SELinux: Don't flush inherited SIGKILL during execve()
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 DEFINE_TRACE(sched_signal_send);
45
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 /* Is it explicitly or implicitly ignored? */
54 return handler == SIG_IGN ||
55 (handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57
58 static int sig_ignored(struct task_struct *t, int sig)
59 {
60 void __user *handler;
61
62 /*
63 * Blocked signals are never ignored, since the
64 * signal handler may change by the time it is
65 * unblocked.
66 */
67 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 return 0;
69
70 handler = sig_handler(t, sig);
71 if (!sig_handler_ignored(handler, sig))
72 return 0;
73
74 /*
75 * Tracers may want to know about even ignored signals.
76 */
77 return !tracehook_consider_ignored_signal(t, sig, handler);
78 }
79
80 /*
81 * Re-calculate pending state from the set of locally pending
82 * signals, globally pending signals, and blocked signals.
83 */
84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
85 {
86 unsigned long ready;
87 long i;
88
89 switch (_NSIG_WORDS) {
90 default:
91 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 ready |= signal->sig[i] &~ blocked->sig[i];
93 break;
94
95 case 4: ready = signal->sig[3] &~ blocked->sig[3];
96 ready |= signal->sig[2] &~ blocked->sig[2];
97 ready |= signal->sig[1] &~ blocked->sig[1];
98 ready |= signal->sig[0] &~ blocked->sig[0];
99 break;
100
101 case 2: ready = signal->sig[1] &~ blocked->sig[1];
102 ready |= signal->sig[0] &~ blocked->sig[0];
103 break;
104
105 case 1: ready = signal->sig[0] &~ blocked->sig[0];
106 }
107 return ready != 0;
108 }
109
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
111
112 static int recalc_sigpending_tsk(struct task_struct *t)
113 {
114 if (t->signal->group_stop_count > 0 ||
115 PENDING(&t->pending, &t->blocked) ||
116 PENDING(&t->signal->shared_pending, &t->blocked)) {
117 set_tsk_thread_flag(t, TIF_SIGPENDING);
118 return 1;
119 }
120 /*
121 * We must never clear the flag in another thread, or in current
122 * when it's possible the current syscall is returning -ERESTART*.
123 * So we don't clear it here, and only callers who know they should do.
124 */
125 return 0;
126 }
127
128 /*
129 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130 * This is superfluous when called on current, the wakeup is a harmless no-op.
131 */
132 void recalc_sigpending_and_wake(struct task_struct *t)
133 {
134 if (recalc_sigpending_tsk(t))
135 signal_wake_up(t, 0);
136 }
137
138 void recalc_sigpending(void)
139 {
140 if (unlikely(tracehook_force_sigpending()))
141 set_thread_flag(TIF_SIGPENDING);
142 else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 clear_thread_flag(TIF_SIGPENDING);
144
145 }
146
147 /* Given the mask, find the first available signal that should be serviced. */
148
149 int next_signal(struct sigpending *pending, sigset_t *mask)
150 {
151 unsigned long i, *s, *m, x;
152 int sig = 0;
153
154 s = pending->signal.sig;
155 m = mask->sig;
156 switch (_NSIG_WORDS) {
157 default:
158 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 if ((x = *s &~ *m) != 0) {
160 sig = ffz(~x) + i*_NSIG_BPW + 1;
161 break;
162 }
163 break;
164
165 case 2: if ((x = s[0] &~ m[0]) != 0)
166 sig = 1;
167 else if ((x = s[1] &~ m[1]) != 0)
168 sig = _NSIG_BPW + 1;
169 else
170 break;
171 sig += ffz(~x);
172 break;
173
174 case 1: if ((x = *s &~ *m) != 0)
175 sig = ffz(~x) + 1;
176 break;
177 }
178
179 return sig;
180 }
181
182 /*
183 * allocate a new signal queue record
184 * - this may be called without locks if and only if t == current, otherwise an
185 * appopriate lock must be held to stop the target task from exiting
186 */
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 int override_rlimit)
189 {
190 struct sigqueue *q = NULL;
191 struct user_struct *user;
192
193 /*
194 * We won't get problems with the target's UID changing under us
195 * because changing it requires RCU be used, and if t != current, the
196 * caller must be holding the RCU readlock (by way of a spinlock) and
197 * we use RCU protection here
198 */
199 user = get_uid(__task_cred(t)->user);
200 atomic_inc(&user->sigpending);
201 if (override_rlimit ||
202 atomic_read(&user->sigpending) <=
203 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 q = kmem_cache_alloc(sigqueue_cachep, flags);
205 if (unlikely(q == NULL)) {
206 atomic_dec(&user->sigpending);
207 free_uid(user);
208 } else {
209 INIT_LIST_HEAD(&q->list);
210 q->flags = 0;
211 q->user = user;
212 }
213
214 return q;
215 }
216
217 static void __sigqueue_free(struct sigqueue *q)
218 {
219 if (q->flags & SIGQUEUE_PREALLOC)
220 return;
221 atomic_dec(&q->user->sigpending);
222 free_uid(q->user);
223 kmem_cache_free(sigqueue_cachep, q);
224 }
225
226 void flush_sigqueue(struct sigpending *queue)
227 {
228 struct sigqueue *q;
229
230 sigemptyset(&queue->signal);
231 while (!list_empty(&queue->list)) {
232 q = list_entry(queue->list.next, struct sigqueue , list);
233 list_del_init(&q->list);
234 __sigqueue_free(q);
235 }
236 }
237
238 /*
239 * Flush all pending signals for a task.
240 */
241 void __flush_signals(struct task_struct *t)
242 {
243 clear_tsk_thread_flag(t, TIF_SIGPENDING);
244 flush_sigqueue(&t->pending);
245 flush_sigqueue(&t->signal->shared_pending);
246 }
247
248 void flush_signals(struct task_struct *t)
249 {
250 unsigned long flags;
251
252 spin_lock_irqsave(&t->sighand->siglock, flags);
253 __flush_signals(t);
254 spin_unlock_irqrestore(&t->sighand->siglock, flags);
255 }
256
257 static void __flush_itimer_signals(struct sigpending *pending)
258 {
259 sigset_t signal, retain;
260 struct sigqueue *q, *n;
261
262 signal = pending->signal;
263 sigemptyset(&retain);
264
265 list_for_each_entry_safe(q, n, &pending->list, list) {
266 int sig = q->info.si_signo;
267
268 if (likely(q->info.si_code != SI_TIMER)) {
269 sigaddset(&retain, sig);
270 } else {
271 sigdelset(&signal, sig);
272 list_del_init(&q->list);
273 __sigqueue_free(q);
274 }
275 }
276
277 sigorsets(&pending->signal, &signal, &retain);
278 }
279
280 void flush_itimer_signals(void)
281 {
282 struct task_struct *tsk = current;
283 unsigned long flags;
284
285 spin_lock_irqsave(&tsk->sighand->siglock, flags);
286 __flush_itimer_signals(&tsk->pending);
287 __flush_itimer_signals(&tsk->signal->shared_pending);
288 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
289 }
290
291 void ignore_signals(struct task_struct *t)
292 {
293 int i;
294
295 for (i = 0; i < _NSIG; ++i)
296 t->sighand->action[i].sa.sa_handler = SIG_IGN;
297
298 flush_signals(t);
299 }
300
301 /*
302 * Flush all handlers for a task.
303 */
304
305 void
306 flush_signal_handlers(struct task_struct *t, int force_default)
307 {
308 int i;
309 struct k_sigaction *ka = &t->sighand->action[0];
310 for (i = _NSIG ; i != 0 ; i--) {
311 if (force_default || ka->sa.sa_handler != SIG_IGN)
312 ka->sa.sa_handler = SIG_DFL;
313 ka->sa.sa_flags = 0;
314 sigemptyset(&ka->sa.sa_mask);
315 ka++;
316 }
317 }
318
319 int unhandled_signal(struct task_struct *tsk, int sig)
320 {
321 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
322 if (is_global_init(tsk))
323 return 1;
324 if (handler != SIG_IGN && handler != SIG_DFL)
325 return 0;
326 return !tracehook_consider_fatal_signal(tsk, sig, handler);
327 }
328
329
330 /* Notify the system that a driver wants to block all signals for this
331 * process, and wants to be notified if any signals at all were to be
332 * sent/acted upon. If the notifier routine returns non-zero, then the
333 * signal will be acted upon after all. If the notifier routine returns 0,
334 * then then signal will be blocked. Only one block per process is
335 * allowed. priv is a pointer to private data that the notifier routine
336 * can use to determine if the signal should be blocked or not. */
337
338 void
339 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
340 {
341 unsigned long flags;
342
343 spin_lock_irqsave(&current->sighand->siglock, flags);
344 current->notifier_mask = mask;
345 current->notifier_data = priv;
346 current->notifier = notifier;
347 spin_unlock_irqrestore(&current->sighand->siglock, flags);
348 }
349
350 /* Notify the system that blocking has ended. */
351
352 void
353 unblock_all_signals(void)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(&current->sighand->siglock, flags);
358 current->notifier = NULL;
359 current->notifier_data = NULL;
360 recalc_sigpending();
361 spin_unlock_irqrestore(&current->sighand->siglock, flags);
362 }
363
364 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
365 {
366 struct sigqueue *q, *first = NULL;
367
368 /*
369 * Collect the siginfo appropriate to this signal. Check if
370 * there is another siginfo for the same signal.
371 */
372 list_for_each_entry(q, &list->list, list) {
373 if (q->info.si_signo == sig) {
374 if (first)
375 goto still_pending;
376 first = q;
377 }
378 }
379
380 sigdelset(&list->signal, sig);
381
382 if (first) {
383 still_pending:
384 list_del_init(&first->list);
385 copy_siginfo(info, &first->info);
386 __sigqueue_free(first);
387 } else {
388 /* Ok, it wasn't in the queue. This must be
389 a fast-pathed signal or we must have been
390 out of queue space. So zero out the info.
391 */
392 info->si_signo = sig;
393 info->si_errno = 0;
394 info->si_code = 0;
395 info->si_pid = 0;
396 info->si_uid = 0;
397 }
398 }
399
400 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
401 siginfo_t *info)
402 {
403 int sig = next_signal(pending, mask);
404
405 if (sig) {
406 if (current->notifier) {
407 if (sigismember(current->notifier_mask, sig)) {
408 if (!(current->notifier)(current->notifier_data)) {
409 clear_thread_flag(TIF_SIGPENDING);
410 return 0;
411 }
412 }
413 }
414
415 collect_signal(sig, pending, info);
416 }
417
418 return sig;
419 }
420
421 /*
422 * Dequeue a signal and return the element to the caller, which is
423 * expected to free it.
424 *
425 * All callers have to hold the siglock.
426 */
427 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
428 {
429 int signr;
430
431 /* We only dequeue private signals from ourselves, we don't let
432 * signalfd steal them
433 */
434 signr = __dequeue_signal(&tsk->pending, mask, info);
435 if (!signr) {
436 signr = __dequeue_signal(&tsk->signal->shared_pending,
437 mask, info);
438 /*
439 * itimer signal ?
440 *
441 * itimers are process shared and we restart periodic
442 * itimers in the signal delivery path to prevent DoS
443 * attacks in the high resolution timer case. This is
444 * compliant with the old way of self restarting
445 * itimers, as the SIGALRM is a legacy signal and only
446 * queued once. Changing the restart behaviour to
447 * restart the timer in the signal dequeue path is
448 * reducing the timer noise on heavy loaded !highres
449 * systems too.
450 */
451 if (unlikely(signr == SIGALRM)) {
452 struct hrtimer *tmr = &tsk->signal->real_timer;
453
454 if (!hrtimer_is_queued(tmr) &&
455 tsk->signal->it_real_incr.tv64 != 0) {
456 hrtimer_forward(tmr, tmr->base->get_time(),
457 tsk->signal->it_real_incr);
458 hrtimer_restart(tmr);
459 }
460 }
461 }
462
463 recalc_sigpending();
464 if (!signr)
465 return 0;
466
467 if (unlikely(sig_kernel_stop(signr))) {
468 /*
469 * Set a marker that we have dequeued a stop signal. Our
470 * caller might release the siglock and then the pending
471 * stop signal it is about to process is no longer in the
472 * pending bitmasks, but must still be cleared by a SIGCONT
473 * (and overruled by a SIGKILL). So those cases clear this
474 * shared flag after we've set it. Note that this flag may
475 * remain set after the signal we return is ignored or
476 * handled. That doesn't matter because its only purpose
477 * is to alert stop-signal processing code when another
478 * processor has come along and cleared the flag.
479 */
480 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
481 }
482 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
483 /*
484 * Release the siglock to ensure proper locking order
485 * of timer locks outside of siglocks. Note, we leave
486 * irqs disabled here, since the posix-timers code is
487 * about to disable them again anyway.
488 */
489 spin_unlock(&tsk->sighand->siglock);
490 do_schedule_next_timer(info);
491 spin_lock(&tsk->sighand->siglock);
492 }
493 return signr;
494 }
495
496 /*
497 * Tell a process that it has a new active signal..
498 *
499 * NOTE! we rely on the previous spin_lock to
500 * lock interrupts for us! We can only be called with
501 * "siglock" held, and the local interrupt must
502 * have been disabled when that got acquired!
503 *
504 * No need to set need_resched since signal event passing
505 * goes through ->blocked
506 */
507 void signal_wake_up(struct task_struct *t, int resume)
508 {
509 unsigned int mask;
510
511 set_tsk_thread_flag(t, TIF_SIGPENDING);
512
513 /*
514 * For SIGKILL, we want to wake it up in the stopped/traced/killable
515 * case. We don't check t->state here because there is a race with it
516 * executing another processor and just now entering stopped state.
517 * By using wake_up_state, we ensure the process will wake up and
518 * handle its death signal.
519 */
520 mask = TASK_INTERRUPTIBLE;
521 if (resume)
522 mask |= TASK_WAKEKILL;
523 if (!wake_up_state(t, mask))
524 kick_process(t);
525 }
526
527 /*
528 * Remove signals in mask from the pending set and queue.
529 * Returns 1 if any signals were found.
530 *
531 * All callers must be holding the siglock.
532 *
533 * This version takes a sigset mask and looks at all signals,
534 * not just those in the first mask word.
535 */
536 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
537 {
538 struct sigqueue *q, *n;
539 sigset_t m;
540
541 sigandsets(&m, mask, &s->signal);
542 if (sigisemptyset(&m))
543 return 0;
544
545 signandsets(&s->signal, &s->signal, mask);
546 list_for_each_entry_safe(q, n, &s->list, list) {
547 if (sigismember(mask, q->info.si_signo)) {
548 list_del_init(&q->list);
549 __sigqueue_free(q);
550 }
551 }
552 return 1;
553 }
554 /*
555 * Remove signals in mask from the pending set and queue.
556 * Returns 1 if any signals were found.
557 *
558 * All callers must be holding the siglock.
559 */
560 static int rm_from_queue(unsigned long mask, struct sigpending *s)
561 {
562 struct sigqueue *q, *n;
563
564 if (!sigtestsetmask(&s->signal, mask))
565 return 0;
566
567 sigdelsetmask(&s->signal, mask);
568 list_for_each_entry_safe(q, n, &s->list, list) {
569 if (q->info.si_signo < SIGRTMIN &&
570 (mask & sigmask(q->info.si_signo))) {
571 list_del_init(&q->list);
572 __sigqueue_free(q);
573 }
574 }
575 return 1;
576 }
577
578 /*
579 * Bad permissions for sending the signal
580 * - the caller must hold at least the RCU read lock
581 */
582 static int check_kill_permission(int sig, struct siginfo *info,
583 struct task_struct *t)
584 {
585 const struct cred *cred = current_cred(), *tcred;
586 struct pid *sid;
587 int error;
588
589 if (!valid_signal(sig))
590 return -EINVAL;
591
592 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
593 return 0;
594
595 error = audit_signal_info(sig, t); /* Let audit system see the signal */
596 if (error)
597 return error;
598
599 tcred = __task_cred(t);
600 if ((cred->euid ^ tcred->suid) &&
601 (cred->euid ^ tcred->uid) &&
602 (cred->uid ^ tcred->suid) &&
603 (cred->uid ^ tcred->uid) &&
604 !capable(CAP_KILL)) {
605 switch (sig) {
606 case SIGCONT:
607 sid = task_session(t);
608 /*
609 * We don't return the error if sid == NULL. The
610 * task was unhashed, the caller must notice this.
611 */
612 if (!sid || sid == task_session(current))
613 break;
614 default:
615 return -EPERM;
616 }
617 }
618
619 return security_task_kill(t, info, sig, 0);
620 }
621
622 /*
623 * Handle magic process-wide effects of stop/continue signals. Unlike
624 * the signal actions, these happen immediately at signal-generation
625 * time regardless of blocking, ignoring, or handling. This does the
626 * actual continuing for SIGCONT, but not the actual stopping for stop
627 * signals. The process stop is done as a signal action for SIG_DFL.
628 *
629 * Returns true if the signal should be actually delivered, otherwise
630 * it should be dropped.
631 */
632 static int prepare_signal(int sig, struct task_struct *p)
633 {
634 struct signal_struct *signal = p->signal;
635 struct task_struct *t;
636
637 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
638 /*
639 * The process is in the middle of dying, nothing to do.
640 */
641 } else if (sig_kernel_stop(sig)) {
642 /*
643 * This is a stop signal. Remove SIGCONT from all queues.
644 */
645 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
646 t = p;
647 do {
648 rm_from_queue(sigmask(SIGCONT), &t->pending);
649 } while_each_thread(p, t);
650 } else if (sig == SIGCONT) {
651 unsigned int why;
652 /*
653 * Remove all stop signals from all queues,
654 * and wake all threads.
655 */
656 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
657 t = p;
658 do {
659 unsigned int state;
660 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
661 /*
662 * If there is a handler for SIGCONT, we must make
663 * sure that no thread returns to user mode before
664 * we post the signal, in case it was the only
665 * thread eligible to run the signal handler--then
666 * it must not do anything between resuming and
667 * running the handler. With the TIF_SIGPENDING
668 * flag set, the thread will pause and acquire the
669 * siglock that we hold now and until we've queued
670 * the pending signal.
671 *
672 * Wake up the stopped thread _after_ setting
673 * TIF_SIGPENDING
674 */
675 state = __TASK_STOPPED;
676 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
677 set_tsk_thread_flag(t, TIF_SIGPENDING);
678 state |= TASK_INTERRUPTIBLE;
679 }
680 wake_up_state(t, state);
681 } while_each_thread(p, t);
682
683 /*
684 * Notify the parent with CLD_CONTINUED if we were stopped.
685 *
686 * If we were in the middle of a group stop, we pretend it
687 * was already finished, and then continued. Since SIGCHLD
688 * doesn't queue we report only CLD_STOPPED, as if the next
689 * CLD_CONTINUED was dropped.
690 */
691 why = 0;
692 if (signal->flags & SIGNAL_STOP_STOPPED)
693 why |= SIGNAL_CLD_CONTINUED;
694 else if (signal->group_stop_count)
695 why |= SIGNAL_CLD_STOPPED;
696
697 if (why) {
698 /*
699 * The first thread which returns from finish_stop()
700 * will take ->siglock, notice SIGNAL_CLD_MASK, and
701 * notify its parent. See get_signal_to_deliver().
702 */
703 signal->flags = why | SIGNAL_STOP_CONTINUED;
704 signal->group_stop_count = 0;
705 signal->group_exit_code = 0;
706 } else {
707 /*
708 * We are not stopped, but there could be a stop
709 * signal in the middle of being processed after
710 * being removed from the queue. Clear that too.
711 */
712 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
713 }
714 }
715
716 return !sig_ignored(p, sig);
717 }
718
719 /*
720 * Test if P wants to take SIG. After we've checked all threads with this,
721 * it's equivalent to finding no threads not blocking SIG. Any threads not
722 * blocking SIG were ruled out because they are not running and already
723 * have pending signals. Such threads will dequeue from the shared queue
724 * as soon as they're available, so putting the signal on the shared queue
725 * will be equivalent to sending it to one such thread.
726 */
727 static inline int wants_signal(int sig, struct task_struct *p)
728 {
729 if (sigismember(&p->blocked, sig))
730 return 0;
731 if (p->flags & PF_EXITING)
732 return 0;
733 if (sig == SIGKILL)
734 return 1;
735 if (task_is_stopped_or_traced(p))
736 return 0;
737 return task_curr(p) || !signal_pending(p);
738 }
739
740 static void complete_signal(int sig, struct task_struct *p, int group)
741 {
742 struct signal_struct *signal = p->signal;
743 struct task_struct *t;
744
745 /*
746 * Now find a thread we can wake up to take the signal off the queue.
747 *
748 * If the main thread wants the signal, it gets first crack.
749 * Probably the least surprising to the average bear.
750 */
751 if (wants_signal(sig, p))
752 t = p;
753 else if (!group || thread_group_empty(p))
754 /*
755 * There is just one thread and it does not need to be woken.
756 * It will dequeue unblocked signals before it runs again.
757 */
758 return;
759 else {
760 /*
761 * Otherwise try to find a suitable thread.
762 */
763 t = signal->curr_target;
764 while (!wants_signal(sig, t)) {
765 t = next_thread(t);
766 if (t == signal->curr_target)
767 /*
768 * No thread needs to be woken.
769 * Any eligible threads will see
770 * the signal in the queue soon.
771 */
772 return;
773 }
774 signal->curr_target = t;
775 }
776
777 /*
778 * Found a killable thread. If the signal will be fatal,
779 * then start taking the whole group down immediately.
780 */
781 if (sig_fatal(p, sig) &&
782 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
783 !sigismember(&t->real_blocked, sig) &&
784 (sig == SIGKILL ||
785 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
786 /*
787 * This signal will be fatal to the whole group.
788 */
789 if (!sig_kernel_coredump(sig)) {
790 /*
791 * Start a group exit and wake everybody up.
792 * This way we don't have other threads
793 * running and doing things after a slower
794 * thread has the fatal signal pending.
795 */
796 signal->flags = SIGNAL_GROUP_EXIT;
797 signal->group_exit_code = sig;
798 signal->group_stop_count = 0;
799 t = p;
800 do {
801 sigaddset(&t->pending.signal, SIGKILL);
802 signal_wake_up(t, 1);
803 } while_each_thread(p, t);
804 return;
805 }
806 }
807
808 /*
809 * The signal is already in the shared-pending queue.
810 * Tell the chosen thread to wake up and dequeue it.
811 */
812 signal_wake_up(t, sig == SIGKILL);
813 return;
814 }
815
816 static inline int legacy_queue(struct sigpending *signals, int sig)
817 {
818 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
819 }
820
821 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
822 int group)
823 {
824 struct sigpending *pending;
825 struct sigqueue *q;
826
827 trace_sched_signal_send(sig, t);
828
829 assert_spin_locked(&t->sighand->siglock);
830 if (!prepare_signal(sig, t))
831 return 0;
832
833 pending = group ? &t->signal->shared_pending : &t->pending;
834 /*
835 * Short-circuit ignored signals and support queuing
836 * exactly one non-rt signal, so that we can get more
837 * detailed information about the cause of the signal.
838 */
839 if (legacy_queue(pending, sig))
840 return 0;
841 /*
842 * fast-pathed signals for kernel-internal things like SIGSTOP
843 * or SIGKILL.
844 */
845 if (info == SEND_SIG_FORCED)
846 goto out_set;
847
848 /* Real-time signals must be queued if sent by sigqueue, or
849 some other real-time mechanism. It is implementation
850 defined whether kill() does so. We attempt to do so, on
851 the principle of least surprise, but since kill is not
852 allowed to fail with EAGAIN when low on memory we just
853 make sure at least one signal gets delivered and don't
854 pass on the info struct. */
855
856 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
857 (is_si_special(info) ||
858 info->si_code >= 0)));
859 if (q) {
860 list_add_tail(&q->list, &pending->list);
861 switch ((unsigned long) info) {
862 case (unsigned long) SEND_SIG_NOINFO:
863 q->info.si_signo = sig;
864 q->info.si_errno = 0;
865 q->info.si_code = SI_USER;
866 q->info.si_pid = task_tgid_nr_ns(current,
867 task_active_pid_ns(t));
868 q->info.si_uid = current_uid();
869 break;
870 case (unsigned long) SEND_SIG_PRIV:
871 q->info.si_signo = sig;
872 q->info.si_errno = 0;
873 q->info.si_code = SI_KERNEL;
874 q->info.si_pid = 0;
875 q->info.si_uid = 0;
876 break;
877 default:
878 copy_siginfo(&q->info, info);
879 break;
880 }
881 } else if (!is_si_special(info)) {
882 if (sig >= SIGRTMIN && info->si_code != SI_USER)
883 /*
884 * Queue overflow, abort. We may abort if the signal was rt
885 * and sent by user using something other than kill().
886 */
887 return -EAGAIN;
888 }
889
890 out_set:
891 signalfd_notify(t, sig);
892 sigaddset(&pending->signal, sig);
893 complete_signal(sig, t, group);
894 return 0;
895 }
896
897 int print_fatal_signals;
898
899 static void print_fatal_signal(struct pt_regs *regs, int signr)
900 {
901 printk("%s/%d: potentially unexpected fatal signal %d.\n",
902 current->comm, task_pid_nr(current), signr);
903
904 #if defined(__i386__) && !defined(__arch_um__)
905 printk("code at %08lx: ", regs->ip);
906 {
907 int i;
908 for (i = 0; i < 16; i++) {
909 unsigned char insn;
910
911 __get_user(insn, (unsigned char *)(regs->ip + i));
912 printk("%02x ", insn);
913 }
914 }
915 #endif
916 printk("\n");
917 preempt_disable();
918 show_regs(regs);
919 preempt_enable();
920 }
921
922 static int __init setup_print_fatal_signals(char *str)
923 {
924 get_option (&str, &print_fatal_signals);
925
926 return 1;
927 }
928
929 __setup("print-fatal-signals=", setup_print_fatal_signals);
930
931 int
932 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
933 {
934 return send_signal(sig, info, p, 1);
935 }
936
937 static int
938 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
939 {
940 return send_signal(sig, info, t, 0);
941 }
942
943 /*
944 * Force a signal that the process can't ignore: if necessary
945 * we unblock the signal and change any SIG_IGN to SIG_DFL.
946 *
947 * Note: If we unblock the signal, we always reset it to SIG_DFL,
948 * since we do not want to have a signal handler that was blocked
949 * be invoked when user space had explicitly blocked it.
950 *
951 * We don't want to have recursive SIGSEGV's etc, for example,
952 * that is why we also clear SIGNAL_UNKILLABLE.
953 */
954 int
955 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
956 {
957 unsigned long int flags;
958 int ret, blocked, ignored;
959 struct k_sigaction *action;
960
961 spin_lock_irqsave(&t->sighand->siglock, flags);
962 action = &t->sighand->action[sig-1];
963 ignored = action->sa.sa_handler == SIG_IGN;
964 blocked = sigismember(&t->blocked, sig);
965 if (blocked || ignored) {
966 action->sa.sa_handler = SIG_DFL;
967 if (blocked) {
968 sigdelset(&t->blocked, sig);
969 recalc_sigpending_and_wake(t);
970 }
971 }
972 if (action->sa.sa_handler == SIG_DFL)
973 t->signal->flags &= ~SIGNAL_UNKILLABLE;
974 ret = specific_send_sig_info(sig, info, t);
975 spin_unlock_irqrestore(&t->sighand->siglock, flags);
976
977 return ret;
978 }
979
980 void
981 force_sig_specific(int sig, struct task_struct *t)
982 {
983 force_sig_info(sig, SEND_SIG_FORCED, t);
984 }
985
986 /*
987 * Nuke all other threads in the group.
988 */
989 void zap_other_threads(struct task_struct *p)
990 {
991 struct task_struct *t;
992
993 p->signal->group_stop_count = 0;
994
995 for (t = next_thread(p); t != p; t = next_thread(t)) {
996 /*
997 * Don't bother with already dead threads
998 */
999 if (t->exit_state)
1000 continue;
1001
1002 /* SIGKILL will be handled before any pending SIGSTOP */
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 }
1006 }
1007
1008 int __fatal_signal_pending(struct task_struct *tsk)
1009 {
1010 return sigismember(&tsk->pending.signal, SIGKILL);
1011 }
1012 EXPORT_SYMBOL(__fatal_signal_pending);
1013
1014 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1015 {
1016 struct sighand_struct *sighand;
1017
1018 rcu_read_lock();
1019 for (;;) {
1020 sighand = rcu_dereference(tsk->sighand);
1021 if (unlikely(sighand == NULL))
1022 break;
1023
1024 spin_lock_irqsave(&sighand->siglock, *flags);
1025 if (likely(sighand == tsk->sighand))
1026 break;
1027 spin_unlock_irqrestore(&sighand->siglock, *flags);
1028 }
1029 rcu_read_unlock();
1030
1031 return sighand;
1032 }
1033
1034 /*
1035 * send signal info to all the members of a group
1036 * - the caller must hold the RCU read lock at least
1037 */
1038 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1039 {
1040 unsigned long flags;
1041 int ret;
1042
1043 ret = check_kill_permission(sig, info, p);
1044
1045 if (!ret && sig) {
1046 ret = -ESRCH;
1047 if (lock_task_sighand(p, &flags)) {
1048 ret = __group_send_sig_info(sig, info, p);
1049 unlock_task_sighand(p, &flags);
1050 }
1051 }
1052
1053 return ret;
1054 }
1055
1056 /*
1057 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1058 * control characters do (^C, ^Z etc)
1059 * - the caller must hold at least a readlock on tasklist_lock
1060 */
1061 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1062 {
1063 struct task_struct *p = NULL;
1064 int retval, success;
1065
1066 success = 0;
1067 retval = -ESRCH;
1068 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1069 int err = group_send_sig_info(sig, info, p);
1070 success |= !err;
1071 retval = err;
1072 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1073 return success ? 0 : retval;
1074 }
1075
1076 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1077 {
1078 int error = -ESRCH;
1079 struct task_struct *p;
1080
1081 rcu_read_lock();
1082 retry:
1083 p = pid_task(pid, PIDTYPE_PID);
1084 if (p) {
1085 error = group_send_sig_info(sig, info, p);
1086 if (unlikely(error == -ESRCH))
1087 /*
1088 * The task was unhashed in between, try again.
1089 * If it is dead, pid_task() will return NULL,
1090 * if we race with de_thread() it will find the
1091 * new leader.
1092 */
1093 goto retry;
1094 }
1095 rcu_read_unlock();
1096
1097 return error;
1098 }
1099
1100 int
1101 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1102 {
1103 int error;
1104 rcu_read_lock();
1105 error = kill_pid_info(sig, info, find_vpid(pid));
1106 rcu_read_unlock();
1107 return error;
1108 }
1109
1110 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1111 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1112 uid_t uid, uid_t euid, u32 secid)
1113 {
1114 int ret = -EINVAL;
1115 struct task_struct *p;
1116 const struct cred *pcred;
1117
1118 if (!valid_signal(sig))
1119 return ret;
1120
1121 read_lock(&tasklist_lock);
1122 p = pid_task(pid, PIDTYPE_PID);
1123 if (!p) {
1124 ret = -ESRCH;
1125 goto out_unlock;
1126 }
1127 pcred = __task_cred(p);
1128 if ((info == SEND_SIG_NOINFO ||
1129 (!is_si_special(info) && SI_FROMUSER(info))) &&
1130 euid != pcred->suid && euid != pcred->uid &&
1131 uid != pcred->suid && uid != pcred->uid) {
1132 ret = -EPERM;
1133 goto out_unlock;
1134 }
1135 ret = security_task_kill(p, info, sig, secid);
1136 if (ret)
1137 goto out_unlock;
1138 if (sig && p->sighand) {
1139 unsigned long flags;
1140 spin_lock_irqsave(&p->sighand->siglock, flags);
1141 ret = __group_send_sig_info(sig, info, p);
1142 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1143 }
1144 out_unlock:
1145 read_unlock(&tasklist_lock);
1146 return ret;
1147 }
1148 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1149
1150 /*
1151 * kill_something_info() interprets pid in interesting ways just like kill(2).
1152 *
1153 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1154 * is probably wrong. Should make it like BSD or SYSV.
1155 */
1156
1157 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1158 {
1159 int ret;
1160
1161 if (pid > 0) {
1162 rcu_read_lock();
1163 ret = kill_pid_info(sig, info, find_vpid(pid));
1164 rcu_read_unlock();
1165 return ret;
1166 }
1167
1168 read_lock(&tasklist_lock);
1169 if (pid != -1) {
1170 ret = __kill_pgrp_info(sig, info,
1171 pid ? find_vpid(-pid) : task_pgrp(current));
1172 } else {
1173 int retval = 0, count = 0;
1174 struct task_struct * p;
1175
1176 for_each_process(p) {
1177 if (task_pid_vnr(p) > 1 &&
1178 !same_thread_group(p, current)) {
1179 int err = group_send_sig_info(sig, info, p);
1180 ++count;
1181 if (err != -EPERM)
1182 retval = err;
1183 }
1184 }
1185 ret = count ? retval : -ESRCH;
1186 }
1187 read_unlock(&tasklist_lock);
1188
1189 return ret;
1190 }
1191
1192 /*
1193 * These are for backward compatibility with the rest of the kernel source.
1194 */
1195
1196 /*
1197 * The caller must ensure the task can't exit.
1198 */
1199 int
1200 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1201 {
1202 int ret;
1203 unsigned long flags;
1204
1205 /*
1206 * Make sure legacy kernel users don't send in bad values
1207 * (normal paths check this in check_kill_permission).
1208 */
1209 if (!valid_signal(sig))
1210 return -EINVAL;
1211
1212 spin_lock_irqsave(&p->sighand->siglock, flags);
1213 ret = specific_send_sig_info(sig, info, p);
1214 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1215 return ret;
1216 }
1217
1218 #define __si_special(priv) \
1219 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1220
1221 int
1222 send_sig(int sig, struct task_struct *p, int priv)
1223 {
1224 return send_sig_info(sig, __si_special(priv), p);
1225 }
1226
1227 void
1228 force_sig(int sig, struct task_struct *p)
1229 {
1230 force_sig_info(sig, SEND_SIG_PRIV, p);
1231 }
1232
1233 /*
1234 * When things go south during signal handling, we
1235 * will force a SIGSEGV. And if the signal that caused
1236 * the problem was already a SIGSEGV, we'll want to
1237 * make sure we don't even try to deliver the signal..
1238 */
1239 int
1240 force_sigsegv(int sig, struct task_struct *p)
1241 {
1242 if (sig == SIGSEGV) {
1243 unsigned long flags;
1244 spin_lock_irqsave(&p->sighand->siglock, flags);
1245 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1246 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1247 }
1248 force_sig(SIGSEGV, p);
1249 return 0;
1250 }
1251
1252 int kill_pgrp(struct pid *pid, int sig, int priv)
1253 {
1254 int ret;
1255
1256 read_lock(&tasklist_lock);
1257 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1258 read_unlock(&tasklist_lock);
1259
1260 return ret;
1261 }
1262 EXPORT_SYMBOL(kill_pgrp);
1263
1264 int kill_pid(struct pid *pid, int sig, int priv)
1265 {
1266 return kill_pid_info(sig, __si_special(priv), pid);
1267 }
1268 EXPORT_SYMBOL(kill_pid);
1269
1270 /*
1271 * These functions support sending signals using preallocated sigqueue
1272 * structures. This is needed "because realtime applications cannot
1273 * afford to lose notifications of asynchronous events, like timer
1274 * expirations or I/O completions". In the case of Posix Timers
1275 * we allocate the sigqueue structure from the timer_create. If this
1276 * allocation fails we are able to report the failure to the application
1277 * with an EAGAIN error.
1278 */
1279
1280 struct sigqueue *sigqueue_alloc(void)
1281 {
1282 struct sigqueue *q;
1283
1284 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1285 q->flags |= SIGQUEUE_PREALLOC;
1286 return(q);
1287 }
1288
1289 void sigqueue_free(struct sigqueue *q)
1290 {
1291 unsigned long flags;
1292 spinlock_t *lock = &current->sighand->siglock;
1293
1294 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1295 /*
1296 * We must hold ->siglock while testing q->list
1297 * to serialize with collect_signal() or with
1298 * __exit_signal()->flush_sigqueue().
1299 */
1300 spin_lock_irqsave(lock, flags);
1301 q->flags &= ~SIGQUEUE_PREALLOC;
1302 /*
1303 * If it is queued it will be freed when dequeued,
1304 * like the "regular" sigqueue.
1305 */
1306 if (!list_empty(&q->list))
1307 q = NULL;
1308 spin_unlock_irqrestore(lock, flags);
1309
1310 if (q)
1311 __sigqueue_free(q);
1312 }
1313
1314 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1315 {
1316 int sig = q->info.si_signo;
1317 struct sigpending *pending;
1318 unsigned long flags;
1319 int ret;
1320
1321 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1322
1323 ret = -1;
1324 if (!likely(lock_task_sighand(t, &flags)))
1325 goto ret;
1326
1327 ret = 1; /* the signal is ignored */
1328 if (!prepare_signal(sig, t))
1329 goto out;
1330
1331 ret = 0;
1332 if (unlikely(!list_empty(&q->list))) {
1333 /*
1334 * If an SI_TIMER entry is already queue just increment
1335 * the overrun count.
1336 */
1337 BUG_ON(q->info.si_code != SI_TIMER);
1338 q->info.si_overrun++;
1339 goto out;
1340 }
1341 q->info.si_overrun = 0;
1342
1343 signalfd_notify(t, sig);
1344 pending = group ? &t->signal->shared_pending : &t->pending;
1345 list_add_tail(&q->list, &pending->list);
1346 sigaddset(&pending->signal, sig);
1347 complete_signal(sig, t, group);
1348 out:
1349 unlock_task_sighand(t, &flags);
1350 ret:
1351 return ret;
1352 }
1353
1354 /*
1355 * Wake up any threads in the parent blocked in wait* syscalls.
1356 */
1357 static inline void __wake_up_parent(struct task_struct *p,
1358 struct task_struct *parent)
1359 {
1360 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1361 }
1362
1363 /*
1364 * Let a parent know about the death of a child.
1365 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1366 *
1367 * Returns -1 if our parent ignored us and so we've switched to
1368 * self-reaping, or else @sig.
1369 */
1370 int do_notify_parent(struct task_struct *tsk, int sig)
1371 {
1372 struct siginfo info;
1373 unsigned long flags;
1374 struct sighand_struct *psig;
1375 int ret = sig;
1376
1377 BUG_ON(sig == -1);
1378
1379 /* do_notify_parent_cldstop should have been called instead. */
1380 BUG_ON(task_is_stopped_or_traced(tsk));
1381
1382 BUG_ON(!tsk->ptrace &&
1383 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1384
1385 info.si_signo = sig;
1386 info.si_errno = 0;
1387 /*
1388 * we are under tasklist_lock here so our parent is tied to
1389 * us and cannot exit and release its namespace.
1390 *
1391 * the only it can is to switch its nsproxy with sys_unshare,
1392 * bu uncharing pid namespaces is not allowed, so we'll always
1393 * see relevant namespace
1394 *
1395 * write_lock() currently calls preempt_disable() which is the
1396 * same as rcu_read_lock(), but according to Oleg, this is not
1397 * correct to rely on this
1398 */
1399 rcu_read_lock();
1400 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1401 info.si_uid = __task_cred(tsk)->uid;
1402 rcu_read_unlock();
1403
1404 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1405 tsk->signal->utime));
1406 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1407 tsk->signal->stime));
1408
1409 info.si_status = tsk->exit_code & 0x7f;
1410 if (tsk->exit_code & 0x80)
1411 info.si_code = CLD_DUMPED;
1412 else if (tsk->exit_code & 0x7f)
1413 info.si_code = CLD_KILLED;
1414 else {
1415 info.si_code = CLD_EXITED;
1416 info.si_status = tsk->exit_code >> 8;
1417 }
1418
1419 psig = tsk->parent->sighand;
1420 spin_lock_irqsave(&psig->siglock, flags);
1421 if (!tsk->ptrace && sig == SIGCHLD &&
1422 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1423 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1424 /*
1425 * We are exiting and our parent doesn't care. POSIX.1
1426 * defines special semantics for setting SIGCHLD to SIG_IGN
1427 * or setting the SA_NOCLDWAIT flag: we should be reaped
1428 * automatically and not left for our parent's wait4 call.
1429 * Rather than having the parent do it as a magic kind of
1430 * signal handler, we just set this to tell do_exit that we
1431 * can be cleaned up without becoming a zombie. Note that
1432 * we still call __wake_up_parent in this case, because a
1433 * blocked sys_wait4 might now return -ECHILD.
1434 *
1435 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1436 * is implementation-defined: we do (if you don't want
1437 * it, just use SIG_IGN instead).
1438 */
1439 ret = tsk->exit_signal = -1;
1440 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1441 sig = -1;
1442 }
1443 if (valid_signal(sig) && sig > 0)
1444 __group_send_sig_info(sig, &info, tsk->parent);
1445 __wake_up_parent(tsk, tsk->parent);
1446 spin_unlock_irqrestore(&psig->siglock, flags);
1447
1448 return ret;
1449 }
1450
1451 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1452 {
1453 struct siginfo info;
1454 unsigned long flags;
1455 struct task_struct *parent;
1456 struct sighand_struct *sighand;
1457
1458 if (tsk->ptrace & PT_PTRACED)
1459 parent = tsk->parent;
1460 else {
1461 tsk = tsk->group_leader;
1462 parent = tsk->real_parent;
1463 }
1464
1465 info.si_signo = SIGCHLD;
1466 info.si_errno = 0;
1467 /*
1468 * see comment in do_notify_parent() abot the following 3 lines
1469 */
1470 rcu_read_lock();
1471 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1472 info.si_uid = __task_cred(tsk)->uid;
1473 rcu_read_unlock();
1474
1475 info.si_utime = cputime_to_clock_t(tsk->utime);
1476 info.si_stime = cputime_to_clock_t(tsk->stime);
1477
1478 info.si_code = why;
1479 switch (why) {
1480 case CLD_CONTINUED:
1481 info.si_status = SIGCONT;
1482 break;
1483 case CLD_STOPPED:
1484 info.si_status = tsk->signal->group_exit_code & 0x7f;
1485 break;
1486 case CLD_TRAPPED:
1487 info.si_status = tsk->exit_code & 0x7f;
1488 break;
1489 default:
1490 BUG();
1491 }
1492
1493 sighand = parent->sighand;
1494 spin_lock_irqsave(&sighand->siglock, flags);
1495 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1496 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1497 __group_send_sig_info(SIGCHLD, &info, parent);
1498 /*
1499 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1500 */
1501 __wake_up_parent(tsk, parent);
1502 spin_unlock_irqrestore(&sighand->siglock, flags);
1503 }
1504
1505 static inline int may_ptrace_stop(void)
1506 {
1507 if (!likely(current->ptrace & PT_PTRACED))
1508 return 0;
1509 /*
1510 * Are we in the middle of do_coredump?
1511 * If so and our tracer is also part of the coredump stopping
1512 * is a deadlock situation, and pointless because our tracer
1513 * is dead so don't allow us to stop.
1514 * If SIGKILL was already sent before the caller unlocked
1515 * ->siglock we must see ->core_state != NULL. Otherwise it
1516 * is safe to enter schedule().
1517 */
1518 if (unlikely(current->mm->core_state) &&
1519 unlikely(current->mm == current->parent->mm))
1520 return 0;
1521
1522 return 1;
1523 }
1524
1525 /*
1526 * Return nonzero if there is a SIGKILL that should be waking us up.
1527 * Called with the siglock held.
1528 */
1529 static int sigkill_pending(struct task_struct *tsk)
1530 {
1531 return sigismember(&tsk->pending.signal, SIGKILL) ||
1532 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1533 }
1534
1535 /*
1536 * This must be called with current->sighand->siglock held.
1537 *
1538 * This should be the path for all ptrace stops.
1539 * We always set current->last_siginfo while stopped here.
1540 * That makes it a way to test a stopped process for
1541 * being ptrace-stopped vs being job-control-stopped.
1542 *
1543 * If we actually decide not to stop at all because the tracer
1544 * is gone, we keep current->exit_code unless clear_code.
1545 */
1546 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1547 {
1548 if (arch_ptrace_stop_needed(exit_code, info)) {
1549 /*
1550 * The arch code has something special to do before a
1551 * ptrace stop. This is allowed to block, e.g. for faults
1552 * on user stack pages. We can't keep the siglock while
1553 * calling arch_ptrace_stop, so we must release it now.
1554 * To preserve proper semantics, we must do this before
1555 * any signal bookkeeping like checking group_stop_count.
1556 * Meanwhile, a SIGKILL could come in before we retake the
1557 * siglock. That must prevent us from sleeping in TASK_TRACED.
1558 * So after regaining the lock, we must check for SIGKILL.
1559 */
1560 spin_unlock_irq(&current->sighand->siglock);
1561 arch_ptrace_stop(exit_code, info);
1562 spin_lock_irq(&current->sighand->siglock);
1563 if (sigkill_pending(current))
1564 return;
1565 }
1566
1567 /*
1568 * If there is a group stop in progress,
1569 * we must participate in the bookkeeping.
1570 */
1571 if (current->signal->group_stop_count > 0)
1572 --current->signal->group_stop_count;
1573
1574 current->last_siginfo = info;
1575 current->exit_code = exit_code;
1576
1577 /* Let the debugger run. */
1578 __set_current_state(TASK_TRACED);
1579 spin_unlock_irq(&current->sighand->siglock);
1580 read_lock(&tasklist_lock);
1581 if (may_ptrace_stop()) {
1582 do_notify_parent_cldstop(current, CLD_TRAPPED);
1583 /*
1584 * Don't want to allow preemption here, because
1585 * sys_ptrace() needs this task to be inactive.
1586 *
1587 * XXX: implement read_unlock_no_resched().
1588 */
1589 preempt_disable();
1590 read_unlock(&tasklist_lock);
1591 preempt_enable_no_resched();
1592 schedule();
1593 } else {
1594 /*
1595 * By the time we got the lock, our tracer went away.
1596 * Don't drop the lock yet, another tracer may come.
1597 */
1598 __set_current_state(TASK_RUNNING);
1599 if (clear_code)
1600 current->exit_code = 0;
1601 read_unlock(&tasklist_lock);
1602 }
1603
1604 /*
1605 * While in TASK_TRACED, we were considered "frozen enough".
1606 * Now that we woke up, it's crucial if we're supposed to be
1607 * frozen that we freeze now before running anything substantial.
1608 */
1609 try_to_freeze();
1610
1611 /*
1612 * We are back. Now reacquire the siglock before touching
1613 * last_siginfo, so that we are sure to have synchronized with
1614 * any signal-sending on another CPU that wants to examine it.
1615 */
1616 spin_lock_irq(&current->sighand->siglock);
1617 current->last_siginfo = NULL;
1618
1619 /*
1620 * Queued signals ignored us while we were stopped for tracing.
1621 * So check for any that we should take before resuming user mode.
1622 * This sets TIF_SIGPENDING, but never clears it.
1623 */
1624 recalc_sigpending_tsk(current);
1625 }
1626
1627 void ptrace_notify(int exit_code)
1628 {
1629 siginfo_t info;
1630
1631 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1632
1633 memset(&info, 0, sizeof info);
1634 info.si_signo = SIGTRAP;
1635 info.si_code = exit_code;
1636 info.si_pid = task_pid_vnr(current);
1637 info.si_uid = current_uid();
1638
1639 /* Let the debugger run. */
1640 spin_lock_irq(&current->sighand->siglock);
1641 ptrace_stop(exit_code, 1, &info);
1642 spin_unlock_irq(&current->sighand->siglock);
1643 }
1644
1645 static void
1646 finish_stop(int stop_count)
1647 {
1648 /*
1649 * If there are no other threads in the group, or if there is
1650 * a group stop in progress and we are the last to stop,
1651 * report to the parent. When ptraced, every thread reports itself.
1652 */
1653 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1654 read_lock(&tasklist_lock);
1655 do_notify_parent_cldstop(current, CLD_STOPPED);
1656 read_unlock(&tasklist_lock);
1657 }
1658
1659 do {
1660 schedule();
1661 } while (try_to_freeze());
1662 /*
1663 * Now we don't run again until continued.
1664 */
1665 current->exit_code = 0;
1666 }
1667
1668 /*
1669 * This performs the stopping for SIGSTOP and other stop signals.
1670 * We have to stop all threads in the thread group.
1671 * Returns nonzero if we've actually stopped and released the siglock.
1672 * Returns zero if we didn't stop and still hold the siglock.
1673 */
1674 static int do_signal_stop(int signr)
1675 {
1676 struct signal_struct *sig = current->signal;
1677 int stop_count;
1678
1679 if (sig->group_stop_count > 0) {
1680 /*
1681 * There is a group stop in progress. We don't need to
1682 * start another one.
1683 */
1684 stop_count = --sig->group_stop_count;
1685 } else {
1686 struct task_struct *t;
1687
1688 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1689 unlikely(signal_group_exit(sig)))
1690 return 0;
1691 /*
1692 * There is no group stop already in progress.
1693 * We must initiate one now.
1694 */
1695 sig->group_exit_code = signr;
1696
1697 stop_count = 0;
1698 for (t = next_thread(current); t != current; t = next_thread(t))
1699 /*
1700 * Setting state to TASK_STOPPED for a group
1701 * stop is always done with the siglock held,
1702 * so this check has no races.
1703 */
1704 if (!(t->flags & PF_EXITING) &&
1705 !task_is_stopped_or_traced(t)) {
1706 stop_count++;
1707 signal_wake_up(t, 0);
1708 }
1709 sig->group_stop_count = stop_count;
1710 }
1711
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 current->exit_code = sig->group_exit_code;
1715 __set_current_state(TASK_STOPPED);
1716
1717 spin_unlock_irq(&current->sighand->siglock);
1718 finish_stop(stop_count);
1719 return 1;
1720 }
1721
1722 static int ptrace_signal(int signr, siginfo_t *info,
1723 struct pt_regs *regs, void *cookie)
1724 {
1725 if (!(current->ptrace & PT_PTRACED))
1726 return signr;
1727
1728 ptrace_signal_deliver(regs, cookie);
1729
1730 /* Let the debugger run. */
1731 ptrace_stop(signr, 0, info);
1732
1733 /* We're back. Did the debugger cancel the sig? */
1734 signr = current->exit_code;
1735 if (signr == 0)
1736 return signr;
1737
1738 current->exit_code = 0;
1739
1740 /* Update the siginfo structure if the signal has
1741 changed. If the debugger wanted something
1742 specific in the siginfo structure then it should
1743 have updated *info via PTRACE_SETSIGINFO. */
1744 if (signr != info->si_signo) {
1745 info->si_signo = signr;
1746 info->si_errno = 0;
1747 info->si_code = SI_USER;
1748 info->si_pid = task_pid_vnr(current->parent);
1749 info->si_uid = task_uid(current->parent);
1750 }
1751
1752 /* If the (new) signal is now blocked, requeue it. */
1753 if (sigismember(&current->blocked, signr)) {
1754 specific_send_sig_info(signr, info, current);
1755 signr = 0;
1756 }
1757
1758 return signr;
1759 }
1760
1761 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1762 struct pt_regs *regs, void *cookie)
1763 {
1764 struct sighand_struct *sighand = current->sighand;
1765 struct signal_struct *signal = current->signal;
1766 int signr;
1767
1768 relock:
1769 /*
1770 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1771 * While in TASK_STOPPED, we were considered "frozen enough".
1772 * Now that we woke up, it's crucial if we're supposed to be
1773 * frozen that we freeze now before running anything substantial.
1774 */
1775 try_to_freeze();
1776
1777 spin_lock_irq(&sighand->siglock);
1778 /*
1779 * Every stopped thread goes here after wakeup. Check to see if
1780 * we should notify the parent, prepare_signal(SIGCONT) encodes
1781 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1782 */
1783 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1784 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1785 ? CLD_CONTINUED : CLD_STOPPED;
1786 signal->flags &= ~SIGNAL_CLD_MASK;
1787 spin_unlock_irq(&sighand->siglock);
1788
1789 if (unlikely(!tracehook_notify_jctl(1, why)))
1790 goto relock;
1791
1792 read_lock(&tasklist_lock);
1793 do_notify_parent_cldstop(current->group_leader, why);
1794 read_unlock(&tasklist_lock);
1795 goto relock;
1796 }
1797
1798 for (;;) {
1799 struct k_sigaction *ka;
1800
1801 if (unlikely(signal->group_stop_count > 0) &&
1802 do_signal_stop(0))
1803 goto relock;
1804
1805 /*
1806 * Tracing can induce an artifical signal and choose sigaction.
1807 * The return value in @signr determines the default action,
1808 * but @info->si_signo is the signal number we will report.
1809 */
1810 signr = tracehook_get_signal(current, regs, info, return_ka);
1811 if (unlikely(signr < 0))
1812 goto relock;
1813 if (unlikely(signr != 0))
1814 ka = return_ka;
1815 else {
1816 signr = dequeue_signal(current, &current->blocked,
1817 info);
1818
1819 if (!signr)
1820 break; /* will return 0 */
1821
1822 if (signr != SIGKILL) {
1823 signr = ptrace_signal(signr, info,
1824 regs, cookie);
1825 if (!signr)
1826 continue;
1827 }
1828
1829 ka = &sighand->action[signr-1];
1830 }
1831
1832 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1833 continue;
1834 if (ka->sa.sa_handler != SIG_DFL) {
1835 /* Run the handler. */
1836 *return_ka = *ka;
1837
1838 if (ka->sa.sa_flags & SA_ONESHOT)
1839 ka->sa.sa_handler = SIG_DFL;
1840
1841 break; /* will return non-zero "signr" value */
1842 }
1843
1844 /*
1845 * Now we are doing the default action for this signal.
1846 */
1847 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1848 continue;
1849
1850 /*
1851 * Global init gets no signals it doesn't want.
1852 */
1853 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1854 !signal_group_exit(signal))
1855 continue;
1856
1857 if (sig_kernel_stop(signr)) {
1858 /*
1859 * The default action is to stop all threads in
1860 * the thread group. The job control signals
1861 * do nothing in an orphaned pgrp, but SIGSTOP
1862 * always works. Note that siglock needs to be
1863 * dropped during the call to is_orphaned_pgrp()
1864 * because of lock ordering with tasklist_lock.
1865 * This allows an intervening SIGCONT to be posted.
1866 * We need to check for that and bail out if necessary.
1867 */
1868 if (signr != SIGSTOP) {
1869 spin_unlock_irq(&sighand->siglock);
1870
1871 /* signals can be posted during this window */
1872
1873 if (is_current_pgrp_orphaned())
1874 goto relock;
1875
1876 spin_lock_irq(&sighand->siglock);
1877 }
1878
1879 if (likely(do_signal_stop(info->si_signo))) {
1880 /* It released the siglock. */
1881 goto relock;
1882 }
1883
1884 /*
1885 * We didn't actually stop, due to a race
1886 * with SIGCONT or something like that.
1887 */
1888 continue;
1889 }
1890
1891 spin_unlock_irq(&sighand->siglock);
1892
1893 /*
1894 * Anything else is fatal, maybe with a core dump.
1895 */
1896 current->flags |= PF_SIGNALED;
1897
1898 if (sig_kernel_coredump(signr)) {
1899 if (print_fatal_signals)
1900 print_fatal_signal(regs, info->si_signo);
1901 /*
1902 * If it was able to dump core, this kills all
1903 * other threads in the group and synchronizes with
1904 * their demise. If we lost the race with another
1905 * thread getting here, it set group_exit_code
1906 * first and our do_group_exit call below will use
1907 * that value and ignore the one we pass it.
1908 */
1909 do_coredump(info->si_signo, info->si_signo, regs);
1910 }
1911
1912 /*
1913 * Death signals, no core dump.
1914 */
1915 do_group_exit(info->si_signo);
1916 /* NOTREACHED */
1917 }
1918 spin_unlock_irq(&sighand->siglock);
1919 return signr;
1920 }
1921
1922 void exit_signals(struct task_struct *tsk)
1923 {
1924 int group_stop = 0;
1925 struct task_struct *t;
1926
1927 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1928 tsk->flags |= PF_EXITING;
1929 return;
1930 }
1931
1932 spin_lock_irq(&tsk->sighand->siglock);
1933 /*
1934 * From now this task is not visible for group-wide signals,
1935 * see wants_signal(), do_signal_stop().
1936 */
1937 tsk->flags |= PF_EXITING;
1938 if (!signal_pending(tsk))
1939 goto out;
1940
1941 /* It could be that __group_complete_signal() choose us to
1942 * notify about group-wide signal. Another thread should be
1943 * woken now to take the signal since we will not.
1944 */
1945 for (t = tsk; (t = next_thread(t)) != tsk; )
1946 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1947 recalc_sigpending_and_wake(t);
1948
1949 if (unlikely(tsk->signal->group_stop_count) &&
1950 !--tsk->signal->group_stop_count) {
1951 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1952 group_stop = 1;
1953 }
1954 out:
1955 spin_unlock_irq(&tsk->sighand->siglock);
1956
1957 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1958 read_lock(&tasklist_lock);
1959 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1960 read_unlock(&tasklist_lock);
1961 }
1962 }
1963
1964 EXPORT_SYMBOL(recalc_sigpending);
1965 EXPORT_SYMBOL_GPL(dequeue_signal);
1966 EXPORT_SYMBOL(flush_signals);
1967 EXPORT_SYMBOL(force_sig);
1968 EXPORT_SYMBOL(send_sig);
1969 EXPORT_SYMBOL(send_sig_info);
1970 EXPORT_SYMBOL(sigprocmask);
1971 EXPORT_SYMBOL(block_all_signals);
1972 EXPORT_SYMBOL(unblock_all_signals);
1973
1974
1975 /*
1976 * System call entry points.
1977 */
1978
1979 SYSCALL_DEFINE0(restart_syscall)
1980 {
1981 struct restart_block *restart = &current_thread_info()->restart_block;
1982 return restart->fn(restart);
1983 }
1984
1985 long do_no_restart_syscall(struct restart_block *param)
1986 {
1987 return -EINTR;
1988 }
1989
1990 /*
1991 * We don't need to get the kernel lock - this is all local to this
1992 * particular thread.. (and that's good, because this is _heavily_
1993 * used by various programs)
1994 */
1995
1996 /*
1997 * This is also useful for kernel threads that want to temporarily
1998 * (or permanently) block certain signals.
1999 *
2000 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2001 * interface happily blocks "unblockable" signals like SIGKILL
2002 * and friends.
2003 */
2004 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2005 {
2006 int error;
2007
2008 spin_lock_irq(&current->sighand->siglock);
2009 if (oldset)
2010 *oldset = current->blocked;
2011
2012 error = 0;
2013 switch (how) {
2014 case SIG_BLOCK:
2015 sigorsets(&current->blocked, &current->blocked, set);
2016 break;
2017 case SIG_UNBLOCK:
2018 signandsets(&current->blocked, &current->blocked, set);
2019 break;
2020 case SIG_SETMASK:
2021 current->blocked = *set;
2022 break;
2023 default:
2024 error = -EINVAL;
2025 }
2026 recalc_sigpending();
2027 spin_unlock_irq(&current->sighand->siglock);
2028
2029 return error;
2030 }
2031
2032 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2033 sigset_t __user *, oset, size_t, sigsetsize)
2034 {
2035 int error = -EINVAL;
2036 sigset_t old_set, new_set;
2037
2038 /* XXX: Don't preclude handling different sized sigset_t's. */
2039 if (sigsetsize != sizeof(sigset_t))
2040 goto out;
2041
2042 if (set) {
2043 error = -EFAULT;
2044 if (copy_from_user(&new_set, set, sizeof(*set)))
2045 goto out;
2046 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2047
2048 error = sigprocmask(how, &new_set, &old_set);
2049 if (error)
2050 goto out;
2051 if (oset)
2052 goto set_old;
2053 } else if (oset) {
2054 spin_lock_irq(&current->sighand->siglock);
2055 old_set = current->blocked;
2056 spin_unlock_irq(&current->sighand->siglock);
2057
2058 set_old:
2059 error = -EFAULT;
2060 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2061 goto out;
2062 }
2063 error = 0;
2064 out:
2065 return error;
2066 }
2067
2068 long do_sigpending(void __user *set, unsigned long sigsetsize)
2069 {
2070 long error = -EINVAL;
2071 sigset_t pending;
2072
2073 if (sigsetsize > sizeof(sigset_t))
2074 goto out;
2075
2076 spin_lock_irq(&current->sighand->siglock);
2077 sigorsets(&pending, &current->pending.signal,
2078 &current->signal->shared_pending.signal);
2079 spin_unlock_irq(&current->sighand->siglock);
2080
2081 /* Outside the lock because only this thread touches it. */
2082 sigandsets(&pending, &current->blocked, &pending);
2083
2084 error = -EFAULT;
2085 if (!copy_to_user(set, &pending, sigsetsize))
2086 error = 0;
2087
2088 out:
2089 return error;
2090 }
2091
2092 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2093 {
2094 return do_sigpending(set, sigsetsize);
2095 }
2096
2097 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2098
2099 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2100 {
2101 int err;
2102
2103 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2104 return -EFAULT;
2105 if (from->si_code < 0)
2106 return __copy_to_user(to, from, sizeof(siginfo_t))
2107 ? -EFAULT : 0;
2108 /*
2109 * If you change siginfo_t structure, please be sure
2110 * this code is fixed accordingly.
2111 * Please remember to update the signalfd_copyinfo() function
2112 * inside fs/signalfd.c too, in case siginfo_t changes.
2113 * It should never copy any pad contained in the structure
2114 * to avoid security leaks, but must copy the generic
2115 * 3 ints plus the relevant union member.
2116 */
2117 err = __put_user(from->si_signo, &to->si_signo);
2118 err |= __put_user(from->si_errno, &to->si_errno);
2119 err |= __put_user((short)from->si_code, &to->si_code);
2120 switch (from->si_code & __SI_MASK) {
2121 case __SI_KILL:
2122 err |= __put_user(from->si_pid, &to->si_pid);
2123 err |= __put_user(from->si_uid, &to->si_uid);
2124 break;
2125 case __SI_TIMER:
2126 err |= __put_user(from->si_tid, &to->si_tid);
2127 err |= __put_user(from->si_overrun, &to->si_overrun);
2128 err |= __put_user(from->si_ptr, &to->si_ptr);
2129 break;
2130 case __SI_POLL:
2131 err |= __put_user(from->si_band, &to->si_band);
2132 err |= __put_user(from->si_fd, &to->si_fd);
2133 break;
2134 case __SI_FAULT:
2135 err |= __put_user(from->si_addr, &to->si_addr);
2136 #ifdef __ARCH_SI_TRAPNO
2137 err |= __put_user(from->si_trapno, &to->si_trapno);
2138 #endif
2139 break;
2140 case __SI_CHLD:
2141 err |= __put_user(from->si_pid, &to->si_pid);
2142 err |= __put_user(from->si_uid, &to->si_uid);
2143 err |= __put_user(from->si_status, &to->si_status);
2144 err |= __put_user(from->si_utime, &to->si_utime);
2145 err |= __put_user(from->si_stime, &to->si_stime);
2146 break;
2147 case __SI_RT: /* This is not generated by the kernel as of now. */
2148 case __SI_MESGQ: /* But this is */
2149 err |= __put_user(from->si_pid, &to->si_pid);
2150 err |= __put_user(from->si_uid, &to->si_uid);
2151 err |= __put_user(from->si_ptr, &to->si_ptr);
2152 break;
2153 default: /* this is just in case for now ... */
2154 err |= __put_user(from->si_pid, &to->si_pid);
2155 err |= __put_user(from->si_uid, &to->si_uid);
2156 break;
2157 }
2158 return err;
2159 }
2160
2161 #endif
2162
2163 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2164 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2165 size_t, sigsetsize)
2166 {
2167 int ret, sig;
2168 sigset_t these;
2169 struct timespec ts;
2170 siginfo_t info;
2171 long timeout = 0;
2172
2173 /* XXX: Don't preclude handling different sized sigset_t's. */
2174 if (sigsetsize != sizeof(sigset_t))
2175 return -EINVAL;
2176
2177 if (copy_from_user(&these, uthese, sizeof(these)))
2178 return -EFAULT;
2179
2180 /*
2181 * Invert the set of allowed signals to get those we
2182 * want to block.
2183 */
2184 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2185 signotset(&these);
2186
2187 if (uts) {
2188 if (copy_from_user(&ts, uts, sizeof(ts)))
2189 return -EFAULT;
2190 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2191 || ts.tv_sec < 0)
2192 return -EINVAL;
2193 }
2194
2195 spin_lock_irq(&current->sighand->siglock);
2196 sig = dequeue_signal(current, &these, &info);
2197 if (!sig) {
2198 timeout = MAX_SCHEDULE_TIMEOUT;
2199 if (uts)
2200 timeout = (timespec_to_jiffies(&ts)
2201 + (ts.tv_sec || ts.tv_nsec));
2202
2203 if (timeout) {
2204 /* None ready -- temporarily unblock those we're
2205 * interested while we are sleeping in so that we'll
2206 * be awakened when they arrive. */
2207 current->real_blocked = current->blocked;
2208 sigandsets(&current->blocked, &current->blocked, &these);
2209 recalc_sigpending();
2210 spin_unlock_irq(&current->sighand->siglock);
2211
2212 timeout = schedule_timeout_interruptible(timeout);
2213
2214 spin_lock_irq(&current->sighand->siglock);
2215 sig = dequeue_signal(current, &these, &info);
2216 current->blocked = current->real_blocked;
2217 siginitset(&current->real_blocked, 0);
2218 recalc_sigpending();
2219 }
2220 }
2221 spin_unlock_irq(&current->sighand->siglock);
2222
2223 if (sig) {
2224 ret = sig;
2225 if (uinfo) {
2226 if (copy_siginfo_to_user(uinfo, &info))
2227 ret = -EFAULT;
2228 }
2229 } else {
2230 ret = -EAGAIN;
2231 if (timeout)
2232 ret = -EINTR;
2233 }
2234
2235 return ret;
2236 }
2237
2238 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2239 {
2240 struct siginfo info;
2241
2242 info.si_signo = sig;
2243 info.si_errno = 0;
2244 info.si_code = SI_USER;
2245 info.si_pid = task_tgid_vnr(current);
2246 info.si_uid = current_uid();
2247
2248 return kill_something_info(sig, &info, pid);
2249 }
2250
2251 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2252 {
2253 int error;
2254 struct siginfo info;
2255 struct task_struct *p;
2256 unsigned long flags;
2257
2258 error = -ESRCH;
2259 info.si_signo = sig;
2260 info.si_errno = 0;
2261 info.si_code = SI_TKILL;
2262 info.si_pid = task_tgid_vnr(current);
2263 info.si_uid = current_uid();
2264
2265 rcu_read_lock();
2266 p = find_task_by_vpid(pid);
2267 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2268 error = check_kill_permission(sig, &info, p);
2269 /*
2270 * The null signal is a permissions and process existence
2271 * probe. No signal is actually delivered.
2272 *
2273 * If lock_task_sighand() fails we pretend the task dies
2274 * after receiving the signal. The window is tiny, and the
2275 * signal is private anyway.
2276 */
2277 if (!error && sig && lock_task_sighand(p, &flags)) {
2278 error = specific_send_sig_info(sig, &info, p);
2279 unlock_task_sighand(p, &flags);
2280 }
2281 }
2282 rcu_read_unlock();
2283
2284 return error;
2285 }
2286
2287 /**
2288 * sys_tgkill - send signal to one specific thread
2289 * @tgid: the thread group ID of the thread
2290 * @pid: the PID of the thread
2291 * @sig: signal to be sent
2292 *
2293 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2294 * exists but it's not belonging to the target process anymore. This
2295 * method solves the problem of threads exiting and PIDs getting reused.
2296 */
2297 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2298 {
2299 /* This is only valid for single tasks */
2300 if (pid <= 0 || tgid <= 0)
2301 return -EINVAL;
2302
2303 return do_tkill(tgid, pid, sig);
2304 }
2305
2306 /*
2307 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2308 */
2309 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2310 {
2311 /* This is only valid for single tasks */
2312 if (pid <= 0)
2313 return -EINVAL;
2314
2315 return do_tkill(0, pid, sig);
2316 }
2317
2318 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2319 siginfo_t __user *, uinfo)
2320 {
2321 siginfo_t info;
2322
2323 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2324 return -EFAULT;
2325
2326 /* Not even root can pretend to send signals from the kernel.
2327 Nor can they impersonate a kill(), which adds source info. */
2328 if (info.si_code >= 0)
2329 return -EPERM;
2330 info.si_signo = sig;
2331
2332 /* POSIX.1b doesn't mention process groups. */
2333 return kill_proc_info(sig, &info, pid);
2334 }
2335
2336 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2337 {
2338 struct task_struct *t = current;
2339 struct k_sigaction *k;
2340 sigset_t mask;
2341
2342 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2343 return -EINVAL;
2344
2345 k = &t->sighand->action[sig-1];
2346
2347 spin_lock_irq(&current->sighand->siglock);
2348 if (oact)
2349 *oact = *k;
2350
2351 if (act) {
2352 sigdelsetmask(&act->sa.sa_mask,
2353 sigmask(SIGKILL) | sigmask(SIGSTOP));
2354 *k = *act;
2355 /*
2356 * POSIX 3.3.1.3:
2357 * "Setting a signal action to SIG_IGN for a signal that is
2358 * pending shall cause the pending signal to be discarded,
2359 * whether or not it is blocked."
2360 *
2361 * "Setting a signal action to SIG_DFL for a signal that is
2362 * pending and whose default action is to ignore the signal
2363 * (for example, SIGCHLD), shall cause the pending signal to
2364 * be discarded, whether or not it is blocked"
2365 */
2366 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2367 sigemptyset(&mask);
2368 sigaddset(&mask, sig);
2369 rm_from_queue_full(&mask, &t->signal->shared_pending);
2370 do {
2371 rm_from_queue_full(&mask, &t->pending);
2372 t = next_thread(t);
2373 } while (t != current);
2374 }
2375 }
2376
2377 spin_unlock_irq(&current->sighand->siglock);
2378 return 0;
2379 }
2380
2381 int
2382 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2383 {
2384 stack_t oss;
2385 int error;
2386
2387 if (uoss) {
2388 oss.ss_sp = (void __user *) current->sas_ss_sp;
2389 oss.ss_size = current->sas_ss_size;
2390 oss.ss_flags = sas_ss_flags(sp);
2391 }
2392
2393 if (uss) {
2394 void __user *ss_sp;
2395 size_t ss_size;
2396 int ss_flags;
2397
2398 error = -EFAULT;
2399 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2400 || __get_user(ss_sp, &uss->ss_sp)
2401 || __get_user(ss_flags, &uss->ss_flags)
2402 || __get_user(ss_size, &uss->ss_size))
2403 goto out;
2404
2405 error = -EPERM;
2406 if (on_sig_stack(sp))
2407 goto out;
2408
2409 error = -EINVAL;
2410 /*
2411 *
2412 * Note - this code used to test ss_flags incorrectly
2413 * old code may have been written using ss_flags==0
2414 * to mean ss_flags==SS_ONSTACK (as this was the only
2415 * way that worked) - this fix preserves that older
2416 * mechanism
2417 */
2418 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2419 goto out;
2420
2421 if (ss_flags == SS_DISABLE) {
2422 ss_size = 0;
2423 ss_sp = NULL;
2424 } else {
2425 error = -ENOMEM;
2426 if (ss_size < MINSIGSTKSZ)
2427 goto out;
2428 }
2429
2430 current->sas_ss_sp = (unsigned long) ss_sp;
2431 current->sas_ss_size = ss_size;
2432 }
2433
2434 if (uoss) {
2435 error = -EFAULT;
2436 if (copy_to_user(uoss, &oss, sizeof(oss)))
2437 goto out;
2438 }
2439
2440 error = 0;
2441 out:
2442 return error;
2443 }
2444
2445 #ifdef __ARCH_WANT_SYS_SIGPENDING
2446
2447 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2448 {
2449 return do_sigpending(set, sizeof(*set));
2450 }
2451
2452 #endif
2453
2454 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2455 /* Some platforms have their own version with special arguments others
2456 support only sys_rt_sigprocmask. */
2457
2458 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2459 old_sigset_t __user *, oset)
2460 {
2461 int error;
2462 old_sigset_t old_set, new_set;
2463
2464 if (set) {
2465 error = -EFAULT;
2466 if (copy_from_user(&new_set, set, sizeof(*set)))
2467 goto out;
2468 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2469
2470 spin_lock_irq(&current->sighand->siglock);
2471 old_set = current->blocked.sig[0];
2472
2473 error = 0;
2474 switch (how) {
2475 default:
2476 error = -EINVAL;
2477 break;
2478 case SIG_BLOCK:
2479 sigaddsetmask(&current->blocked, new_set);
2480 break;
2481 case SIG_UNBLOCK:
2482 sigdelsetmask(&current->blocked, new_set);
2483 break;
2484 case SIG_SETMASK:
2485 current->blocked.sig[0] = new_set;
2486 break;
2487 }
2488
2489 recalc_sigpending();
2490 spin_unlock_irq(&current->sighand->siglock);
2491 if (error)
2492 goto out;
2493 if (oset)
2494 goto set_old;
2495 } else if (oset) {
2496 old_set = current->blocked.sig[0];
2497 set_old:
2498 error = -EFAULT;
2499 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2500 goto out;
2501 }
2502 error = 0;
2503 out:
2504 return error;
2505 }
2506 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2507
2508 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2509 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2510 const struct sigaction __user *, act,
2511 struct sigaction __user *, oact,
2512 size_t, sigsetsize)
2513 {
2514 struct k_sigaction new_sa, old_sa;
2515 int ret = -EINVAL;
2516
2517 /* XXX: Don't preclude handling different sized sigset_t's. */
2518 if (sigsetsize != sizeof(sigset_t))
2519 goto out;
2520
2521 if (act) {
2522 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2523 return -EFAULT;
2524 }
2525
2526 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2527
2528 if (!ret && oact) {
2529 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2530 return -EFAULT;
2531 }
2532 out:
2533 return ret;
2534 }
2535 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2536
2537 #ifdef __ARCH_WANT_SYS_SGETMASK
2538
2539 /*
2540 * For backwards compatibility. Functionality superseded by sigprocmask.
2541 */
2542 SYSCALL_DEFINE0(sgetmask)
2543 {
2544 /* SMP safe */
2545 return current->blocked.sig[0];
2546 }
2547
2548 SYSCALL_DEFINE1(ssetmask, int, newmask)
2549 {
2550 int old;
2551
2552 spin_lock_irq(&current->sighand->siglock);
2553 old = current->blocked.sig[0];
2554
2555 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2556 sigmask(SIGSTOP)));
2557 recalc_sigpending();
2558 spin_unlock_irq(&current->sighand->siglock);
2559
2560 return old;
2561 }
2562 #endif /* __ARCH_WANT_SGETMASK */
2563
2564 #ifdef __ARCH_WANT_SYS_SIGNAL
2565 /*
2566 * For backwards compatibility. Functionality superseded by sigaction.
2567 */
2568 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2569 {
2570 struct k_sigaction new_sa, old_sa;
2571 int ret;
2572
2573 new_sa.sa.sa_handler = handler;
2574 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2575 sigemptyset(&new_sa.sa.sa_mask);
2576
2577 ret = do_sigaction(sig, &new_sa, &old_sa);
2578
2579 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2580 }
2581 #endif /* __ARCH_WANT_SYS_SIGNAL */
2582
2583 #ifdef __ARCH_WANT_SYS_PAUSE
2584
2585 SYSCALL_DEFINE0(pause)
2586 {
2587 current->state = TASK_INTERRUPTIBLE;
2588 schedule();
2589 return -ERESTARTNOHAND;
2590 }
2591
2592 #endif
2593
2594 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2595 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2596 {
2597 sigset_t newset;
2598
2599 /* XXX: Don't preclude handling different sized sigset_t's. */
2600 if (sigsetsize != sizeof(sigset_t))
2601 return -EINVAL;
2602
2603 if (copy_from_user(&newset, unewset, sizeof(newset)))
2604 return -EFAULT;
2605 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2606
2607 spin_lock_irq(&current->sighand->siglock);
2608 current->saved_sigmask = current->blocked;
2609 current->blocked = newset;
2610 recalc_sigpending();
2611 spin_unlock_irq(&current->sighand->siglock);
2612
2613 current->state = TASK_INTERRUPTIBLE;
2614 schedule();
2615 set_restore_sigmask();
2616 return -ERESTARTNOHAND;
2617 }
2618 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2619
2620 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2621 {
2622 return NULL;
2623 }
2624
2625 void __init signals_init(void)
2626 {
2627 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2628 }
This page took 0.084863 seconds and 5 git commands to generate.