread group. The job control signals
1811 * do nothing in an orphaned pgrp, but SIGSTOP
1812 * always works. Note that siglock needs to be
1813 * dropped during the call to is_orphaned_pgrp()
1814 * because of lock ordering with tasklist_lock.
1815 * This allows an intervening SIGCONT to be posted.
1816 * We need to check for that and bail out if necessary.
1817 */
1818 if (signr != SIGSTOP) {
1819 spin_unlock_irq(&current->sighand->siglock);
1820
1821 /* signals can be posted during this window */
1822
1823 if (is_orphaned_pgrp(process_group(current)))
1824 goto relock;
1825
1826 spin_lock_irq(&current->sighand->siglock);
1827 }
1828
1829 if (likely(do_signal_stop(signr))) {
1830 /* It released the siglock. */
1831 goto relock;
1832 }
1833
1834 /*
1835 * We didn't actually stop, due to a race
1836 * with SIGCONT or something like that.
1837 */
1838 continue;
1839 }
1840
1841 spin_unlock_irq(&current->sighand->siglock);
1842
1843 /*
1844 * Anything else is fatal, maybe with a core dump.
1845 */
1846 current->flags |= PF_SIGNALED;
1847 if (sig_kernel_coredump(signr)) {
1848 /*
1849 * If it was able to dump core, this kills all
1850 * other threads in the group and synchronizes with
1851 * their demise. If we lost the race with another
1852 * thread getting here, it set group_exit_code
1853 * first and our do_group_exit call below will use
1854 * that value and ignore the one we pass it.
1855 */
1856 do_coredump((long)signr, signr, regs);
1857 }
1858
1859 /*
1860 * Death signals, no core dump.
1861 */
1862 do_group_exit(signr);
1863 /* NOTREACHED */
1864 }
1865 spin_unlock_irq(&current->sighand->siglock);
1866 return signr;
1867 }
1868
1869 EXPORT_SYMBOL(recalc_sigpending);
1870 EXPORT_SYMBOL_GPL(dequeue_signal);
1871 EXPORT_SYMBOL(flush_signals);
1872 EXPORT_SYMBOL(force_sig);
1873 EXPORT_SYMBOL(kill_pg);
1874 EXPORT_SYMBOL(kill_proc);
1875 EXPORT_SYMBOL(ptrace_notify);
1876 EXPORT_SYMBOL(send_sig);
1877 EXPORT_SYMBOL(send_sig_info);
1878 EXPORT_SYMBOL(sigprocmask);
1879 EXPORT_SYMBOL(block_all_signals);
1880 EXPORT_SYMBOL(unblock_all_signals);
1881
1882
1883 /*
1884 * System call entry points.
1885 */
1886
1887 asmlinkage long sys_restart_syscall(void)
1888 {
1889 struct restart_block *restart = &current_thread_info()->restart_block;
1890 return restart->fn(restart);
1891 }
1892
1893 long do_no_restart_syscall(struct restart_block *param)
1894 {
1895 return -EINTR;
1896 }
1897
1898 /*
1899 * We don't need to get the kernel lock - this is all local to this
1900 * particular thread.. (and that's good, because this is _heavily_
1901 * used by various programs)
1902 */
1903
1904 /*
1905 * This is also useful for kernel threads that want to temporarily
1906 * (or permanently) block certain signals.
1907 *
1908 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1909 * interface happily blocks "unblockable" signals like SIGKILL
1910 * and friends.
1911 */
1912 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1913 {
1914 int error;
1915
1916 spin_lock_irq(&current->sighand->siglock);
1917 if (oldset)
1918 *oldset = current->blocked;
1919
1920 error = 0;
1921 switch (how) {
1922 case SIG_BLOCK:
1923 sigorsets(&current->blocked, &current->blocked, set);
1924 break;
1925 case SIG_UNBLOCK:
1926 signandsets(&current->blocked, &current->blocked, set);
1927 break;
1928 case SIG_SETMASK:
1929 current->blocked = *set;
1930 break;
1931 default:
1932 error = -EINVAL;
1933 }
1934 recalc_sigpending();
1935 spin_unlock_irq(&current->sighand->siglock);
1936
1937 return error;
1938 }
1939
1940 asmlinkage long
1941 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1942 {
1943 int error = -EINVAL;
1944 sigset_t old_set, new_set;
1945
1946 /* XXX: Don't preclude handling different sized sigset_t's. */
1947 if (sigsetsize != sizeof(sigset_t))
1948 goto out;
1949
1950 if (set) {
1951 error = -EFAULT;
1952 if (copy_from_user(&new_set, set, sizeof(*set)))
1953 goto out;
1954 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1955
1956 error = sigprocmask(how, &new_set, &old_set);
1957 if (error)
1958 goto out;
1959 if (oset)
1960 goto set_old;
1961 } else if (oset) {
1962 spin_lock_irq(&current->sighand->siglock);
1963 old_set = current->blocked;
1964 spin_unlock_irq(&current->sighand->siglock);
1965
1966 set_old:
1967 error = -EFAULT;
1968 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1969 goto out;
1970 }
1971 error = 0;
1972 out:
1973 return error;
1974 }
1975
1976 long do_sigpending(void __user *set, unsigned long sigsetsize)
1977 {
1978 long error = -EINVAL;
1979 sigset_t pending;
1980
1981 if (sigsetsize > sizeof(sigset_t))
1982 goto out;
1983
1984 spin_lock_irq(&current->sighand->siglock);
1985 sigorsets(&pending, &current->pending.signal,
1986 &current->signal->shared_pending.signal);
1987 spin_unlock_irq(&current->sighand->siglock);
1988
1989 /* Outside the lock because only this thread touches it. */
1990 sigandsets(&pending, &current->blocked, &pending);
1991
1992 error = -EFAULT;
1993 if (!copy_to_user(set, &pending, sigsetsize))
1994 error = 0;
1995
1996 out:
1997 return error;
1998 }
1999
2000 asmlinkage long
2001 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2002 {
2003 return do_sigpending(set, sigsetsize);
2004 }
2005
2006 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2007
2008 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2009 {
2010 int err;
2011
2012 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2013 return -EFAULT;
2014 if (from->si_code < 0)
2015 return __copy_to_user(to, from, sizeof(siginfo_t))
2016 ? -EFAULT : 0;
2017 /*
2018 * If you change siginfo_t structure, please be sure
2019 * this code is fixed accordingly.
2020 * It should never copy any pad contained in the structure
2021 * to avoid security leaks, but must copy the generic
2022 * 3 ints plus the relevant union member.
2023 */
2024 err = __put_user(from->si_signo, &to->si_signo);
2025 err |= __put_user(from->si_errno, &to->si_errno);
2026 err |= __put_user((short)from->si_code, &to->si_code);
2027 switch (from->si_code & __SI_MASK) {
2028 case __SI_KILL:
2029 err |= __put_user(from->si_pid, &to->si_pid);
2030 err |= __put_user(from->si_uid, &to->si_uid);
2031 break;
2032 case __SI_TIMER:
2033 err |= __put_user(from->si_tid, &to->si_tid);
2034 err |= __put_user(from->si_overrun, &to->si_overrun);
2035 err |= __put_user(from->si_ptr, &to->si_ptr);
2036 break;
2037 case __SI_POLL:
2038 err |= __put_user(from->si_band, &to->si_band);
2039 err |= __put_user(from->si_fd, &to->si_fd);
2040 break;
2041 case __SI_FAULT:
2042 err |= __put_user(from->si_addr, &to->si_addr);
2043 #ifdef __ARCH_SI_TRAPNO
2044 err |= __put_user(from->si_trapno, &to->si_trapno);
2045 #endif
2046 break;
2047 case __SI_CHLD:
2048 err |= __put_user(from->si_pid, &to->si_pid);
2049 err |= __put_user(from->si_uid, &to->si_uid);
2050 err |= __put_user(from->si_status, &to->si_status);
2051 err |= __put_user(from->si_utime, &to->si_utime);
2052 err |= __put_user(from->si_stime, &to->si_stime);
2053 break;
2054 case __SI_RT: /* This is not generated by the kernel as of now. */
2055 case __SI_MESGQ: /* But this is */
2056 err |= __put_user(from->si_pid, &to->si_pid);
2057 err |= __put_user(from->si_uid, &to->si_uid);
2058 err |= __put_user(from->si_ptr, &to->si_ptr);
2059 break;
2060 default: /* this is just in case for now ... */
2061 err |= __put_user(from->si_pid, &to->si_pid);
2062 err |= __put_user(from->si_uid, &to->si_uid);
2063 break;
2064 }
2065 return err;
2066 }
2067
2068 #endif
2069
2070 asmlinkage long
2071 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2072 siginfo_t __user *uinfo,
2073 const struct timespec __user *uts,
2074 size_t sigsetsize)
2075 {
2076 int ret, sig;
2077 sigset_t these;
2078 struct timespec ts;
2079 siginfo_t info;
2080 long timeout = 0;
2081
2082 /* XXX: Don't preclude handling different sized sigset_t's. */
2083 if (sigsetsize != sizeof(sigset_t))
2084 return -EINVAL;
2085
2086 if (copy_from_user(&these, uthese, sizeof(these)))
2087 return -EFAULT;
2088
2089 /*
2090 * Invert the set of allowed signals to get those we
2091 * want to block.
2092 */
2093 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2094 signotset(&these);
2095
2096 if (uts) {
2097 if (copy_from_user(&ts, uts, sizeof(ts)))
2098 return -EFAULT;
2099 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2100 || ts.tv_sec < 0)
2101 return -EINVAL;
2102 }
2103
2104 spin_lock_irq(&current->sighand->siglock);
2105 sig = dequeue_signal(current, &these, &info);
2106 if (!sig) {
2107 timeout = MAX_SCHEDULE_TIMEOUT;
2108 if (uts)
2109 timeout = (timespec_to_jiffies(&ts)
2110 + (ts.tv_sec || ts.tv_nsec));
2111
2112 if (timeout) {
2113 /* None ready -- temporarily unblock those we're
2114 * interested while we are sleeping in so that we'll
2115 * be awakened when they arrive. */
2116 current->real_blocked = current->blocked;
2117 sigandsets(&current->blocked, &current->blocked, &these);
2118 recalc_sigpending();
2119 spin_unlock_irq(&current->sighand->siglock);
2120
2121 timeout = schedule_timeout_interruptible(timeout);
2122
2123 spin_lock_irq(&current->sighand->siglock);
2124 sig = dequeue_signal(current, &these, &info);
2125 current->blocked = current->real_blocked;
2126 siginitset(&current->real_blocked, 0);
2127 recalc_sigpending();
2128 }
2129 }
2130 spin_unlock_irq(&current->sighand->siglock);
2131
2132 if (sig) {
2133 ret = sig;
2134 if (uinfo) {
2135 if (copy_siginfo_to_user(uinfo, &info))
2136 ret = -EFAULT;
2137 }
2138 } else {
2139 ret = -EAGAIN;
2140 if (timeout)
2141 ret = -EINTR;
2142 }
2143
2144 return ret;
2145 }
2146
2147 asmlinkage long
2148 sys_kill(int pid, int sig)
2149 {
2150 struct siginfo info;
2151
2152 info.si_signo = sig;
2153 info.si_errno = 0;
2154 info.si_code = SI_USER;
2155 info.si_pid = current->tgid;
2156 info.si_uid = current->uid;
2157
2158 return kill_something_info(sig, &info, pid);
2159 }
2160
2161 static int do_tkill(int tgid, int pid, int sig)
2162 {
2163 int error;
2164 struct siginfo info;
2165 struct task_struct *p;
2166
2167 error = -ESRCH;
2168 info.si_signo = sig;
2169 info.si_errno = 0;
2170 info.si_code = SI_TKILL;
2171 info.si_pid = current->tgid;
2172 info.si_uid = current->uid;
2173
2174 read_lock(&tasklist_lock);
2175 p = find_task_by_pid(pid);
2176 if (p && (tgid <= 0 || p->tgid == tgid)) {
2177 error = check_kill_permission(sig, &info, p);
2178 /*
2179 * The null signal is a permissions and process existence
2180 * probe. No signal is actually delivered.
2181 */
2182 if (!error && sig && p->sighand) {
2183 spin_lock_irq(&p->sighand->siglock);
2184 handle_stop_signal(sig, p);
2185 error = specific_send_sig_info(sig, &info, p);
2186 spin_unlock_irq(&p->sighand->siglock);
2187 }
2188 }
2189 read_unlock(&tasklist_lock);
2190
2191 return error;
2192 }
2193
2194 /**
2195 * sys_tgkill - send signal to one specific thread
2196 * @tgid: the thread group ID of the thread
2197 * @pid: the PID of the thread
2198 * @sig: signal to be sent
2199 *
2200 * This syscall also checks the tgid and returns -ESRCH even if the PID
2201 * exists but it's not belonging to the target process anymore. This
2202 * method solves the problem of threads exiting and PIDs getting reused.
2203 */
2204 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2205 {
2206 /* This is only valid for single tasks */
2207 if (pid <= 0 || tgid <= 0)
2208 return -EINVAL;
2209
2210 return do_tkill(tgid, pid, sig);
2211 }
2212
2213 /*
2214 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2215 */
2216 asmlinkage long
2217 sys_tkill(int pid, int sig)
2218 {
2219 /* This is only valid for single tasks */
2220 if (pid <= 0)
2221 return -EINVAL;
2222
2223 return do_tkill(0, pid, sig);
2224 }
2225
2226 asmlinkage long
2227 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2228 {
2229 siginfo_t info;
2230
2231 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2232 return -EFAULT;
2233
2234 /* Not even root can pretend to send signals from the kernel.
2235 Nor can they impersonate a kill(), which adds source info. */
2236 if (info.si_code >= 0)
2237 return -EPERM;
2238 info.si_signo = sig;
2239
2240 /* POSIX.1b doesn't mention process groups. */
2241 return kill_proc_info(sig, &info, pid);
2242 }
2243
2244 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2245 {
2246 struct k_sigaction *k;
2247 sigset_t mask;
2248
2249 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2250 return -EINVAL;
2251
2252 k = &current->sighand->action[sig-1];
2253
2254 spin_lock_irq(&current->sighand->siglock);
2255 if (signal_pending(current)) {
2256 /*
2257 * If there might be a fatal signal pending on multiple
2258 * threads, make sure we take it before changing the action.
2259 */
2260 spin_unlock_irq(&current->sighand->siglock);
2261 return -ERESTARTNOINTR;
2262 }
2263
2264 if (oact)
2265 *oact = *k;
2266
2267 if (act) {
2268 sigdelsetmask(&act->sa.sa_mask,
2269 sigmask(SIGKILL) | sigmask(SIGSTOP));
2270 *k = *act;
2271 /*
2272 * POSIX 3.3.1.3:
2273 * "Setting a signal action to SIG_IGN for a signal that is
2274 * pending shall cause the pending signal to be discarded,
2275 * whether or not it is blocked."
2276 *
2277 * "Setting a signal action to SIG_DFL for a signal that is
2278 * pending and whose default action is to ignore the signal
2279 * (for example, SIGCHLD), shall cause the pending signal to
2280 * be discarded, whether or not it is blocked"
2281 */
2282 if (act->sa.sa_handler == SIG_IGN ||
2283 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2284 struct task_struct *t = current;
2285 sigemptyset(&mask);
2286 sigaddset(&mask, sig);
2287 rm_from_queue_full(&mask, &t->signal->shared_pending);
2288 do {
2289 rm_from_queue_full(&mask, &t->pending);
2290 recalc_sigpending_tsk(t);
2291 t = next_thread(t);
2292 } while (t != current);
2293 }
2294 }
2295
2296 spin_unlock_irq(&current->sighand->siglock);
2297 return 0;
2298 }
2299
2300 int
2301 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2302 {
2303 stack_t oss;
2304 int error;
2305
2306 if (uoss) {
2307 oss.ss_sp = (void __user *) current->sas_ss_sp;
2308 oss.ss_size = current->sas_ss_size;
2309 oss.ss_flags = sas_ss_flags(sp);
2310 }
2311
2312 if (uss) {
2313 void __user *ss_sp;
2314 size_t ss_size;
2315 int ss_flags;
2316
2317 error = -EFAULT;
2318 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2319 || __get_user(ss_sp, &uss->ss_sp)
2320 || __get_user(ss_flags, &uss->ss_flags)
2321 || __get_user(ss_size, &uss->ss_size))
2322 goto out;
2323
2324 error = -EPERM;
2325 if (on_sig_stack(sp))
2326 goto out;
2327
2328 error = -EINVAL;
2329 /*
2330 *
2331 * Note - this code used to test ss_flags incorrectly
2332 * old code may have been written using ss_flags==0
2333 * to mean ss_flags==SS_ONSTACK (as this was the only
2334 * way that worked) - this fix preserves that older
2335 * mechanism
2336 */
2337 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2338 goto out;
2339
2340 if (ss_flags == SS_DISABLE) {
2341 ss_size = 0;
2342 ss_sp = NULL;
2343 } else {
2344 error = -ENOMEM;
2345 if (ss_size < MINSIGSTKSZ)
2346 goto out;
2347 }
2348
2349 current->sas_ss_sp = (unsigned long) ss_sp;
2350 current->sas_ss_size = ss_size;
2351 }
2352
2353 if (uoss) {
2354 error = -EFAULT;
2355 if (copy_to_user(uoss, &oss, sizeof(oss)))
2356 goto out;
2357 }
2358
2359 error = 0;
2360 out:
2361 return error;
2362 }
2363
2364 #ifdef __ARCH_WANT_SYS_SIGPENDING
2365
2366 asmlinkage long
2367 sys_sigpending(old_sigset_t __user *set)
2368 {
2369 return do_sigpending(set, sizeof(*set));
2370 }
2371
2372 #endif
2373
2374 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2375 /* Some platforms have their own version with special arguments others
2376 support only sys_rt_sigprocmask. */
2377
2378 asmlinkage long
2379 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2380 {
2381 int error;
2382 old_sigset_t old_set, new_set;
2383
2384 if (set) {
2385 error = -EFAULT;
2386 if (copy_from_user(&new_set, set, sizeof(*set)))
2387 goto out;
2388 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2389
2390 spin_lock_irq(&current->sighand->siglock);
2391 old_set = current->blocked.sig[0];
2392
2393 error = 0;
2394 switch (how) {
2395 default:
2396 error = -EINVAL;
2397 break;
2398 case SIG_BLOCK:
2399 sigaddsetmask(&current->blocked, new_set);
2400 break;
2401 case SIG_UNBLOCK:
2402 sigdelsetmask(&current->blocked, new_set);
2403 break;
2404 case SIG_SETMASK:
2405 current->blocked.sig[0] = new_set;
2406 break;
2407 }
2408
2409 recalc_sigpending();
2410 spin_unlock_irq(&current->sighand->siglock);
2411 if (error)
2412 goto out;
2413 if (oset)
2414 goto set_old;
2415 } else if (oset) {
2416 old_set = current->blocked.sig[0];
2417 set_old:
2418 error = -EFAULT;
2419 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2420 goto out;
2421 }
2422 error = 0;
2423 out:
2424 return error;
2425 }
2426 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2427
2428 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2429 asmlinkage long
2430 sys_rt_sigaction(int sig,
2431 const struct sigaction __user *act,
2432 struct sigaction __user *oact,
2433 size_t sigsetsize)
2434 {
2435 struct k_sigaction new_sa, old_sa;
2436 int ret = -EINVAL;
2437
2438 /* XXX: Don't preclude handling different sized sigset_t's. */
2439 if (sigsetsize != sizeof(sigset_t))
2440 goto out;
2441
2442 if (act) {
2443 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2444 return -EFAULT;
2445 }
2446
2447 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2448
2449 if (!ret && oact) {
2450 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2451 return -EFAULT;
2452 }
2453 out:
2454 return ret;
2455 }
2456 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2457
2458 #ifdef __ARCH_WANT_SYS_SGETMASK
2459
2460 /*
2461 * For backwards compatibility. Functionality superseded by sigprocmask.
2462 */
2463 asmlinkage long
2464 sys_sgetmask(void)
2465 {
2466 /* SMP safe */
2467 return current->blocked.sig[0];
2468 }
2469
2470 asmlinkage long
2471 sys_ssetmask(int newmask)
2472 {
2473 int old;
2474
2475 spin_lock_irq(&current->sighand->siglock);
2476 old = current->blocked.sig[0];
2477
2478 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2479 sigmask(SIGSTOP)));
2480 recalc_sigpending();
2481 spin_unlock_irq(&current->sighand->siglock);
2482
2483 return old;
2484 }
2485 #endif /* __ARCH_WANT_SGETMASK */
2486
2487 #ifdef __ARCH_WANT_SYS_SIGNAL
2488 /*
2489 * For backwards compatibility. Functionality superseded by sigaction.
2490 */
2491 asmlinkage unsigned long
2492 sys_signal(int sig, __sighandler_t handler)
2493 {
2494 struct k_sigaction new_sa, old_sa;
2495 int ret;
2496
2497 new_sa.sa.sa_handler = handler;
2498 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2499 sigemptyset(&new_sa.sa.sa_mask);
2500
2501 ret = do_sigaction(sig, &new_sa, &old_sa);
2502
2503 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2504 }
2505 #endif /* __ARCH_WANT_SYS_SIGNAL */
2506
2507 #ifdef __ARCH_WANT_SYS_PAUSE
2508
2509 asmlinkage long
2510 sys_pause(void)
2511 {
2512 current->state = TASK_INTERRUPTIBLE;
2513 schedule();
2514 return -ERESTARTNOHAND;
2515 }
2516
2517 #endif
2518
2519 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2520 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2521 {
2522 sigset_t newset;
2523
2524 /* XXX: Don't preclude handling different sized sigset_t's. */
2525 if (sigsetsize != sizeof(sigset_t))
2526 return -EINVAL;
2527
2528 if (copy_from_user(&newset, unewset, sizeof(newset)))
2529 return -EFAULT;
2530 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2531
2532 spin_lock_irq(&current->sighand->siglock);
2533 current->saved_sigmask = current->blocked;
2534 current->blocked = newset;
2535 recalc_sigpending();
2536 spin_unlock_irq(&current->sighand->siglock);
2537
2538 current->state = TASK_INTERRUPTIBLE;
2539 schedule();
2540 set_thread_flag(TIF_RESTORE_SIGMASK);
2541 return -ERESTARTNOHAND;
2542 }
2543 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2544
2545 void __init signals_init(void)
2546 {
2547 sigqueue_cachep =
2548 kmem_cache_create("sigqueue",
2549 sizeof(struct sigqueue),
2550 __alignof__(struct sigqueue),
2551 SLAB_PANIC, NULL, NULL);
2552 }
This page took 0.089514 seconds and 5 git commands to generate.