pm selftest: rtc paranoia
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 static void __flush_itimer_signals(struct sigpending *pending)
235 {
236 sigset_t signal, retain;
237 struct sigqueue *q, *n;
238
239 signal = pending->signal;
240 sigemptyset(&retain);
241
242 list_for_each_entry_safe(q, n, &pending->list, list) {
243 int sig = q->info.si_signo;
244
245 if (likely(q->info.si_code != SI_TIMER)) {
246 sigaddset(&retain, sig);
247 } else {
248 sigdelset(&signal, sig);
249 list_del_init(&q->list);
250 __sigqueue_free(q);
251 }
252 }
253
254 sigorsets(&pending->signal, &signal, &retain);
255 }
256
257 void flush_itimer_signals(void)
258 {
259 struct task_struct *tsk = current;
260 unsigned long flags;
261
262 spin_lock_irqsave(&tsk->sighand->siglock, flags);
263 __flush_itimer_signals(&tsk->pending);
264 __flush_itimer_signals(&tsk->signal->shared_pending);
265 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
266 }
267
268 void ignore_signals(struct task_struct *t)
269 {
270 int i;
271
272 for (i = 0; i < _NSIG; ++i)
273 t->sighand->action[i].sa.sa_handler = SIG_IGN;
274
275 flush_signals(t);
276 }
277
278 /*
279 * Flush all handlers for a task.
280 */
281
282 void
283 flush_signal_handlers(struct task_struct *t, int force_default)
284 {
285 int i;
286 struct k_sigaction *ka = &t->sighand->action[0];
287 for (i = _NSIG ; i != 0 ; i--) {
288 if (force_default || ka->sa.sa_handler != SIG_IGN)
289 ka->sa.sa_handler = SIG_DFL;
290 ka->sa.sa_flags = 0;
291 sigemptyset(&ka->sa.sa_mask);
292 ka++;
293 }
294 }
295
296 int unhandled_signal(struct task_struct *tsk, int sig)
297 {
298 if (is_global_init(tsk))
299 return 1;
300 if (tsk->ptrace & PT_PTRACED)
301 return 0;
302 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
303 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
304 }
305
306
307 /* Notify the system that a driver wants to block all signals for this
308 * process, and wants to be notified if any signals at all were to be
309 * sent/acted upon. If the notifier routine returns non-zero, then the
310 * signal will be acted upon after all. If the notifier routine returns 0,
311 * then then signal will be blocked. Only one block per process is
312 * allowed. priv is a pointer to private data that the notifier routine
313 * can use to determine if the signal should be blocked or not. */
314
315 void
316 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
317 {
318 unsigned long flags;
319
320 spin_lock_irqsave(&current->sighand->siglock, flags);
321 current->notifier_mask = mask;
322 current->notifier_data = priv;
323 current->notifier = notifier;
324 spin_unlock_irqrestore(&current->sighand->siglock, flags);
325 }
326
327 /* Notify the system that blocking has ended. */
328
329 void
330 unblock_all_signals(void)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&current->sighand->siglock, flags);
335 current->notifier = NULL;
336 current->notifier_data = NULL;
337 recalc_sigpending();
338 spin_unlock_irqrestore(&current->sighand->siglock, flags);
339 }
340
341 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
342 {
343 struct sigqueue *q, *first = NULL;
344
345 /*
346 * Collect the siginfo appropriate to this signal. Check if
347 * there is another siginfo for the same signal.
348 */
349 list_for_each_entry(q, &list->list, list) {
350 if (q->info.si_signo == sig) {
351 if (first)
352 goto still_pending;
353 first = q;
354 }
355 }
356
357 sigdelset(&list->signal, sig);
358
359 if (first) {
360 still_pending:
361 list_del_init(&first->list);
362 copy_siginfo(info, &first->info);
363 __sigqueue_free(first);
364 } else {
365 /* Ok, it wasn't in the queue. This must be
366 a fast-pathed signal or we must have been
367 out of queue space. So zero out the info.
368 */
369 info->si_signo = sig;
370 info->si_errno = 0;
371 info->si_code = 0;
372 info->si_pid = 0;
373 info->si_uid = 0;
374 }
375 }
376
377 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
378 siginfo_t *info)
379 {
380 int sig = next_signal(pending, mask);
381
382 if (sig) {
383 if (current->notifier) {
384 if (sigismember(current->notifier_mask, sig)) {
385 if (!(current->notifier)(current->notifier_data)) {
386 clear_thread_flag(TIF_SIGPENDING);
387 return 0;
388 }
389 }
390 }
391
392 collect_signal(sig, pending, info);
393 }
394
395 return sig;
396 }
397
398 /*
399 * Dequeue a signal and return the element to the caller, which is
400 * expected to free it.
401 *
402 * All callers have to hold the siglock.
403 */
404 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
405 {
406 int signr;
407
408 /* We only dequeue private signals from ourselves, we don't let
409 * signalfd steal them
410 */
411 signr = __dequeue_signal(&tsk->pending, mask, info);
412 if (!signr) {
413 signr = __dequeue_signal(&tsk->signal->shared_pending,
414 mask, info);
415 /*
416 * itimer signal ?
417 *
418 * itimers are process shared and we restart periodic
419 * itimers in the signal delivery path to prevent DoS
420 * attacks in the high resolution timer case. This is
421 * compliant with the old way of self restarting
422 * itimers, as the SIGALRM is a legacy signal and only
423 * queued once. Changing the restart behaviour to
424 * restart the timer in the signal dequeue path is
425 * reducing the timer noise on heavy loaded !highres
426 * systems too.
427 */
428 if (unlikely(signr == SIGALRM)) {
429 struct hrtimer *tmr = &tsk->signal->real_timer;
430
431 if (!hrtimer_is_queued(tmr) &&
432 tsk->signal->it_real_incr.tv64 != 0) {
433 hrtimer_forward(tmr, tmr->base->get_time(),
434 tsk->signal->it_real_incr);
435 hrtimer_restart(tmr);
436 }
437 }
438 }
439
440 recalc_sigpending();
441 if (!signr)
442 return 0;
443
444 if (unlikely(sig_kernel_stop(signr))) {
445 /*
446 * Set a marker that we have dequeued a stop signal. Our
447 * caller might release the siglock and then the pending
448 * stop signal it is about to process is no longer in the
449 * pending bitmasks, but must still be cleared by a SIGCONT
450 * (and overruled by a SIGKILL). So those cases clear this
451 * shared flag after we've set it. Note that this flag may
452 * remain set after the signal we return is ignored or
453 * handled. That doesn't matter because its only purpose
454 * is to alert stop-signal processing code when another
455 * processor has come along and cleared the flag.
456 */
457 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
458 }
459 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
460 /*
461 * Release the siglock to ensure proper locking order
462 * of timer locks outside of siglocks. Note, we leave
463 * irqs disabled here, since the posix-timers code is
464 * about to disable them again anyway.
465 */
466 spin_unlock(&tsk->sighand->siglock);
467 do_schedule_next_timer(info);
468 spin_lock(&tsk->sighand->siglock);
469 }
470 return signr;
471 }
472
473 /*
474 * Tell a process that it has a new active signal..
475 *
476 * NOTE! we rely on the previous spin_lock to
477 * lock interrupts for us! We can only be called with
478 * "siglock" held, and the local interrupt must
479 * have been disabled when that got acquired!
480 *
481 * No need to set need_resched since signal event passing
482 * goes through ->blocked
483 */
484 void signal_wake_up(struct task_struct *t, int resume)
485 {
486 unsigned int mask;
487
488 set_tsk_thread_flag(t, TIF_SIGPENDING);
489
490 /*
491 * For SIGKILL, we want to wake it up in the stopped/traced/killable
492 * case. We don't check t->state here because there is a race with it
493 * executing another processor and just now entering stopped state.
494 * By using wake_up_state, we ensure the process will wake up and
495 * handle its death signal.
496 */
497 mask = TASK_INTERRUPTIBLE;
498 if (resume)
499 mask |= TASK_WAKEKILL;
500 if (!wake_up_state(t, mask))
501 kick_process(t);
502 }
503
504 /*
505 * Remove signals in mask from the pending set and queue.
506 * Returns 1 if any signals were found.
507 *
508 * All callers must be holding the siglock.
509 *
510 * This version takes a sigset mask and looks at all signals,
511 * not just those in the first mask word.
512 */
513 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
514 {
515 struct sigqueue *q, *n;
516 sigset_t m;
517
518 sigandsets(&m, mask, &s->signal);
519 if (sigisemptyset(&m))
520 return 0;
521
522 signandsets(&s->signal, &s->signal, mask);
523 list_for_each_entry_safe(q, n, &s->list, list) {
524 if (sigismember(mask, q->info.si_signo)) {
525 list_del_init(&q->list);
526 __sigqueue_free(q);
527 }
528 }
529 return 1;
530 }
531 /*
532 * Remove signals in mask from the pending set and queue.
533 * Returns 1 if any signals were found.
534 *
535 * All callers must be holding the siglock.
536 */
537 static int rm_from_queue(unsigned long mask, struct sigpending *s)
538 {
539 struct sigqueue *q, *n;
540
541 if (!sigtestsetmask(&s->signal, mask))
542 return 0;
543
544 sigdelsetmask(&s->signal, mask);
545 list_for_each_entry_safe(q, n, &s->list, list) {
546 if (q->info.si_signo < SIGRTMIN &&
547 (mask & sigmask(q->info.si_signo))) {
548 list_del_init(&q->list);
549 __sigqueue_free(q);
550 }
551 }
552 return 1;
553 }
554
555 /*
556 * Bad permissions for sending the signal
557 */
558 static int check_kill_permission(int sig, struct siginfo *info,
559 struct task_struct *t)
560 {
561 struct pid *sid;
562 int error;
563
564 if (!valid_signal(sig))
565 return -EINVAL;
566
567 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
568 return 0;
569
570 error = audit_signal_info(sig, t); /* Let audit system see the signal */
571 if (error)
572 return error;
573
574 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) &&
575 (current->uid ^ t->suid) && (current->uid ^ t->uid) &&
576 !capable(CAP_KILL)) {
577 switch (sig) {
578 case SIGCONT:
579 sid = task_session(t);
580 /*
581 * We don't return the error if sid == NULL. The
582 * task was unhashed, the caller must notice this.
583 */
584 if (!sid || sid == task_session(current))
585 break;
586 default:
587 return -EPERM;
588 }
589 }
590
591 return security_task_kill(t, info, sig, 0);
592 }
593
594 /* forward decl */
595 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
596
597 /*
598 * Handle magic process-wide effects of stop/continue signals. Unlike
599 * the signal actions, these happen immediately at signal-generation
600 * time regardless of blocking, ignoring, or handling. This does the
601 * actual continuing for SIGCONT, but not the actual stopping for stop
602 * signals. The process stop is done as a signal action for SIG_DFL.
603 *
604 * Returns true if the signal should be actually delivered, otherwise
605 * it should be dropped.
606 */
607 static int prepare_signal(int sig, struct task_struct *p)
608 {
609 struct signal_struct *signal = p->signal;
610 struct task_struct *t;
611
612 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
613 /*
614 * The process is in the middle of dying, nothing to do.
615 */
616 } else if (sig_kernel_stop(sig)) {
617 /*
618 * This is a stop signal. Remove SIGCONT from all queues.
619 */
620 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
621 t = p;
622 do {
623 rm_from_queue(sigmask(SIGCONT), &t->pending);
624 } while_each_thread(p, t);
625 } else if (sig == SIGCONT) {
626 unsigned int why;
627 /*
628 * Remove all stop signals from all queues,
629 * and wake all threads.
630 */
631 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
632 t = p;
633 do {
634 unsigned int state;
635 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
636 /*
637 * If there is a handler for SIGCONT, we must make
638 * sure that no thread returns to user mode before
639 * we post the signal, in case it was the only
640 * thread eligible to run the signal handler--then
641 * it must not do anything between resuming and
642 * running the handler. With the TIF_SIGPENDING
643 * flag set, the thread will pause and acquire the
644 * siglock that we hold now and until we've queued
645 * the pending signal.
646 *
647 * Wake up the stopped thread _after_ setting
648 * TIF_SIGPENDING
649 */
650 state = __TASK_STOPPED;
651 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
652 set_tsk_thread_flag(t, TIF_SIGPENDING);
653 state |= TASK_INTERRUPTIBLE;
654 }
655 wake_up_state(t, state);
656 } while_each_thread(p, t);
657
658 /*
659 * Notify the parent with CLD_CONTINUED if we were stopped.
660 *
661 * If we were in the middle of a group stop, we pretend it
662 * was already finished, and then continued. Since SIGCHLD
663 * doesn't queue we report only CLD_STOPPED, as if the next
664 * CLD_CONTINUED was dropped.
665 */
666 why = 0;
667 if (signal->flags & SIGNAL_STOP_STOPPED)
668 why |= SIGNAL_CLD_CONTINUED;
669 else if (signal->group_stop_count)
670 why |= SIGNAL_CLD_STOPPED;
671
672 if (why) {
673 /*
674 * The first thread which returns from finish_stop()
675 * will take ->siglock, notice SIGNAL_CLD_MASK, and
676 * notify its parent. See get_signal_to_deliver().
677 */
678 signal->flags = why | SIGNAL_STOP_CONTINUED;
679 signal->group_stop_count = 0;
680 signal->group_exit_code = 0;
681 } else {
682 /*
683 * We are not stopped, but there could be a stop
684 * signal in the middle of being processed after
685 * being removed from the queue. Clear that too.
686 */
687 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
688 }
689 }
690
691 return !sig_ignored(p, sig);
692 }
693
694 /*
695 * Test if P wants to take SIG. After we've checked all threads with this,
696 * it's equivalent to finding no threads not blocking SIG. Any threads not
697 * blocking SIG were ruled out because they are not running and already
698 * have pending signals. Such threads will dequeue from the shared queue
699 * as soon as they're available, so putting the signal on the shared queue
700 * will be equivalent to sending it to one such thread.
701 */
702 static inline int wants_signal(int sig, struct task_struct *p)
703 {
704 if (sigismember(&p->blocked, sig))
705 return 0;
706 if (p->flags & PF_EXITING)
707 return 0;
708 if (sig == SIGKILL)
709 return 1;
710 if (task_is_stopped_or_traced(p))
711 return 0;
712 return task_curr(p) || !signal_pending(p);
713 }
714
715 static void complete_signal(int sig, struct task_struct *p, int group)
716 {
717 struct signal_struct *signal = p->signal;
718 struct task_struct *t;
719
720 /*
721 * Now find a thread we can wake up to take the signal off the queue.
722 *
723 * If the main thread wants the signal, it gets first crack.
724 * Probably the least surprising to the average bear.
725 */
726 if (wants_signal(sig, p))
727 t = p;
728 else if (!group || thread_group_empty(p))
729 /*
730 * There is just one thread and it does not need to be woken.
731 * It will dequeue unblocked signals before it runs again.
732 */
733 return;
734 else {
735 /*
736 * Otherwise try to find a suitable thread.
737 */
738 t = signal->curr_target;
739 while (!wants_signal(sig, t)) {
740 t = next_thread(t);
741 if (t == signal->curr_target)
742 /*
743 * No thread needs to be woken.
744 * Any eligible threads will see
745 * the signal in the queue soon.
746 */
747 return;
748 }
749 signal->curr_target = t;
750 }
751
752 /*
753 * Found a killable thread. If the signal will be fatal,
754 * then start taking the whole group down immediately.
755 */
756 if (sig_fatal(p, sig) &&
757 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
758 !sigismember(&t->real_blocked, sig) &&
759 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
760 /*
761 * This signal will be fatal to the whole group.
762 */
763 if (!sig_kernel_coredump(sig)) {
764 /*
765 * Start a group exit and wake everybody up.
766 * This way we don't have other threads
767 * running and doing things after a slower
768 * thread has the fatal signal pending.
769 */
770 signal->flags = SIGNAL_GROUP_EXIT;
771 signal->group_exit_code = sig;
772 signal->group_stop_count = 0;
773 t = p;
774 do {
775 sigaddset(&t->pending.signal, SIGKILL);
776 signal_wake_up(t, 1);
777 } while_each_thread(p, t);
778 return;
779 }
780 }
781
782 /*
783 * The signal is already in the shared-pending queue.
784 * Tell the chosen thread to wake up and dequeue it.
785 */
786 signal_wake_up(t, sig == SIGKILL);
787 return;
788 }
789
790 static inline int legacy_queue(struct sigpending *signals, int sig)
791 {
792 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
793 }
794
795 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
796 int group)
797 {
798 struct sigpending *pending;
799 struct sigqueue *q;
800
801 assert_spin_locked(&t->sighand->siglock);
802 if (!prepare_signal(sig, t))
803 return 0;
804
805 pending = group ? &t->signal->shared_pending : &t->pending;
806 /*
807 * Short-circuit ignored signals and support queuing
808 * exactly one non-rt signal, so that we can get more
809 * detailed information about the cause of the signal.
810 */
811 if (legacy_queue(pending, sig))
812 return 0;
813 /*
814 * fast-pathed signals for kernel-internal things like SIGSTOP
815 * or SIGKILL.
816 */
817 if (info == SEND_SIG_FORCED)
818 goto out_set;
819
820 /* Real-time signals must be queued if sent by sigqueue, or
821 some other real-time mechanism. It is implementation
822 defined whether kill() does so. We attempt to do so, on
823 the principle of least surprise, but since kill is not
824 allowed to fail with EAGAIN when low on memory we just
825 make sure at least one signal gets delivered and don't
826 pass on the info struct. */
827
828 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
829 (is_si_special(info) ||
830 info->si_code >= 0)));
831 if (q) {
832 list_add_tail(&q->list, &pending->list);
833 switch ((unsigned long) info) {
834 case (unsigned long) SEND_SIG_NOINFO:
835 q->info.si_signo = sig;
836 q->info.si_errno = 0;
837 q->info.si_code = SI_USER;
838 q->info.si_pid = task_pid_vnr(current);
839 q->info.si_uid = current->uid;
840 break;
841 case (unsigned long) SEND_SIG_PRIV:
842 q->info.si_signo = sig;
843 q->info.si_errno = 0;
844 q->info.si_code = SI_KERNEL;
845 q->info.si_pid = 0;
846 q->info.si_uid = 0;
847 break;
848 default:
849 copy_siginfo(&q->info, info);
850 break;
851 }
852 } else if (!is_si_special(info)) {
853 if (sig >= SIGRTMIN && info->si_code != SI_USER)
854 /*
855 * Queue overflow, abort. We may abort if the signal was rt
856 * and sent by user using something other than kill().
857 */
858 return -EAGAIN;
859 }
860
861 out_set:
862 signalfd_notify(t, sig);
863 sigaddset(&pending->signal, sig);
864 complete_signal(sig, t, group);
865 return 0;
866 }
867
868 int print_fatal_signals;
869
870 static void print_fatal_signal(struct pt_regs *regs, int signr)
871 {
872 printk("%s/%d: potentially unexpected fatal signal %d.\n",
873 current->comm, task_pid_nr(current), signr);
874
875 #if defined(__i386__) && !defined(__arch_um__)
876 printk("code at %08lx: ", regs->ip);
877 {
878 int i;
879 for (i = 0; i < 16; i++) {
880 unsigned char insn;
881
882 __get_user(insn, (unsigned char *)(regs->ip + i));
883 printk("%02x ", insn);
884 }
885 }
886 #endif
887 printk("\n");
888 show_regs(regs);
889 }
890
891 static int __init setup_print_fatal_signals(char *str)
892 {
893 get_option (&str, &print_fatal_signals);
894
895 return 1;
896 }
897
898 __setup("print-fatal-signals=", setup_print_fatal_signals);
899
900 int
901 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
902 {
903 return send_signal(sig, info, p, 1);
904 }
905
906 static int
907 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
908 {
909 return send_signal(sig, info, t, 0);
910 }
911
912 /*
913 * Force a signal that the process can't ignore: if necessary
914 * we unblock the signal and change any SIG_IGN to SIG_DFL.
915 *
916 * Note: If we unblock the signal, we always reset it to SIG_DFL,
917 * since we do not want to have a signal handler that was blocked
918 * be invoked when user space had explicitly blocked it.
919 *
920 * We don't want to have recursive SIGSEGV's etc, for example,
921 * that is why we also clear SIGNAL_UNKILLABLE.
922 */
923 int
924 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
925 {
926 unsigned long int flags;
927 int ret, blocked, ignored;
928 struct k_sigaction *action;
929
930 spin_lock_irqsave(&t->sighand->siglock, flags);
931 action = &t->sighand->action[sig-1];
932 ignored = action->sa.sa_handler == SIG_IGN;
933 blocked = sigismember(&t->blocked, sig);
934 if (blocked || ignored) {
935 action->sa.sa_handler = SIG_DFL;
936 if (blocked) {
937 sigdelset(&t->blocked, sig);
938 recalc_sigpending_and_wake(t);
939 }
940 }
941 if (action->sa.sa_handler == SIG_DFL)
942 t->signal->flags &= ~SIGNAL_UNKILLABLE;
943 ret = specific_send_sig_info(sig, info, t);
944 spin_unlock_irqrestore(&t->sighand->siglock, flags);
945
946 return ret;
947 }
948
949 void
950 force_sig_specific(int sig, struct task_struct *t)
951 {
952 force_sig_info(sig, SEND_SIG_FORCED, t);
953 }
954
955 /*
956 * Nuke all other threads in the group.
957 */
958 void zap_other_threads(struct task_struct *p)
959 {
960 struct task_struct *t;
961
962 p->signal->group_stop_count = 0;
963
964 for (t = next_thread(p); t != p; t = next_thread(t)) {
965 /*
966 * Don't bother with already dead threads
967 */
968 if (t->exit_state)
969 continue;
970
971 /* SIGKILL will be handled before any pending SIGSTOP */
972 sigaddset(&t->pending.signal, SIGKILL);
973 signal_wake_up(t, 1);
974 }
975 }
976
977 int __fatal_signal_pending(struct task_struct *tsk)
978 {
979 return sigismember(&tsk->pending.signal, SIGKILL);
980 }
981 EXPORT_SYMBOL(__fatal_signal_pending);
982
983 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
984 {
985 struct sighand_struct *sighand;
986
987 rcu_read_lock();
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
992
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
997 }
998 rcu_read_unlock();
999
1000 return sighand;
1001 }
1002
1003 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 {
1005 unsigned long flags;
1006 int ret;
1007
1008 ret = check_kill_permission(sig, info, p);
1009
1010 if (!ret && sig) {
1011 ret = -ESRCH;
1012 if (lock_task_sighand(p, &flags)) {
1013 ret = __group_send_sig_info(sig, info, p);
1014 unlock_task_sighand(p, &flags);
1015 }
1016 }
1017
1018 return ret;
1019 }
1020
1021 /*
1022 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1023 * control characters do (^C, ^Z etc)
1024 */
1025
1026 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1027 {
1028 struct task_struct *p = NULL;
1029 int retval, success;
1030
1031 success = 0;
1032 retval = -ESRCH;
1033 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1034 int err = group_send_sig_info(sig, info, p);
1035 success |= !err;
1036 retval = err;
1037 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1038 return success ? 0 : retval;
1039 }
1040
1041 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1042 {
1043 int error = -ESRCH;
1044 struct task_struct *p;
1045
1046 rcu_read_lock();
1047 retry:
1048 p = pid_task(pid, PIDTYPE_PID);
1049 if (p) {
1050 error = group_send_sig_info(sig, info, p);
1051 if (unlikely(error == -ESRCH))
1052 /*
1053 * The task was unhashed in between, try again.
1054 * If it is dead, pid_task() will return NULL,
1055 * if we race with de_thread() it will find the
1056 * new leader.
1057 */
1058 goto retry;
1059 }
1060 rcu_read_unlock();
1061
1062 return error;
1063 }
1064
1065 int
1066 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1067 {
1068 int error;
1069 rcu_read_lock();
1070 error = kill_pid_info(sig, info, find_vpid(pid));
1071 rcu_read_unlock();
1072 return error;
1073 }
1074
1075 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1076 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1077 uid_t uid, uid_t euid, u32 secid)
1078 {
1079 int ret = -EINVAL;
1080 struct task_struct *p;
1081
1082 if (!valid_signal(sig))
1083 return ret;
1084
1085 read_lock(&tasklist_lock);
1086 p = pid_task(pid, PIDTYPE_PID);
1087 if (!p) {
1088 ret = -ESRCH;
1089 goto out_unlock;
1090 }
1091 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1092 && (euid != p->suid) && (euid != p->uid)
1093 && (uid != p->suid) && (uid != p->uid)) {
1094 ret = -EPERM;
1095 goto out_unlock;
1096 }
1097 ret = security_task_kill(p, info, sig, secid);
1098 if (ret)
1099 goto out_unlock;
1100 if (sig && p->sighand) {
1101 unsigned long flags;
1102 spin_lock_irqsave(&p->sighand->siglock, flags);
1103 ret = __group_send_sig_info(sig, info, p);
1104 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1105 }
1106 out_unlock:
1107 read_unlock(&tasklist_lock);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1111
1112 /*
1113 * kill_something_info() interprets pid in interesting ways just like kill(2).
1114 *
1115 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1116 * is probably wrong. Should make it like BSD or SYSV.
1117 */
1118
1119 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1120 {
1121 int ret;
1122
1123 if (pid > 0) {
1124 rcu_read_lock();
1125 ret = kill_pid_info(sig, info, find_vpid(pid));
1126 rcu_read_unlock();
1127 return ret;
1128 }
1129
1130 read_lock(&tasklist_lock);
1131 if (pid != -1) {
1132 ret = __kill_pgrp_info(sig, info,
1133 pid ? find_vpid(-pid) : task_pgrp(current));
1134 } else {
1135 int retval = 0, count = 0;
1136 struct task_struct * p;
1137
1138 for_each_process(p) {
1139 if (p->pid > 1 && !same_thread_group(p, current)) {
1140 int err = group_send_sig_info(sig, info, p);
1141 ++count;
1142 if (err != -EPERM)
1143 retval = err;
1144 }
1145 }
1146 ret = count ? retval : -ESRCH;
1147 }
1148 read_unlock(&tasklist_lock);
1149
1150 return ret;
1151 }
1152
1153 /*
1154 * These are for backward compatibility with the rest of the kernel source.
1155 */
1156
1157 /*
1158 * The caller must ensure the task can't exit.
1159 */
1160 int
1161 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1162 {
1163 int ret;
1164 unsigned long flags;
1165
1166 /*
1167 * Make sure legacy kernel users don't send in bad values
1168 * (normal paths check this in check_kill_permission).
1169 */
1170 if (!valid_signal(sig))
1171 return -EINVAL;
1172
1173 spin_lock_irqsave(&p->sighand->siglock, flags);
1174 ret = specific_send_sig_info(sig, info, p);
1175 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1176 return ret;
1177 }
1178
1179 #define __si_special(priv) \
1180 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1181
1182 int
1183 send_sig(int sig, struct task_struct *p, int priv)
1184 {
1185 return send_sig_info(sig, __si_special(priv), p);
1186 }
1187
1188 void
1189 force_sig(int sig, struct task_struct *p)
1190 {
1191 force_sig_info(sig, SEND_SIG_PRIV, p);
1192 }
1193
1194 /*
1195 * When things go south during signal handling, we
1196 * will force a SIGSEGV. And if the signal that caused
1197 * the problem was already a SIGSEGV, we'll want to
1198 * make sure we don't even try to deliver the signal..
1199 */
1200 int
1201 force_sigsegv(int sig, struct task_struct *p)
1202 {
1203 if (sig == SIGSEGV) {
1204 unsigned long flags;
1205 spin_lock_irqsave(&p->sighand->siglock, flags);
1206 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1207 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 }
1209 force_sig(SIGSEGV, p);
1210 return 0;
1211 }
1212
1213 int kill_pgrp(struct pid *pid, int sig, int priv)
1214 {
1215 int ret;
1216
1217 read_lock(&tasklist_lock);
1218 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1219 read_unlock(&tasklist_lock);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(kill_pgrp);
1224
1225 int kill_pid(struct pid *pid, int sig, int priv)
1226 {
1227 return kill_pid_info(sig, __si_special(priv), pid);
1228 }
1229 EXPORT_SYMBOL(kill_pid);
1230
1231 /*
1232 * These functions support sending signals using preallocated sigqueue
1233 * structures. This is needed "because realtime applications cannot
1234 * afford to lose notifications of asynchronous events, like timer
1235 * expirations or I/O completions". In the case of Posix Timers
1236 * we allocate the sigqueue structure from the timer_create. If this
1237 * allocation fails we are able to report the failure to the application
1238 * with an EAGAIN error.
1239 */
1240
1241 struct sigqueue *sigqueue_alloc(void)
1242 {
1243 struct sigqueue *q;
1244
1245 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1246 q->flags |= SIGQUEUE_PREALLOC;
1247 return(q);
1248 }
1249
1250 void sigqueue_free(struct sigqueue *q)
1251 {
1252 unsigned long flags;
1253 spinlock_t *lock = &current->sighand->siglock;
1254
1255 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1256 /*
1257 * We must hold ->siglock while testing q->list
1258 * to serialize with collect_signal() or with
1259 * __exit_signal()->flush_sigqueue().
1260 */
1261 spin_lock_irqsave(lock, flags);
1262 q->flags &= ~SIGQUEUE_PREALLOC;
1263 /*
1264 * If it is queued it will be freed when dequeued,
1265 * like the "regular" sigqueue.
1266 */
1267 if (!list_empty(&q->list))
1268 q = NULL;
1269 spin_unlock_irqrestore(lock, flags);
1270
1271 if (q)
1272 __sigqueue_free(q);
1273 }
1274
1275 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1276 {
1277 int sig = q->info.si_signo;
1278 struct sigpending *pending;
1279 unsigned long flags;
1280 int ret;
1281
1282 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1283
1284 ret = -1;
1285 if (!likely(lock_task_sighand(t, &flags)))
1286 goto ret;
1287
1288 ret = 1; /* the signal is ignored */
1289 if (!prepare_signal(sig, t))
1290 goto out;
1291
1292 ret = 0;
1293 if (unlikely(!list_empty(&q->list))) {
1294 /*
1295 * If an SI_TIMER entry is already queue just increment
1296 * the overrun count.
1297 */
1298 BUG_ON(q->info.si_code != SI_TIMER);
1299 q->info.si_overrun++;
1300 goto out;
1301 }
1302
1303 signalfd_notify(t, sig);
1304 pending = group ? &t->signal->shared_pending : &t->pending;
1305 list_add_tail(&q->list, &pending->list);
1306 sigaddset(&pending->signal, sig);
1307 complete_signal(sig, t, group);
1308 out:
1309 unlock_task_sighand(t, &flags);
1310 ret:
1311 return ret;
1312 }
1313
1314 /*
1315 * Wake up any threads in the parent blocked in wait* syscalls.
1316 */
1317 static inline void __wake_up_parent(struct task_struct *p,
1318 struct task_struct *parent)
1319 {
1320 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1321 }
1322
1323 /*
1324 * Let a parent know about the death of a child.
1325 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1326 */
1327
1328 void do_notify_parent(struct task_struct *tsk, int sig)
1329 {
1330 struct siginfo info;
1331 unsigned long flags;
1332 struct sighand_struct *psig;
1333
1334 BUG_ON(sig == -1);
1335
1336 /* do_notify_parent_cldstop should have been called instead. */
1337 BUG_ON(task_is_stopped_or_traced(tsk));
1338
1339 BUG_ON(!tsk->ptrace &&
1340 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1341
1342 info.si_signo = sig;
1343 info.si_errno = 0;
1344 /*
1345 * we are under tasklist_lock here so our parent is tied to
1346 * us and cannot exit and release its namespace.
1347 *
1348 * the only it can is to switch its nsproxy with sys_unshare,
1349 * bu uncharing pid namespaces is not allowed, so we'll always
1350 * see relevant namespace
1351 *
1352 * write_lock() currently calls preempt_disable() which is the
1353 * same as rcu_read_lock(), but according to Oleg, this is not
1354 * correct to rely on this
1355 */
1356 rcu_read_lock();
1357 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1358 rcu_read_unlock();
1359
1360 info.si_uid = tsk->uid;
1361
1362 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1363 tsk->signal->utime));
1364 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1365 tsk->signal->stime));
1366
1367 info.si_status = tsk->exit_code & 0x7f;
1368 if (tsk->exit_code & 0x80)
1369 info.si_code = CLD_DUMPED;
1370 else if (tsk->exit_code & 0x7f)
1371 info.si_code = CLD_KILLED;
1372 else {
1373 info.si_code = CLD_EXITED;
1374 info.si_status = tsk->exit_code >> 8;
1375 }
1376
1377 psig = tsk->parent->sighand;
1378 spin_lock_irqsave(&psig->siglock, flags);
1379 if (!tsk->ptrace && sig == SIGCHLD &&
1380 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1381 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1382 /*
1383 * We are exiting and our parent doesn't care. POSIX.1
1384 * defines special semantics for setting SIGCHLD to SIG_IGN
1385 * or setting the SA_NOCLDWAIT flag: we should be reaped
1386 * automatically and not left for our parent's wait4 call.
1387 * Rather than having the parent do it as a magic kind of
1388 * signal handler, we just set this to tell do_exit that we
1389 * can be cleaned up without becoming a zombie. Note that
1390 * we still call __wake_up_parent in this case, because a
1391 * blocked sys_wait4 might now return -ECHILD.
1392 *
1393 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1394 * is implementation-defined: we do (if you don't want
1395 * it, just use SIG_IGN instead).
1396 */
1397 tsk->exit_signal = -1;
1398 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1399 sig = 0;
1400 }
1401 if (valid_signal(sig) && sig > 0)
1402 __group_send_sig_info(sig, &info, tsk->parent);
1403 __wake_up_parent(tsk, tsk->parent);
1404 spin_unlock_irqrestore(&psig->siglock, flags);
1405 }
1406
1407 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1408 {
1409 struct siginfo info;
1410 unsigned long flags;
1411 struct task_struct *parent;
1412 struct sighand_struct *sighand;
1413
1414 if (tsk->ptrace & PT_PTRACED)
1415 parent = tsk->parent;
1416 else {
1417 tsk = tsk->group_leader;
1418 parent = tsk->real_parent;
1419 }
1420
1421 info.si_signo = SIGCHLD;
1422 info.si_errno = 0;
1423 /*
1424 * see comment in do_notify_parent() abot the following 3 lines
1425 */
1426 rcu_read_lock();
1427 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1428 rcu_read_unlock();
1429
1430 info.si_uid = tsk->uid;
1431
1432 info.si_utime = cputime_to_clock_t(tsk->utime);
1433 info.si_stime = cputime_to_clock_t(tsk->stime);
1434
1435 info.si_code = why;
1436 switch (why) {
1437 case CLD_CONTINUED:
1438 info.si_status = SIGCONT;
1439 break;
1440 case CLD_STOPPED:
1441 info.si_status = tsk->signal->group_exit_code & 0x7f;
1442 break;
1443 case CLD_TRAPPED:
1444 info.si_status = tsk->exit_code & 0x7f;
1445 break;
1446 default:
1447 BUG();
1448 }
1449
1450 sighand = parent->sighand;
1451 spin_lock_irqsave(&sighand->siglock, flags);
1452 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1453 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1454 __group_send_sig_info(SIGCHLD, &info, parent);
1455 /*
1456 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1457 */
1458 __wake_up_parent(tsk, parent);
1459 spin_unlock_irqrestore(&sighand->siglock, flags);
1460 }
1461
1462 static inline int may_ptrace_stop(void)
1463 {
1464 if (!likely(current->ptrace & PT_PTRACED))
1465 return 0;
1466 /*
1467 * Are we in the middle of do_coredump?
1468 * If so and our tracer is also part of the coredump stopping
1469 * is a deadlock situation, and pointless because our tracer
1470 * is dead so don't allow us to stop.
1471 * If SIGKILL was already sent before the caller unlocked
1472 * ->siglock we must see ->core_state != NULL. Otherwise it
1473 * is safe to enter schedule().
1474 */
1475 if (unlikely(current->mm->core_state) &&
1476 unlikely(current->mm == current->parent->mm))
1477 return 0;
1478
1479 return 1;
1480 }
1481
1482 /*
1483 * Return nonzero if there is a SIGKILL that should be waking us up.
1484 * Called with the siglock held.
1485 */
1486 static int sigkill_pending(struct task_struct *tsk)
1487 {
1488 return sigismember(&tsk->pending.signal, SIGKILL) ||
1489 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1490 }
1491
1492 /*
1493 * This must be called with current->sighand->siglock held.
1494 *
1495 * This should be the path for all ptrace stops.
1496 * We always set current->last_siginfo while stopped here.
1497 * That makes it a way to test a stopped process for
1498 * being ptrace-stopped vs being job-control-stopped.
1499 *
1500 * If we actually decide not to stop at all because the tracer
1501 * is gone, we keep current->exit_code unless clear_code.
1502 */
1503 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1504 {
1505 if (arch_ptrace_stop_needed(exit_code, info)) {
1506 /*
1507 * The arch code has something special to do before a
1508 * ptrace stop. This is allowed to block, e.g. for faults
1509 * on user stack pages. We can't keep the siglock while
1510 * calling arch_ptrace_stop, so we must release it now.
1511 * To preserve proper semantics, we must do this before
1512 * any signal bookkeeping like checking group_stop_count.
1513 * Meanwhile, a SIGKILL could come in before we retake the
1514 * siglock. That must prevent us from sleeping in TASK_TRACED.
1515 * So after regaining the lock, we must check for SIGKILL.
1516 */
1517 spin_unlock_irq(&current->sighand->siglock);
1518 arch_ptrace_stop(exit_code, info);
1519 spin_lock_irq(&current->sighand->siglock);
1520 if (sigkill_pending(current))
1521 return;
1522 }
1523
1524 /*
1525 * If there is a group stop in progress,
1526 * we must participate in the bookkeeping.
1527 */
1528 if (current->signal->group_stop_count > 0)
1529 --current->signal->group_stop_count;
1530
1531 current->last_siginfo = info;
1532 current->exit_code = exit_code;
1533
1534 /* Let the debugger run. */
1535 __set_current_state(TASK_TRACED);
1536 spin_unlock_irq(&current->sighand->siglock);
1537 read_lock(&tasklist_lock);
1538 if (may_ptrace_stop()) {
1539 do_notify_parent_cldstop(current, CLD_TRAPPED);
1540 read_unlock(&tasklist_lock);
1541 schedule();
1542 } else {
1543 /*
1544 * By the time we got the lock, our tracer went away.
1545 * Don't drop the lock yet, another tracer may come.
1546 */
1547 __set_current_state(TASK_RUNNING);
1548 if (clear_code)
1549 current->exit_code = 0;
1550 read_unlock(&tasklist_lock);
1551 }
1552
1553 /*
1554 * While in TASK_TRACED, we were considered "frozen enough".
1555 * Now that we woke up, it's crucial if we're supposed to be
1556 * frozen that we freeze now before running anything substantial.
1557 */
1558 try_to_freeze();
1559
1560 /*
1561 * We are back. Now reacquire the siglock before touching
1562 * last_siginfo, so that we are sure to have synchronized with
1563 * any signal-sending on another CPU that wants to examine it.
1564 */
1565 spin_lock_irq(&current->sighand->siglock);
1566 current->last_siginfo = NULL;
1567
1568 /*
1569 * Queued signals ignored us while we were stopped for tracing.
1570 * So check for any that we should take before resuming user mode.
1571 * This sets TIF_SIGPENDING, but never clears it.
1572 */
1573 recalc_sigpending_tsk(current);
1574 }
1575
1576 void ptrace_notify(int exit_code)
1577 {
1578 siginfo_t info;
1579
1580 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1581
1582 memset(&info, 0, sizeof info);
1583 info.si_signo = SIGTRAP;
1584 info.si_code = exit_code;
1585 info.si_pid = task_pid_vnr(current);
1586 info.si_uid = current->uid;
1587
1588 /* Let the debugger run. */
1589 spin_lock_irq(&current->sighand->siglock);
1590 ptrace_stop(exit_code, 1, &info);
1591 spin_unlock_irq(&current->sighand->siglock);
1592 }
1593
1594 static void
1595 finish_stop(int stop_count)
1596 {
1597 /*
1598 * If there are no other threads in the group, or if there is
1599 * a group stop in progress and we are the last to stop,
1600 * report to the parent. When ptraced, every thread reports itself.
1601 */
1602 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1603 read_lock(&tasklist_lock);
1604 do_notify_parent_cldstop(current, CLD_STOPPED);
1605 read_unlock(&tasklist_lock);
1606 }
1607
1608 do {
1609 schedule();
1610 } while (try_to_freeze());
1611 /*
1612 * Now we don't run again until continued.
1613 */
1614 current->exit_code = 0;
1615 }
1616
1617 /*
1618 * This performs the stopping for SIGSTOP and other stop signals.
1619 * We have to stop all threads in the thread group.
1620 * Returns nonzero if we've actually stopped and released the siglock.
1621 * Returns zero if we didn't stop and still hold the siglock.
1622 */
1623 static int do_signal_stop(int signr)
1624 {
1625 struct signal_struct *sig = current->signal;
1626 int stop_count;
1627
1628 if (sig->group_stop_count > 0) {
1629 /*
1630 * There is a group stop in progress. We don't need to
1631 * start another one.
1632 */
1633 stop_count = --sig->group_stop_count;
1634 } else {
1635 struct task_struct *t;
1636
1637 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1638 unlikely(signal_group_exit(sig)))
1639 return 0;
1640 /*
1641 * There is no group stop already in progress.
1642 * We must initiate one now.
1643 */
1644 sig->group_exit_code = signr;
1645
1646 stop_count = 0;
1647 for (t = next_thread(current); t != current; t = next_thread(t))
1648 /*
1649 * Setting state to TASK_STOPPED for a group
1650 * stop is always done with the siglock held,
1651 * so this check has no races.
1652 */
1653 if (!(t->flags & PF_EXITING) &&
1654 !task_is_stopped_or_traced(t)) {
1655 stop_count++;
1656 signal_wake_up(t, 0);
1657 }
1658 sig->group_stop_count = stop_count;
1659 }
1660
1661 if (stop_count == 0)
1662 sig->flags = SIGNAL_STOP_STOPPED;
1663 current->exit_code = sig->group_exit_code;
1664 __set_current_state(TASK_STOPPED);
1665
1666 spin_unlock_irq(&current->sighand->siglock);
1667 finish_stop(stop_count);
1668 return 1;
1669 }
1670
1671 static int ptrace_signal(int signr, siginfo_t *info,
1672 struct pt_regs *regs, void *cookie)
1673 {
1674 if (!(current->ptrace & PT_PTRACED))
1675 return signr;
1676
1677 ptrace_signal_deliver(regs, cookie);
1678
1679 /* Let the debugger run. */
1680 ptrace_stop(signr, 0, info);
1681
1682 /* We're back. Did the debugger cancel the sig? */
1683 signr = current->exit_code;
1684 if (signr == 0)
1685 return signr;
1686
1687 current->exit_code = 0;
1688
1689 /* Update the siginfo structure if the signal has
1690 changed. If the debugger wanted something
1691 specific in the siginfo structure then it should
1692 have updated *info via PTRACE_SETSIGINFO. */
1693 if (signr != info->si_signo) {
1694 info->si_signo = signr;
1695 info->si_errno = 0;
1696 info->si_code = SI_USER;
1697 info->si_pid = task_pid_vnr(current->parent);
1698 info->si_uid = current->parent->uid;
1699 }
1700
1701 /* If the (new) signal is now blocked, requeue it. */
1702 if (sigismember(&current->blocked, signr)) {
1703 specific_send_sig_info(signr, info, current);
1704 signr = 0;
1705 }
1706
1707 return signr;
1708 }
1709
1710 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1711 struct pt_regs *regs, void *cookie)
1712 {
1713 struct sighand_struct *sighand = current->sighand;
1714 struct signal_struct *signal = current->signal;
1715 int signr;
1716
1717 relock:
1718 /*
1719 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1720 * While in TASK_STOPPED, we were considered "frozen enough".
1721 * Now that we woke up, it's crucial if we're supposed to be
1722 * frozen that we freeze now before running anything substantial.
1723 */
1724 try_to_freeze();
1725
1726 spin_lock_irq(&sighand->siglock);
1727 /*
1728 * Every stopped thread goes here after wakeup. Check to see if
1729 * we should notify the parent, prepare_signal(SIGCONT) encodes
1730 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1731 */
1732 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1733 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1734 ? CLD_CONTINUED : CLD_STOPPED;
1735 signal->flags &= ~SIGNAL_CLD_MASK;
1736 spin_unlock_irq(&sighand->siglock);
1737
1738 read_lock(&tasklist_lock);
1739 do_notify_parent_cldstop(current->group_leader, why);
1740 read_unlock(&tasklist_lock);
1741 goto relock;
1742 }
1743
1744 for (;;) {
1745 struct k_sigaction *ka;
1746
1747 if (unlikely(signal->group_stop_count > 0) &&
1748 do_signal_stop(0))
1749 goto relock;
1750
1751 signr = dequeue_signal(current, &current->blocked, info);
1752 if (!signr)
1753 break; /* will return 0 */
1754
1755 if (signr != SIGKILL) {
1756 signr = ptrace_signal(signr, info, regs, cookie);
1757 if (!signr)
1758 continue;
1759 }
1760
1761 ka = &sighand->action[signr-1];
1762 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1763 continue;
1764 if (ka->sa.sa_handler != SIG_DFL) {
1765 /* Run the handler. */
1766 *return_ka = *ka;
1767
1768 if (ka->sa.sa_flags & SA_ONESHOT)
1769 ka->sa.sa_handler = SIG_DFL;
1770
1771 break; /* will return non-zero "signr" value */
1772 }
1773
1774 /*
1775 * Now we are doing the default action for this signal.
1776 */
1777 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1778 continue;
1779
1780 /*
1781 * Global init gets no signals it doesn't want.
1782 */
1783 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1784 !signal_group_exit(signal))
1785 continue;
1786
1787 if (sig_kernel_stop(signr)) {
1788 /*
1789 * The default action is to stop all threads in
1790 * the thread group. The job control signals
1791 * do nothing in an orphaned pgrp, but SIGSTOP
1792 * always works. Note that siglock needs to be
1793 * dropped during the call to is_orphaned_pgrp()
1794 * because of lock ordering with tasklist_lock.
1795 * This allows an intervening SIGCONT to be posted.
1796 * We need to check for that and bail out if necessary.
1797 */
1798 if (signr != SIGSTOP) {
1799 spin_unlock_irq(&sighand->siglock);
1800
1801 /* signals can be posted during this window */
1802
1803 if (is_current_pgrp_orphaned())
1804 goto relock;
1805
1806 spin_lock_irq(&sighand->siglock);
1807 }
1808
1809 if (likely(do_signal_stop(signr))) {
1810 /* It released the siglock. */
1811 goto relock;
1812 }
1813
1814 /*
1815 * We didn't actually stop, due to a race
1816 * with SIGCONT or something like that.
1817 */
1818 continue;
1819 }
1820
1821 spin_unlock_irq(&sighand->siglock);
1822
1823 /*
1824 * Anything else is fatal, maybe with a core dump.
1825 */
1826 current->flags |= PF_SIGNALED;
1827
1828 if (sig_kernel_coredump(signr)) {
1829 if (print_fatal_signals)
1830 print_fatal_signal(regs, signr);
1831 /*
1832 * If it was able to dump core, this kills all
1833 * other threads in the group and synchronizes with
1834 * their demise. If we lost the race with another
1835 * thread getting here, it set group_exit_code
1836 * first and our do_group_exit call below will use
1837 * that value and ignore the one we pass it.
1838 */
1839 do_coredump((long)signr, signr, regs);
1840 }
1841
1842 /*
1843 * Death signals, no core dump.
1844 */
1845 do_group_exit(signr);
1846 /* NOTREACHED */
1847 }
1848 spin_unlock_irq(&sighand->siglock);
1849 return signr;
1850 }
1851
1852 void exit_signals(struct task_struct *tsk)
1853 {
1854 int group_stop = 0;
1855 struct task_struct *t;
1856
1857 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1858 tsk->flags |= PF_EXITING;
1859 return;
1860 }
1861
1862 spin_lock_irq(&tsk->sighand->siglock);
1863 /*
1864 * From now this task is not visible for group-wide signals,
1865 * see wants_signal(), do_signal_stop().
1866 */
1867 tsk->flags |= PF_EXITING;
1868 if (!signal_pending(tsk))
1869 goto out;
1870
1871 /* It could be that __group_complete_signal() choose us to
1872 * notify about group-wide signal. Another thread should be
1873 * woken now to take the signal since we will not.
1874 */
1875 for (t = tsk; (t = next_thread(t)) != tsk; )
1876 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1877 recalc_sigpending_and_wake(t);
1878
1879 if (unlikely(tsk->signal->group_stop_count) &&
1880 !--tsk->signal->group_stop_count) {
1881 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1882 group_stop = 1;
1883 }
1884 out:
1885 spin_unlock_irq(&tsk->sighand->siglock);
1886
1887 if (unlikely(group_stop)) {
1888 read_lock(&tasklist_lock);
1889 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1890 read_unlock(&tasklist_lock);
1891 }
1892 }
1893
1894 EXPORT_SYMBOL(recalc_sigpending);
1895 EXPORT_SYMBOL_GPL(dequeue_signal);
1896 EXPORT_SYMBOL(flush_signals);
1897 EXPORT_SYMBOL(force_sig);
1898 EXPORT_SYMBOL(ptrace_notify);
1899 EXPORT_SYMBOL(send_sig);
1900 EXPORT_SYMBOL(send_sig_info);
1901 EXPORT_SYMBOL(sigprocmask);
1902 EXPORT_SYMBOL(block_all_signals);
1903 EXPORT_SYMBOL(unblock_all_signals);
1904
1905
1906 /*
1907 * System call entry points.
1908 */
1909
1910 asmlinkage long sys_restart_syscall(void)
1911 {
1912 struct restart_block *restart = &current_thread_info()->restart_block;
1913 return restart->fn(restart);
1914 }
1915
1916 long do_no_restart_syscall(struct restart_block *param)
1917 {
1918 return -EINTR;
1919 }
1920
1921 /*
1922 * We don't need to get the kernel lock - this is all local to this
1923 * particular thread.. (and that's good, because this is _heavily_
1924 * used by various programs)
1925 */
1926
1927 /*
1928 * This is also useful for kernel threads that want to temporarily
1929 * (or permanently) block certain signals.
1930 *
1931 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1932 * interface happily blocks "unblockable" signals like SIGKILL
1933 * and friends.
1934 */
1935 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1936 {
1937 int error;
1938
1939 spin_lock_irq(&current->sighand->siglock);
1940 if (oldset)
1941 *oldset = current->blocked;
1942
1943 error = 0;
1944 switch (how) {
1945 case SIG_BLOCK:
1946 sigorsets(&current->blocked, &current->blocked, set);
1947 break;
1948 case SIG_UNBLOCK:
1949 signandsets(&current->blocked, &current->blocked, set);
1950 break;
1951 case SIG_SETMASK:
1952 current->blocked = *set;
1953 break;
1954 default:
1955 error = -EINVAL;
1956 }
1957 recalc_sigpending();
1958 spin_unlock_irq(&current->sighand->siglock);
1959
1960 return error;
1961 }
1962
1963 asmlinkage long
1964 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1965 {
1966 int error = -EINVAL;
1967 sigset_t old_set, new_set;
1968
1969 /* XXX: Don't preclude handling different sized sigset_t's. */
1970 if (sigsetsize != sizeof(sigset_t))
1971 goto out;
1972
1973 if (set) {
1974 error = -EFAULT;
1975 if (copy_from_user(&new_set, set, sizeof(*set)))
1976 goto out;
1977 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1978
1979 error = sigprocmask(how, &new_set, &old_set);
1980 if (error)
1981 goto out;
1982 if (oset)
1983 goto set_old;
1984 } else if (oset) {
1985 spin_lock_irq(&current->sighand->siglock);
1986 old_set = current->blocked;
1987 spin_unlock_irq(&current->sighand->siglock);
1988
1989 set_old:
1990 error = -EFAULT;
1991 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1992 goto out;
1993 }
1994 error = 0;
1995 out:
1996 return error;
1997 }
1998
1999 long do_sigpending(void __user *set, unsigned long sigsetsize)
2000 {
2001 long error = -EINVAL;
2002 sigset_t pending;
2003
2004 if (sigsetsize > sizeof(sigset_t))
2005 goto out;
2006
2007 spin_lock_irq(&current->sighand->siglock);
2008 sigorsets(&pending, &current->pending.signal,
2009 &current->signal->shared_pending.signal);
2010 spin_unlock_irq(&current->sighand->siglock);
2011
2012 /* Outside the lock because only this thread touches it. */
2013 sigandsets(&pending, &current->blocked, &pending);
2014
2015 error = -EFAULT;
2016 if (!copy_to_user(set, &pending, sigsetsize))
2017 error = 0;
2018
2019 out:
2020 return error;
2021 }
2022
2023 asmlinkage long
2024 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2025 {
2026 return do_sigpending(set, sigsetsize);
2027 }
2028
2029 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2030
2031 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2032 {
2033 int err;
2034
2035 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2036 return -EFAULT;
2037 if (from->si_code < 0)
2038 return __copy_to_user(to, from, sizeof(siginfo_t))
2039 ? -EFAULT : 0;
2040 /*
2041 * If you change siginfo_t structure, please be sure
2042 * this code is fixed accordingly.
2043 * Please remember to update the signalfd_copyinfo() function
2044 * inside fs/signalfd.c too, in case siginfo_t changes.
2045 * It should never copy any pad contained in the structure
2046 * to avoid security leaks, but must copy the generic
2047 * 3 ints plus the relevant union member.
2048 */
2049 err = __put_user(from->si_signo, &to->si_signo);
2050 err |= __put_user(from->si_errno, &to->si_errno);
2051 err |= __put_user((short)from->si_code, &to->si_code);
2052 switch (from->si_code & __SI_MASK) {
2053 case __SI_KILL:
2054 err |= __put_user(from->si_pid, &to->si_pid);
2055 err |= __put_user(from->si_uid, &to->si_uid);
2056 break;
2057 case __SI_TIMER:
2058 err |= __put_user(from->si_tid, &to->si_tid);
2059 err |= __put_user(from->si_overrun, &to->si_overrun);
2060 err |= __put_user(from->si_ptr, &to->si_ptr);
2061 break;
2062 case __SI_POLL:
2063 err |= __put_user(from->si_band, &to->si_band);
2064 err |= __put_user(from->si_fd, &to->si_fd);
2065 break;
2066 case __SI_FAULT:
2067 err |= __put_user(from->si_addr, &to->si_addr);
2068 #ifdef __ARCH_SI_TRAPNO
2069 err |= __put_user(from->si_trapno, &to->si_trapno);
2070 #endif
2071 break;
2072 case __SI_CHLD:
2073 err |= __put_user(from->si_pid, &to->si_pid);
2074 err |= __put_user(from->si_uid, &to->si_uid);
2075 err |= __put_user(from->si_status, &to->si_status);
2076 err |= __put_user(from->si_utime, &to->si_utime);
2077 err |= __put_user(from->si_stime, &to->si_stime);
2078 break;
2079 case __SI_RT: /* This is not generated by the kernel as of now. */
2080 case __SI_MESGQ: /* But this is */
2081 err |= __put_user(from->si_pid, &to->si_pid);
2082 err |= __put_user(from->si_uid, &to->si_uid);
2083 err |= __put_user(from->si_ptr, &to->si_ptr);
2084 break;
2085 default: /* this is just in case for now ... */
2086 err |= __put_user(from->si_pid, &to->si_pid);
2087 err |= __put_user(from->si_uid, &to->si_uid);
2088 break;
2089 }
2090 return err;
2091 }
2092
2093 #endif
2094
2095 asmlinkage long
2096 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2097 siginfo_t __user *uinfo,
2098 const struct timespec __user *uts,
2099 size_t sigsetsize)
2100 {
2101 int ret, sig;
2102 sigset_t these;
2103 struct timespec ts;
2104 siginfo_t info;
2105 long timeout = 0;
2106
2107 /* XXX: Don't preclude handling different sized sigset_t's. */
2108 if (sigsetsize != sizeof(sigset_t))
2109 return -EINVAL;
2110
2111 if (copy_from_user(&these, uthese, sizeof(these)))
2112 return -EFAULT;
2113
2114 /*
2115 * Invert the set of allowed signals to get those we
2116 * want to block.
2117 */
2118 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2119 signotset(&these);
2120
2121 if (uts) {
2122 if (copy_from_user(&ts, uts, sizeof(ts)))
2123 return -EFAULT;
2124 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2125 || ts.tv_sec < 0)
2126 return -EINVAL;
2127 }
2128
2129 spin_lock_irq(&current->sighand->siglock);
2130 sig = dequeue_signal(current, &these, &info);
2131 if (!sig) {
2132 timeout = MAX_SCHEDULE_TIMEOUT;
2133 if (uts)
2134 timeout = (timespec_to_jiffies(&ts)
2135 + (ts.tv_sec || ts.tv_nsec));
2136
2137 if (timeout) {
2138 /* None ready -- temporarily unblock those we're
2139 * interested while we are sleeping in so that we'll
2140 * be awakened when they arrive. */
2141 current->real_blocked = current->blocked;
2142 sigandsets(&current->blocked, &current->blocked, &these);
2143 recalc_sigpending();
2144 spin_unlock_irq(&current->sighand->siglock);
2145
2146 timeout = schedule_timeout_interruptible(timeout);
2147
2148 spin_lock_irq(&current->sighand->siglock);
2149 sig = dequeue_signal(current, &these, &info);
2150 current->blocked = current->real_blocked;
2151 siginitset(&current->real_blocked, 0);
2152 recalc_sigpending();
2153 }
2154 }
2155 spin_unlock_irq(&current->sighand->siglock);
2156
2157 if (sig) {
2158 ret = sig;
2159 if (uinfo) {
2160 if (copy_siginfo_to_user(uinfo, &info))
2161 ret = -EFAULT;
2162 }
2163 } else {
2164 ret = -EAGAIN;
2165 if (timeout)
2166 ret = -EINTR;
2167 }
2168
2169 return ret;
2170 }
2171
2172 asmlinkage long
2173 sys_kill(pid_t pid, int sig)
2174 {
2175 struct siginfo info;
2176
2177 info.si_signo = sig;
2178 info.si_errno = 0;
2179 info.si_code = SI_USER;
2180 info.si_pid = task_tgid_vnr(current);
2181 info.si_uid = current->uid;
2182
2183 return kill_something_info(sig, &info, pid);
2184 }
2185
2186 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2187 {
2188 int error;
2189 struct siginfo info;
2190 struct task_struct *p;
2191 unsigned long flags;
2192
2193 error = -ESRCH;
2194 info.si_signo = sig;
2195 info.si_errno = 0;
2196 info.si_code = SI_TKILL;
2197 info.si_pid = task_tgid_vnr(current);
2198 info.si_uid = current->uid;
2199
2200 rcu_read_lock();
2201 p = find_task_by_vpid(pid);
2202 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2203 error = check_kill_permission(sig, &info, p);
2204 /*
2205 * The null signal is a permissions and process existence
2206 * probe. No signal is actually delivered.
2207 *
2208 * If lock_task_sighand() fails we pretend the task dies
2209 * after receiving the signal. The window is tiny, and the
2210 * signal is private anyway.
2211 */
2212 if (!error && sig && lock_task_sighand(p, &flags)) {
2213 error = specific_send_sig_info(sig, &info, p);
2214 unlock_task_sighand(p, &flags);
2215 }
2216 }
2217 rcu_read_unlock();
2218
2219 return error;
2220 }
2221
2222 /**
2223 * sys_tgkill - send signal to one specific thread
2224 * @tgid: the thread group ID of the thread
2225 * @pid: the PID of the thread
2226 * @sig: signal to be sent
2227 *
2228 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2229 * exists but it's not belonging to the target process anymore. This
2230 * method solves the problem of threads exiting and PIDs getting reused.
2231 */
2232 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2233 {
2234 /* This is only valid for single tasks */
2235 if (pid <= 0 || tgid <= 0)
2236 return -EINVAL;
2237
2238 return do_tkill(tgid, pid, sig);
2239 }
2240
2241 /*
2242 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2243 */
2244 asmlinkage long
2245 sys_tkill(pid_t pid, int sig)
2246 {
2247 /* This is only valid for single tasks */
2248 if (pid <= 0)
2249 return -EINVAL;
2250
2251 return do_tkill(0, pid, sig);
2252 }
2253
2254 asmlinkage long
2255 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2256 {
2257 siginfo_t info;
2258
2259 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2260 return -EFAULT;
2261
2262 /* Not even root can pretend to send signals from the kernel.
2263 Nor can they impersonate a kill(), which adds source info. */
2264 if (info.si_code >= 0)
2265 return -EPERM;
2266 info.si_signo = sig;
2267
2268 /* POSIX.1b doesn't mention process groups. */
2269 return kill_proc_info(sig, &info, pid);
2270 }
2271
2272 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2273 {
2274 struct task_struct *t = current;
2275 struct k_sigaction *k;
2276 sigset_t mask;
2277
2278 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2279 return -EINVAL;
2280
2281 k = &t->sighand->action[sig-1];
2282
2283 spin_lock_irq(&current->sighand->siglock);
2284 if (oact)
2285 *oact = *k;
2286
2287 if (act) {
2288 sigdelsetmask(&act->sa.sa_mask,
2289 sigmask(SIGKILL) | sigmask(SIGSTOP));
2290 *k = *act;
2291 /*
2292 * POSIX 3.3.1.3:
2293 * "Setting a signal action to SIG_IGN for a signal that is
2294 * pending shall cause the pending signal to be discarded,
2295 * whether or not it is blocked."
2296 *
2297 * "Setting a signal action to SIG_DFL for a signal that is
2298 * pending and whose default action is to ignore the signal
2299 * (for example, SIGCHLD), shall cause the pending signal to
2300 * be discarded, whether or not it is blocked"
2301 */
2302 if (__sig_ignored(t, sig)) {
2303 sigemptyset(&mask);
2304 sigaddset(&mask, sig);
2305 rm_from_queue_full(&mask, &t->signal->shared_pending);
2306 do {
2307 rm_from_queue_full(&mask, &t->pending);
2308 t = next_thread(t);
2309 } while (t != current);
2310 }
2311 }
2312
2313 spin_unlock_irq(&current->sighand->siglock);
2314 return 0;
2315 }
2316
2317 int
2318 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2319 {
2320 stack_t oss;
2321 int error;
2322
2323 if (uoss) {
2324 oss.ss_sp = (void __user *) current->sas_ss_sp;
2325 oss.ss_size = current->sas_ss_size;
2326 oss.ss_flags = sas_ss_flags(sp);
2327 }
2328
2329 if (uss) {
2330 void __user *ss_sp;
2331 size_t ss_size;
2332 int ss_flags;
2333
2334 error = -EFAULT;
2335 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2336 || __get_user(ss_sp, &uss->ss_sp)
2337 || __get_user(ss_flags, &uss->ss_flags)
2338 || __get_user(ss_size, &uss->ss_size))
2339 goto out;
2340
2341 error = -EPERM;
2342 if (on_sig_stack(sp))
2343 goto out;
2344
2345 error = -EINVAL;
2346 /*
2347 *
2348 * Note - this code used to test ss_flags incorrectly
2349 * old code may have been written using ss_flags==0
2350 * to mean ss_flags==SS_ONSTACK (as this was the only
2351 * way that worked) - this fix preserves that older
2352 * mechanism
2353 */
2354 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2355 goto out;
2356
2357 if (ss_flags == SS_DISABLE) {
2358 ss_size = 0;
2359 ss_sp = NULL;
2360 } else {
2361 error = -ENOMEM;
2362 if (ss_size < MINSIGSTKSZ)
2363 goto out;
2364 }
2365
2366 current->sas_ss_sp = (unsigned long) ss_sp;
2367 current->sas_ss_size = ss_size;
2368 }
2369
2370 if (uoss) {
2371 error = -EFAULT;
2372 if (copy_to_user(uoss, &oss, sizeof(oss)))
2373 goto out;
2374 }
2375
2376 error = 0;
2377 out:
2378 return error;
2379 }
2380
2381 #ifdef __ARCH_WANT_SYS_SIGPENDING
2382
2383 asmlinkage long
2384 sys_sigpending(old_sigset_t __user *set)
2385 {
2386 return do_sigpending(set, sizeof(*set));
2387 }
2388
2389 #endif
2390
2391 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2392 /* Some platforms have their own version with special arguments others
2393 support only sys_rt_sigprocmask. */
2394
2395 asmlinkage long
2396 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2397 {
2398 int error;
2399 old_sigset_t old_set, new_set;
2400
2401 if (set) {
2402 error = -EFAULT;
2403 if (copy_from_user(&new_set, set, sizeof(*set)))
2404 goto out;
2405 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2406
2407 spin_lock_irq(&current->sighand->siglock);
2408 old_set = current->blocked.sig[0];
2409
2410 error = 0;
2411 switch (how) {
2412 default:
2413 error = -EINVAL;
2414 break;
2415 case SIG_BLOCK:
2416 sigaddsetmask(&current->blocked, new_set);
2417 break;
2418 case SIG_UNBLOCK:
2419 sigdelsetmask(&current->blocked, new_set);
2420 break;
2421 case SIG_SETMASK:
2422 current->blocked.sig[0] = new_set;
2423 break;
2424 }
2425
2426 recalc_sigpending();
2427 spin_unlock_irq(&current->sighand->siglock);
2428 if (error)
2429 goto out;
2430 if (oset)
2431 goto set_old;
2432 } else if (oset) {
2433 old_set = current->blocked.sig[0];
2434 set_old:
2435 error = -EFAULT;
2436 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2437 goto out;
2438 }
2439 error = 0;
2440 out:
2441 return error;
2442 }
2443 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2444
2445 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2446 asmlinkage long
2447 sys_rt_sigaction(int sig,
2448 const struct sigaction __user *act,
2449 struct sigaction __user *oact,
2450 size_t sigsetsize)
2451 {
2452 struct k_sigaction new_sa, old_sa;
2453 int ret = -EINVAL;
2454
2455 /* XXX: Don't preclude handling different sized sigset_t's. */
2456 if (sigsetsize != sizeof(sigset_t))
2457 goto out;
2458
2459 if (act) {
2460 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2461 return -EFAULT;
2462 }
2463
2464 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2465
2466 if (!ret && oact) {
2467 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2468 return -EFAULT;
2469 }
2470 out:
2471 return ret;
2472 }
2473 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2474
2475 #ifdef __ARCH_WANT_SYS_SGETMASK
2476
2477 /*
2478 * For backwards compatibility. Functionality superseded by sigprocmask.
2479 */
2480 asmlinkage long
2481 sys_sgetmask(void)
2482 {
2483 /* SMP safe */
2484 return current->blocked.sig[0];
2485 }
2486
2487 asmlinkage long
2488 sys_ssetmask(int newmask)
2489 {
2490 int old;
2491
2492 spin_lock_irq(&current->sighand->siglock);
2493 old = current->blocked.sig[0];
2494
2495 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2496 sigmask(SIGSTOP)));
2497 recalc_sigpending();
2498 spin_unlock_irq(&current->sighand->siglock);
2499
2500 return old;
2501 }
2502 #endif /* __ARCH_WANT_SGETMASK */
2503
2504 #ifdef __ARCH_WANT_SYS_SIGNAL
2505 /*
2506 * For backwards compatibility. Functionality superseded by sigaction.
2507 */
2508 asmlinkage unsigned long
2509 sys_signal(int sig, __sighandler_t handler)
2510 {
2511 struct k_sigaction new_sa, old_sa;
2512 int ret;
2513
2514 new_sa.sa.sa_handler = handler;
2515 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2516 sigemptyset(&new_sa.sa.sa_mask);
2517
2518 ret = do_sigaction(sig, &new_sa, &old_sa);
2519
2520 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2521 }
2522 #endif /* __ARCH_WANT_SYS_SIGNAL */
2523
2524 #ifdef __ARCH_WANT_SYS_PAUSE
2525
2526 asmlinkage long
2527 sys_pause(void)
2528 {
2529 current->state = TASK_INTERRUPTIBLE;
2530 schedule();
2531 return -ERESTARTNOHAND;
2532 }
2533
2534 #endif
2535
2536 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2537 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2538 {
2539 sigset_t newset;
2540
2541 /* XXX: Don't preclude handling different sized sigset_t's. */
2542 if (sigsetsize != sizeof(sigset_t))
2543 return -EINVAL;
2544
2545 if (copy_from_user(&newset, unewset, sizeof(newset)))
2546 return -EFAULT;
2547 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2548
2549 spin_lock_irq(&current->sighand->siglock);
2550 current->saved_sigmask = current->blocked;
2551 current->blocked = newset;
2552 recalc_sigpending();
2553 spin_unlock_irq(&current->sighand->siglock);
2554
2555 current->state = TASK_INTERRUPTIBLE;
2556 schedule();
2557 set_restore_sigmask();
2558 return -ERESTARTNOHAND;
2559 }
2560 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2561
2562 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2563 {
2564 return NULL;
2565 }
2566
2567 void __init signals_init(void)
2568 {
2569 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2570 }
This page took 0.093343 seconds and 5 git commands to generate.