fc1cb03c241ca38face790a9c0919eba3af614d0
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567 static void handle_stop_signal(int sig, struct task_struct *p)
568 {
569 struct signal_struct *signal = p->signal;
570 struct task_struct *t;
571
572 if (signal->flags & SIGNAL_GROUP_EXIT)
573 /*
574 * The process is in the middle of dying already.
575 */
576 return;
577
578 if (sig_kernel_stop(sig)) {
579 /*
580 * This is a stop signal. Remove SIGCONT from all queues.
581 */
582 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
583 t = p;
584 do {
585 rm_from_queue(sigmask(SIGCONT), &t->pending);
586 } while_each_thread(p, t);
587 } else if (sig == SIGCONT) {
588 unsigned int why;
589 /*
590 * Remove all stop signals from all queues,
591 * and wake all threads.
592 */
593 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
594 t = p;
595 do {
596 unsigned int state;
597 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
598 /*
599 * If there is a handler for SIGCONT, we must make
600 * sure that no thread returns to user mode before
601 * we post the signal, in case it was the only
602 * thread eligible to run the signal handler--then
603 * it must not do anything between resuming and
604 * running the handler. With the TIF_SIGPENDING
605 * flag set, the thread will pause and acquire the
606 * siglock that we hold now and until we've queued
607 * the pending signal.
608 *
609 * Wake up the stopped thread _after_ setting
610 * TIF_SIGPENDING
611 */
612 state = __TASK_STOPPED;
613 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615 state |= TASK_INTERRUPTIBLE;
616 }
617 wake_up_state(t, state);
618 } while_each_thread(p, t);
619
620 /*
621 * Notify the parent with CLD_CONTINUED if we were stopped.
622 *
623 * If we were in the middle of a group stop, we pretend it
624 * was already finished, and then continued. Since SIGCHLD
625 * doesn't queue we report only CLD_STOPPED, as if the next
626 * CLD_CONTINUED was dropped.
627 */
628 why = 0;
629 if (signal->flags & SIGNAL_STOP_STOPPED)
630 why |= SIGNAL_CLD_CONTINUED;
631 else if (signal->group_stop_count)
632 why |= SIGNAL_CLD_STOPPED;
633
634 if (why) {
635 signal->flags = why | SIGNAL_STOP_CONTINUED;
636 signal->group_stop_count = 0;
637 signal->group_exit_code = 0;
638 } else {
639 /*
640 * We are not stopped, but there could be a stop
641 * signal in the middle of being processed after
642 * being removed from the queue. Clear that too.
643 */
644 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
645 }
646 } else if (sig == SIGKILL) {
647 /*
648 * Make sure that any pending stop signal already dequeued
649 * is undone by the wakeup for SIGKILL.
650 */
651 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
652 }
653 }
654
655 /*
656 * Test if P wants to take SIG. After we've checked all threads with this,
657 * it's equivalent to finding no threads not blocking SIG. Any threads not
658 * blocking SIG were ruled out because they are not running and already
659 * have pending signals. Such threads will dequeue from the shared queue
660 * as soon as they're available, so putting the signal on the shared queue
661 * will be equivalent to sending it to one such thread.
662 */
663 static inline int wants_signal(int sig, struct task_struct *p)
664 {
665 if (sigismember(&p->blocked, sig))
666 return 0;
667 if (p->flags & PF_EXITING)
668 return 0;
669 if (sig == SIGKILL)
670 return 1;
671 if (task_is_stopped_or_traced(p))
672 return 0;
673 return task_curr(p) || !signal_pending(p);
674 }
675
676 static void complete_signal(int sig, struct task_struct *p, int group)
677 {
678 struct signal_struct *signal = p->signal;
679 struct task_struct *t;
680
681 /*
682 * Now find a thread we can wake up to take the signal off the queue.
683 *
684 * If the main thread wants the signal, it gets first crack.
685 * Probably the least surprising to the average bear.
686 */
687 if (wants_signal(sig, p))
688 t = p;
689 else if (!group || thread_group_empty(p))
690 /*
691 * There is just one thread and it does not need to be woken.
692 * It will dequeue unblocked signals before it runs again.
693 */
694 return;
695 else {
696 /*
697 * Otherwise try to find a suitable thread.
698 */
699 t = signal->curr_target;
700 while (!wants_signal(sig, t)) {
701 t = next_thread(t);
702 if (t == signal->curr_target)
703 /*
704 * No thread needs to be woken.
705 * Any eligible threads will see
706 * the signal in the queue soon.
707 */
708 return;
709 }
710 signal->curr_target = t;
711 }
712
713 /*
714 * Found a killable thread. If the signal will be fatal,
715 * then start taking the whole group down immediately.
716 */
717 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
718 !sigismember(&t->real_blocked, sig) &&
719 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
720 /*
721 * This signal will be fatal to the whole group.
722 */
723 if (!sig_kernel_coredump(sig)) {
724 /*
725 * Start a group exit and wake everybody up.
726 * This way we don't have other threads
727 * running and doing things after a slower
728 * thread has the fatal signal pending.
729 */
730 signal->flags = SIGNAL_GROUP_EXIT;
731 signal->group_exit_code = sig;
732 signal->group_stop_count = 0;
733 t = p;
734 do {
735 sigaddset(&t->pending.signal, SIGKILL);
736 signal_wake_up(t, 1);
737 } while_each_thread(p, t);
738 return;
739 }
740 }
741
742 /*
743 * The signal is already in the shared-pending queue.
744 * Tell the chosen thread to wake up and dequeue it.
745 */
746 signal_wake_up(t, sig == SIGKILL);
747 return;
748 }
749
750 static inline int legacy_queue(struct sigpending *signals, int sig)
751 {
752 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
753 }
754
755 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
756 int group)
757 {
758 struct sigpending *pending;
759 struct sigqueue *q;
760
761 assert_spin_locked(&t->sighand->siglock);
762 handle_stop_signal(sig, t);
763
764 pending = group ? &t->signal->shared_pending : &t->pending;
765 /*
766 * Short-circuit ignored signals and support queuing
767 * exactly one non-rt signal, so that we can get more
768 * detailed information about the cause of the signal.
769 */
770 if (sig_ignored(t, sig) || legacy_queue(pending, sig))
771 return 0;
772
773 /*
774 * Deliver the signal to listening signalfds. This must be called
775 * with the sighand lock held.
776 */
777 signalfd_notify(t, sig);
778
779 /*
780 * fast-pathed signals for kernel-internal things like SIGSTOP
781 * or SIGKILL.
782 */
783 if (info == SEND_SIG_FORCED)
784 goto out_set;
785
786 /* Real-time signals must be queued if sent by sigqueue, or
787 some other real-time mechanism. It is implementation
788 defined whether kill() does so. We attempt to do so, on
789 the principle of least surprise, but since kill is not
790 allowed to fail with EAGAIN when low on memory we just
791 make sure at least one signal gets delivered and don't
792 pass on the info struct. */
793
794 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
795 (is_si_special(info) ||
796 info->si_code >= 0)));
797 if (q) {
798 list_add_tail(&q->list, &pending->list);
799 switch ((unsigned long) info) {
800 case (unsigned long) SEND_SIG_NOINFO:
801 q->info.si_signo = sig;
802 q->info.si_errno = 0;
803 q->info.si_code = SI_USER;
804 q->info.si_pid = task_pid_vnr(current);
805 q->info.si_uid = current->uid;
806 break;
807 case (unsigned long) SEND_SIG_PRIV:
808 q->info.si_signo = sig;
809 q->info.si_errno = 0;
810 q->info.si_code = SI_KERNEL;
811 q->info.si_pid = 0;
812 q->info.si_uid = 0;
813 break;
814 default:
815 copy_siginfo(&q->info, info);
816 break;
817 }
818 } else if (!is_si_special(info)) {
819 if (sig >= SIGRTMIN && info->si_code != SI_USER)
820 /*
821 * Queue overflow, abort. We may abort if the signal was rt
822 * and sent by user using something other than kill().
823 */
824 return -EAGAIN;
825 }
826
827 out_set:
828 sigaddset(&pending->signal, sig);
829 return 1;
830 }
831
832 int print_fatal_signals;
833
834 static void print_fatal_signal(struct pt_regs *regs, int signr)
835 {
836 printk("%s/%d: potentially unexpected fatal signal %d.\n",
837 current->comm, task_pid_nr(current), signr);
838
839 #if defined(__i386__) && !defined(__arch_um__)
840 printk("code at %08lx: ", regs->ip);
841 {
842 int i;
843 for (i = 0; i < 16; i++) {
844 unsigned char insn;
845
846 __get_user(insn, (unsigned char *)(regs->ip + i));
847 printk("%02x ", insn);
848 }
849 }
850 #endif
851 printk("\n");
852 show_regs(regs);
853 }
854
855 static int __init setup_print_fatal_signals(char *str)
856 {
857 get_option (&str, &print_fatal_signals);
858
859 return 1;
860 }
861
862 __setup("print-fatal-signals=", setup_print_fatal_signals);
863
864 static int
865 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
866 {
867 int ret;
868
869 ret = send_signal(sig, info, t, 0);
870 if (ret <= 0)
871 return ret;
872
873 complete_signal(sig, t, 0);
874 return 0;
875 }
876
877 /*
878 * Force a signal that the process can't ignore: if necessary
879 * we unblock the signal and change any SIG_IGN to SIG_DFL.
880 *
881 * Note: If we unblock the signal, we always reset it to SIG_DFL,
882 * since we do not want to have a signal handler that was blocked
883 * be invoked when user space had explicitly blocked it.
884 *
885 * We don't want to have recursive SIGSEGV's etc, for example.
886 */
887 int
888 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
889 {
890 unsigned long int flags;
891 int ret, blocked, ignored;
892 struct k_sigaction *action;
893
894 spin_lock_irqsave(&t->sighand->siglock, flags);
895 action = &t->sighand->action[sig-1];
896 ignored = action->sa.sa_handler == SIG_IGN;
897 blocked = sigismember(&t->blocked, sig);
898 if (blocked || ignored) {
899 action->sa.sa_handler = SIG_DFL;
900 if (blocked) {
901 sigdelset(&t->blocked, sig);
902 recalc_sigpending_and_wake(t);
903 }
904 }
905 ret = specific_send_sig_info(sig, info, t);
906 spin_unlock_irqrestore(&t->sighand->siglock, flags);
907
908 return ret;
909 }
910
911 void
912 force_sig_specific(int sig, struct task_struct *t)
913 {
914 force_sig_info(sig, SEND_SIG_FORCED, t);
915 }
916
917 int
918 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
919 {
920 int ret;
921
922 /*
923 * Put this signal on the shared-pending queue, or fail with EAGAIN.
924 * We always use the shared queue for process-wide signals,
925 * to avoid several races.
926 */
927 ret = send_signal(sig, info, p, 1);
928 if (ret <= 0)
929 return ret;
930
931 complete_signal(sig, p, 1);
932 return 0;
933 }
934
935 /*
936 * Nuke all other threads in the group.
937 */
938 void zap_other_threads(struct task_struct *p)
939 {
940 struct task_struct *t;
941
942 p->signal->group_stop_count = 0;
943
944 for (t = next_thread(p); t != p; t = next_thread(t)) {
945 /*
946 * Don't bother with already dead threads
947 */
948 if (t->exit_state)
949 continue;
950
951 /* SIGKILL will be handled before any pending SIGSTOP */
952 sigaddset(&t->pending.signal, SIGKILL);
953 signal_wake_up(t, 1);
954 }
955 }
956
957 int __fatal_signal_pending(struct task_struct *tsk)
958 {
959 return sigismember(&tsk->pending.signal, SIGKILL);
960 }
961 EXPORT_SYMBOL(__fatal_signal_pending);
962
963 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
964 {
965 struct sighand_struct *sighand;
966
967 rcu_read_lock();
968 for (;;) {
969 sighand = rcu_dereference(tsk->sighand);
970 if (unlikely(sighand == NULL))
971 break;
972
973 spin_lock_irqsave(&sighand->siglock, *flags);
974 if (likely(sighand == tsk->sighand))
975 break;
976 spin_unlock_irqrestore(&sighand->siglock, *flags);
977 }
978 rcu_read_unlock();
979
980 return sighand;
981 }
982
983 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
984 {
985 unsigned long flags;
986 int ret;
987
988 ret = check_kill_permission(sig, info, p);
989
990 if (!ret && sig) {
991 ret = -ESRCH;
992 if (lock_task_sighand(p, &flags)) {
993 ret = __group_send_sig_info(sig, info, p);
994 unlock_task_sighand(p, &flags);
995 }
996 }
997
998 return ret;
999 }
1000
1001 /*
1002 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1003 * control characters do (^C, ^Z etc)
1004 */
1005
1006 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1007 {
1008 struct task_struct *p = NULL;
1009 int retval, success;
1010
1011 success = 0;
1012 retval = -ESRCH;
1013 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1014 int err = group_send_sig_info(sig, info, p);
1015 success |= !err;
1016 retval = err;
1017 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1018 return success ? 0 : retval;
1019 }
1020
1021 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1022 {
1023 int error = -ESRCH;
1024 struct task_struct *p;
1025
1026 rcu_read_lock();
1027 retry:
1028 p = pid_task(pid, PIDTYPE_PID);
1029 if (p) {
1030 error = group_send_sig_info(sig, info, p);
1031 if (unlikely(error == -ESRCH))
1032 /*
1033 * The task was unhashed in between, try again.
1034 * If it is dead, pid_task() will return NULL,
1035 * if we race with de_thread() it will find the
1036 * new leader.
1037 */
1038 goto retry;
1039 }
1040 rcu_read_unlock();
1041
1042 return error;
1043 }
1044
1045 int
1046 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1047 {
1048 int error;
1049 rcu_read_lock();
1050 error = kill_pid_info(sig, info, find_vpid(pid));
1051 rcu_read_unlock();
1052 return error;
1053 }
1054
1055 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1056 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1057 uid_t uid, uid_t euid, u32 secid)
1058 {
1059 int ret = -EINVAL;
1060 struct task_struct *p;
1061
1062 if (!valid_signal(sig))
1063 return ret;
1064
1065 read_lock(&tasklist_lock);
1066 p = pid_task(pid, PIDTYPE_PID);
1067 if (!p) {
1068 ret = -ESRCH;
1069 goto out_unlock;
1070 }
1071 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1072 && (euid != p->suid) && (euid != p->uid)
1073 && (uid != p->suid) && (uid != p->uid)) {
1074 ret = -EPERM;
1075 goto out_unlock;
1076 }
1077 ret = security_task_kill(p, info, sig, secid);
1078 if (ret)
1079 goto out_unlock;
1080 if (sig && p->sighand) {
1081 unsigned long flags;
1082 spin_lock_irqsave(&p->sighand->siglock, flags);
1083 ret = __group_send_sig_info(sig, info, p);
1084 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1085 }
1086 out_unlock:
1087 read_unlock(&tasklist_lock);
1088 return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1091
1092 /*
1093 * kill_something_info() interprets pid in interesting ways just like kill(2).
1094 *
1095 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1096 * is probably wrong. Should make it like BSD or SYSV.
1097 */
1098
1099 static int kill_something_info(int sig, struct siginfo *info, int pid)
1100 {
1101 int ret;
1102
1103 if (pid > 0) {
1104 rcu_read_lock();
1105 ret = kill_pid_info(sig, info, find_vpid(pid));
1106 rcu_read_unlock();
1107 return ret;
1108 }
1109
1110 read_lock(&tasklist_lock);
1111 if (pid != -1) {
1112 ret = __kill_pgrp_info(sig, info,
1113 pid ? find_vpid(-pid) : task_pgrp(current));
1114 } else {
1115 int retval = 0, count = 0;
1116 struct task_struct * p;
1117
1118 for_each_process(p) {
1119 if (p->pid > 1 && !same_thread_group(p, current)) {
1120 int err = group_send_sig_info(sig, info, p);
1121 ++count;
1122 if (err != -EPERM)
1123 retval = err;
1124 }
1125 }
1126 ret = count ? retval : -ESRCH;
1127 }
1128 read_unlock(&tasklist_lock);
1129
1130 return ret;
1131 }
1132
1133 /*
1134 * These are for backward compatibility with the rest of the kernel source.
1135 */
1136
1137 /*
1138 * The caller must ensure the task can't exit.
1139 */
1140 int
1141 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1142 {
1143 int ret;
1144 unsigned long flags;
1145
1146 /*
1147 * Make sure legacy kernel users don't send in bad values
1148 * (normal paths check this in check_kill_permission).
1149 */
1150 if (!valid_signal(sig))
1151 return -EINVAL;
1152
1153 spin_lock_irqsave(&p->sighand->siglock, flags);
1154 ret = specific_send_sig_info(sig, info, p);
1155 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1156 return ret;
1157 }
1158
1159 #define __si_special(priv) \
1160 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1161
1162 int
1163 send_sig(int sig, struct task_struct *p, int priv)
1164 {
1165 return send_sig_info(sig, __si_special(priv), p);
1166 }
1167
1168 void
1169 force_sig(int sig, struct task_struct *p)
1170 {
1171 force_sig_info(sig, SEND_SIG_PRIV, p);
1172 }
1173
1174 /*
1175 * When things go south during signal handling, we
1176 * will force a SIGSEGV. And if the signal that caused
1177 * the problem was already a SIGSEGV, we'll want to
1178 * make sure we don't even try to deliver the signal..
1179 */
1180 int
1181 force_sigsegv(int sig, struct task_struct *p)
1182 {
1183 if (sig == SIGSEGV) {
1184 unsigned long flags;
1185 spin_lock_irqsave(&p->sighand->siglock, flags);
1186 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1187 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1188 }
1189 force_sig(SIGSEGV, p);
1190 return 0;
1191 }
1192
1193 int kill_pgrp(struct pid *pid, int sig, int priv)
1194 {
1195 int ret;
1196
1197 read_lock(&tasklist_lock);
1198 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1199 read_unlock(&tasklist_lock);
1200
1201 return ret;
1202 }
1203 EXPORT_SYMBOL(kill_pgrp);
1204
1205 int kill_pid(struct pid *pid, int sig, int priv)
1206 {
1207 return kill_pid_info(sig, __si_special(priv), pid);
1208 }
1209 EXPORT_SYMBOL(kill_pid);
1210
1211 int
1212 kill_proc(pid_t pid, int sig, int priv)
1213 {
1214 int ret;
1215
1216 rcu_read_lock();
1217 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1218 rcu_read_unlock();
1219 return ret;
1220 }
1221
1222 /*
1223 * These functions support sending signals using preallocated sigqueue
1224 * structures. This is needed "because realtime applications cannot
1225 * afford to lose notifications of asynchronous events, like timer
1226 * expirations or I/O completions". In the case of Posix Timers
1227 * we allocate the sigqueue structure from the timer_create. If this
1228 * allocation fails we are able to report the failure to the application
1229 * with an EAGAIN error.
1230 */
1231
1232 struct sigqueue *sigqueue_alloc(void)
1233 {
1234 struct sigqueue *q;
1235
1236 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1237 q->flags |= SIGQUEUE_PREALLOC;
1238 return(q);
1239 }
1240
1241 void sigqueue_free(struct sigqueue *q)
1242 {
1243 unsigned long flags;
1244 spinlock_t *lock = &current->sighand->siglock;
1245
1246 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1247 /*
1248 * If the signal is still pending remove it from the
1249 * pending queue. We must hold ->siglock while testing
1250 * q->list to serialize with collect_signal().
1251 */
1252 spin_lock_irqsave(lock, flags);
1253 if (!list_empty(&q->list))
1254 list_del_init(&q->list);
1255 spin_unlock_irqrestore(lock, flags);
1256
1257 q->flags &= ~SIGQUEUE_PREALLOC;
1258 __sigqueue_free(q);
1259 }
1260
1261 static int do_send_sigqueue(int sig, struct sigqueue *q, struct task_struct *t,
1262 int group)
1263 {
1264 struct sigpending *pending;
1265
1266 handle_stop_signal(sig, t);
1267
1268 if (unlikely(!list_empty(&q->list))) {
1269 /*
1270 * If an SI_TIMER entry is already queue just increment
1271 * the overrun count.
1272 */
1273
1274 BUG_ON(q->info.si_code != SI_TIMER);
1275 q->info.si_overrun++;
1276 return 0;
1277 }
1278
1279 if (sig_ignored(t, sig))
1280 return 1;
1281
1282 signalfd_notify(t, sig);
1283 pending = group ? &t->signal->shared_pending : &t->pending;
1284 list_add_tail(&q->list, &pending->list);
1285 sigaddset(&pending->signal, sig);
1286
1287 return 0;
1288 }
1289
1290 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1291 {
1292 unsigned long flags;
1293 int ret = -1;
1294
1295 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1296
1297 /*
1298 * The rcu based delayed sighand destroy makes it possible to
1299 * run this without tasklist lock held. The task struct itself
1300 * cannot go away as create_timer did get_task_struct().
1301 *
1302 * We return -1, when the task is marked exiting, so
1303 * posix_timer_event can redirect it to the group leader
1304 */
1305 if (!likely(lock_task_sighand(p, &flags)))
1306 goto out_err;
1307
1308 ret = do_send_sigqueue(sig, q, p, 0);
1309
1310 complete_signal(sig, p, 0);
1311
1312 unlock_task_sighand(p, &flags);
1313 out_err:
1314 return ret;
1315 }
1316
1317 int
1318 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1319 {
1320 unsigned long flags;
1321 int ret;
1322
1323 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1324
1325 /* Since it_lock is held, p->sighand cannot be NULL. */
1326 spin_lock_irqsave(&p->sighand->siglock, flags);
1327
1328 ret = do_send_sigqueue(sig, q, p, 1);
1329
1330 complete_signal(sig, p, 1);
1331
1332 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1333
1334 return ret;
1335 }
1336
1337 /*
1338 * Wake up any threads in the parent blocked in wait* syscalls.
1339 */
1340 static inline void __wake_up_parent(struct task_struct *p,
1341 struct task_struct *parent)
1342 {
1343 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1344 }
1345
1346 /*
1347 * Let a parent know about the death of a child.
1348 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1349 */
1350
1351 void do_notify_parent(struct task_struct *tsk, int sig)
1352 {
1353 struct siginfo info;
1354 unsigned long flags;
1355 struct sighand_struct *psig;
1356
1357 BUG_ON(sig == -1);
1358
1359 /* do_notify_parent_cldstop should have been called instead. */
1360 BUG_ON(task_is_stopped_or_traced(tsk));
1361
1362 BUG_ON(!tsk->ptrace &&
1363 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1364
1365 info.si_signo = sig;
1366 info.si_errno = 0;
1367 /*
1368 * we are under tasklist_lock here so our parent is tied to
1369 * us and cannot exit and release its namespace.
1370 *
1371 * the only it can is to switch its nsproxy with sys_unshare,
1372 * bu uncharing pid namespaces is not allowed, so we'll always
1373 * see relevant namespace
1374 *
1375 * write_lock() currently calls preempt_disable() which is the
1376 * same as rcu_read_lock(), but according to Oleg, this is not
1377 * correct to rely on this
1378 */
1379 rcu_read_lock();
1380 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1381 rcu_read_unlock();
1382
1383 info.si_uid = tsk->uid;
1384
1385 /* FIXME: find out whether or not this is supposed to be c*time. */
1386 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1387 tsk->signal->utime));
1388 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1389 tsk->signal->stime));
1390
1391 info.si_status = tsk->exit_code & 0x7f;
1392 if (tsk->exit_code & 0x80)
1393 info.si_code = CLD_DUMPED;
1394 else if (tsk->exit_code & 0x7f)
1395 info.si_code = CLD_KILLED;
1396 else {
1397 info.si_code = CLD_EXITED;
1398 info.si_status = tsk->exit_code >> 8;
1399 }
1400
1401 psig = tsk->parent->sighand;
1402 spin_lock_irqsave(&psig->siglock, flags);
1403 if (!tsk->ptrace && sig == SIGCHLD &&
1404 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1405 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1406 /*
1407 * We are exiting and our parent doesn't care. POSIX.1
1408 * defines special semantics for setting SIGCHLD to SIG_IGN
1409 * or setting the SA_NOCLDWAIT flag: we should be reaped
1410 * automatically and not left for our parent's wait4 call.
1411 * Rather than having the parent do it as a magic kind of
1412 * signal handler, we just set this to tell do_exit that we
1413 * can be cleaned up without becoming a zombie. Note that
1414 * we still call __wake_up_parent in this case, because a
1415 * blocked sys_wait4 might now return -ECHILD.
1416 *
1417 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1418 * is implementation-defined: we do (if you don't want
1419 * it, just use SIG_IGN instead).
1420 */
1421 tsk->exit_signal = -1;
1422 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1423 sig = 0;
1424 }
1425 if (valid_signal(sig) && sig > 0)
1426 __group_send_sig_info(sig, &info, tsk->parent);
1427 __wake_up_parent(tsk, tsk->parent);
1428 spin_unlock_irqrestore(&psig->siglock, flags);
1429 }
1430
1431 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1432 {
1433 struct siginfo info;
1434 unsigned long flags;
1435 struct task_struct *parent;
1436 struct sighand_struct *sighand;
1437
1438 if (tsk->ptrace & PT_PTRACED)
1439 parent = tsk->parent;
1440 else {
1441 tsk = tsk->group_leader;
1442 parent = tsk->real_parent;
1443 }
1444
1445 info.si_signo = SIGCHLD;
1446 info.si_errno = 0;
1447 /*
1448 * see comment in do_notify_parent() abot the following 3 lines
1449 */
1450 rcu_read_lock();
1451 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1452 rcu_read_unlock();
1453
1454 info.si_uid = tsk->uid;
1455
1456 /* FIXME: find out whether or not this is supposed to be c*time. */
1457 info.si_utime = cputime_to_jiffies(tsk->utime);
1458 info.si_stime = cputime_to_jiffies(tsk->stime);
1459
1460 info.si_code = why;
1461 switch (why) {
1462 case CLD_CONTINUED:
1463 info.si_status = SIGCONT;
1464 break;
1465 case CLD_STOPPED:
1466 info.si_status = tsk->signal->group_exit_code & 0x7f;
1467 break;
1468 case CLD_TRAPPED:
1469 info.si_status = tsk->exit_code & 0x7f;
1470 break;
1471 default:
1472 BUG();
1473 }
1474
1475 sighand = parent->sighand;
1476 spin_lock_irqsave(&sighand->siglock, flags);
1477 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1478 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1479 __group_send_sig_info(SIGCHLD, &info, parent);
1480 /*
1481 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1482 */
1483 __wake_up_parent(tsk, parent);
1484 spin_unlock_irqrestore(&sighand->siglock, flags);
1485 }
1486
1487 static inline int may_ptrace_stop(void)
1488 {
1489 if (!likely(current->ptrace & PT_PTRACED))
1490 return 0;
1491 /*
1492 * Are we in the middle of do_coredump?
1493 * If so and our tracer is also part of the coredump stopping
1494 * is a deadlock situation, and pointless because our tracer
1495 * is dead so don't allow us to stop.
1496 * If SIGKILL was already sent before the caller unlocked
1497 * ->siglock we must see ->core_waiters != 0. Otherwise it
1498 * is safe to enter schedule().
1499 */
1500 if (unlikely(current->mm->core_waiters) &&
1501 unlikely(current->mm == current->parent->mm))
1502 return 0;
1503
1504 return 1;
1505 }
1506
1507 /*
1508 * Return nonzero if there is a SIGKILL that should be waking us up.
1509 * Called with the siglock held.
1510 */
1511 static int sigkill_pending(struct task_struct *tsk)
1512 {
1513 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1514 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1515 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1516 }
1517
1518 /*
1519 * This must be called with current->sighand->siglock held.
1520 *
1521 * This should be the path for all ptrace stops.
1522 * We always set current->last_siginfo while stopped here.
1523 * That makes it a way to test a stopped process for
1524 * being ptrace-stopped vs being job-control-stopped.
1525 *
1526 * If we actually decide not to stop at all because the tracer
1527 * is gone, we keep current->exit_code unless clear_code.
1528 */
1529 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1530 {
1531 int killed = 0;
1532
1533 if (arch_ptrace_stop_needed(exit_code, info)) {
1534 /*
1535 * The arch code has something special to do before a
1536 * ptrace stop. This is allowed to block, e.g. for faults
1537 * on user stack pages. We can't keep the siglock while
1538 * calling arch_ptrace_stop, so we must release it now.
1539 * To preserve proper semantics, we must do this before
1540 * any signal bookkeeping like checking group_stop_count.
1541 * Meanwhile, a SIGKILL could come in before we retake the
1542 * siglock. That must prevent us from sleeping in TASK_TRACED.
1543 * So after regaining the lock, we must check for SIGKILL.
1544 */
1545 spin_unlock_irq(&current->sighand->siglock);
1546 arch_ptrace_stop(exit_code, info);
1547 spin_lock_irq(&current->sighand->siglock);
1548 killed = sigkill_pending(current);
1549 }
1550
1551 /*
1552 * If there is a group stop in progress,
1553 * we must participate in the bookkeeping.
1554 */
1555 if (current->signal->group_stop_count > 0)
1556 --current->signal->group_stop_count;
1557
1558 current->last_siginfo = info;
1559 current->exit_code = exit_code;
1560
1561 /* Let the debugger run. */
1562 __set_current_state(TASK_TRACED);
1563 spin_unlock_irq(&current->sighand->siglock);
1564 read_lock(&tasklist_lock);
1565 if (!unlikely(killed) && may_ptrace_stop()) {
1566 do_notify_parent_cldstop(current, CLD_TRAPPED);
1567 read_unlock(&tasklist_lock);
1568 schedule();
1569 } else {
1570 /*
1571 * By the time we got the lock, our tracer went away.
1572 * Don't drop the lock yet, another tracer may come.
1573 */
1574 __set_current_state(TASK_RUNNING);
1575 if (clear_code)
1576 current->exit_code = 0;
1577 read_unlock(&tasklist_lock);
1578 }
1579
1580 /*
1581 * While in TASK_TRACED, we were considered "frozen enough".
1582 * Now that we woke up, it's crucial if we're supposed to be
1583 * frozen that we freeze now before running anything substantial.
1584 */
1585 try_to_freeze();
1586
1587 /*
1588 * We are back. Now reacquire the siglock before touching
1589 * last_siginfo, so that we are sure to have synchronized with
1590 * any signal-sending on another CPU that wants to examine it.
1591 */
1592 spin_lock_irq(&current->sighand->siglock);
1593 current->last_siginfo = NULL;
1594
1595 /*
1596 * Queued signals ignored us while we were stopped for tracing.
1597 * So check for any that we should take before resuming user mode.
1598 * This sets TIF_SIGPENDING, but never clears it.
1599 */
1600 recalc_sigpending_tsk(current);
1601 }
1602
1603 void ptrace_notify(int exit_code)
1604 {
1605 siginfo_t info;
1606
1607 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1608
1609 memset(&info, 0, sizeof info);
1610 info.si_signo = SIGTRAP;
1611 info.si_code = exit_code;
1612 info.si_pid = task_pid_vnr(current);
1613 info.si_uid = current->uid;
1614
1615 /* Let the debugger run. */
1616 spin_lock_irq(&current->sighand->siglock);
1617 ptrace_stop(exit_code, 1, &info);
1618 spin_unlock_irq(&current->sighand->siglock);
1619 }
1620
1621 static void
1622 finish_stop(int stop_count)
1623 {
1624 /*
1625 * If there are no other threads in the group, or if there is
1626 * a group stop in progress and we are the last to stop,
1627 * report to the parent. When ptraced, every thread reports itself.
1628 */
1629 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1630 read_lock(&tasklist_lock);
1631 do_notify_parent_cldstop(current, CLD_STOPPED);
1632 read_unlock(&tasklist_lock);
1633 }
1634
1635 do {
1636 schedule();
1637 } while (try_to_freeze());
1638 /*
1639 * Now we don't run again until continued.
1640 */
1641 current->exit_code = 0;
1642 }
1643
1644 /*
1645 * This performs the stopping for SIGSTOP and other stop signals.
1646 * We have to stop all threads in the thread group.
1647 * Returns nonzero if we've actually stopped and released the siglock.
1648 * Returns zero if we didn't stop and still hold the siglock.
1649 */
1650 static int do_signal_stop(int signr)
1651 {
1652 struct signal_struct *sig = current->signal;
1653 int stop_count;
1654
1655 if (sig->group_stop_count > 0) {
1656 /*
1657 * There is a group stop in progress. We don't need to
1658 * start another one.
1659 */
1660 stop_count = --sig->group_stop_count;
1661 } else {
1662 struct task_struct *t;
1663
1664 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1665 unlikely(signal_group_exit(sig)))
1666 return 0;
1667 /*
1668 * There is no group stop already in progress.
1669 * We must initiate one now.
1670 */
1671 sig->group_exit_code = signr;
1672
1673 stop_count = 0;
1674 for (t = next_thread(current); t != current; t = next_thread(t))
1675 /*
1676 * Setting state to TASK_STOPPED for a group
1677 * stop is always done with the siglock held,
1678 * so this check has no races.
1679 */
1680 if (!(t->flags & PF_EXITING) &&
1681 !task_is_stopped_or_traced(t)) {
1682 stop_count++;
1683 signal_wake_up(t, 0);
1684 }
1685 sig->group_stop_count = stop_count;
1686 }
1687
1688 if (stop_count == 0)
1689 sig->flags = SIGNAL_STOP_STOPPED;
1690 current->exit_code = sig->group_exit_code;
1691 __set_current_state(TASK_STOPPED);
1692
1693 spin_unlock_irq(&current->sighand->siglock);
1694 finish_stop(stop_count);
1695 return 1;
1696 }
1697
1698 static int ptrace_signal(int signr, siginfo_t *info,
1699 struct pt_regs *regs, void *cookie)
1700 {
1701 if (!(current->ptrace & PT_PTRACED))
1702 return signr;
1703
1704 ptrace_signal_deliver(regs, cookie);
1705
1706 /* Let the debugger run. */
1707 ptrace_stop(signr, 0, info);
1708
1709 /* We're back. Did the debugger cancel the sig? */
1710 signr = current->exit_code;
1711 if (signr == 0)
1712 return signr;
1713
1714 current->exit_code = 0;
1715
1716 /* Update the siginfo structure if the signal has
1717 changed. If the debugger wanted something
1718 specific in the siginfo structure then it should
1719 have updated *info via PTRACE_SETSIGINFO. */
1720 if (signr != info->si_signo) {
1721 info->si_signo = signr;
1722 info->si_errno = 0;
1723 info->si_code = SI_USER;
1724 info->si_pid = task_pid_vnr(current->parent);
1725 info->si_uid = current->parent->uid;
1726 }
1727
1728 /* If the (new) signal is now blocked, requeue it. */
1729 if (sigismember(&current->blocked, signr)) {
1730 specific_send_sig_info(signr, info, current);
1731 signr = 0;
1732 }
1733
1734 return signr;
1735 }
1736
1737 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1738 struct pt_regs *regs, void *cookie)
1739 {
1740 struct sighand_struct *sighand = current->sighand;
1741 struct signal_struct *signal = current->signal;
1742 int signr;
1743
1744 relock:
1745 /*
1746 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1747 * While in TASK_STOPPED, we were considered "frozen enough".
1748 * Now that we woke up, it's crucial if we're supposed to be
1749 * frozen that we freeze now before running anything substantial.
1750 */
1751 try_to_freeze();
1752
1753 spin_lock_irq(&sighand->siglock);
1754
1755 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1756 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1757 ? CLD_CONTINUED : CLD_STOPPED;
1758 signal->flags &= ~SIGNAL_CLD_MASK;
1759 spin_unlock_irq(&sighand->siglock);
1760
1761 read_lock(&tasklist_lock);
1762 do_notify_parent_cldstop(current->group_leader, why);
1763 read_unlock(&tasklist_lock);
1764 goto relock;
1765 }
1766
1767 for (;;) {
1768 struct k_sigaction *ka;
1769
1770 if (unlikely(signal->group_stop_count > 0) &&
1771 do_signal_stop(0))
1772 goto relock;
1773
1774 signr = dequeue_signal(current, &current->blocked, info);
1775 if (!signr)
1776 break; /* will return 0 */
1777
1778 if (signr != SIGKILL) {
1779 signr = ptrace_signal(signr, info, regs, cookie);
1780 if (!signr)
1781 continue;
1782 }
1783
1784 ka = &sighand->action[signr-1];
1785 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1786 continue;
1787 if (ka->sa.sa_handler != SIG_DFL) {
1788 /* Run the handler. */
1789 *return_ka = *ka;
1790
1791 if (ka->sa.sa_flags & SA_ONESHOT)
1792 ka->sa.sa_handler = SIG_DFL;
1793
1794 break; /* will return non-zero "signr" value */
1795 }
1796
1797 /*
1798 * Now we are doing the default action for this signal.
1799 */
1800 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1801 continue;
1802
1803 /*
1804 * Global init gets no signals it doesn't want.
1805 */
1806 if (is_global_init(current))
1807 continue;
1808
1809 if (sig_kernel_stop(signr)) {
1810 /*
1811 * The default action is to stop all threads in
1812 * the thread group. The job control signals
1813 * do nothing in an orphaned pgrp, but SIGSTOP
1814 * always works. Note that siglock needs to be
1815 * dropped during the call to is_orphaned_pgrp()
1816 * because of lock ordering with tasklist_lock.
1817 * This allows an intervening SIGCONT to be posted.
1818 * We need to check for that and bail out if necessary.
1819 */
1820 if (signr != SIGSTOP) {
1821 spin_unlock_irq(&sighand->siglock);
1822
1823 /* signals can be posted during this window */
1824
1825 if (is_current_pgrp_orphaned())
1826 goto relock;
1827
1828 spin_lock_irq(&sighand->siglock);
1829 }
1830
1831 if (likely(do_signal_stop(signr))) {
1832 /* It released the siglock. */
1833 goto relock;
1834 }
1835
1836 /*
1837 * We didn't actually stop, due to a race
1838 * with SIGCONT or something like that.
1839 */
1840 continue;
1841 }
1842
1843 spin_unlock_irq(&sighand->siglock);
1844
1845 /*
1846 * Anything else is fatal, maybe with a core dump.
1847 */
1848 current->flags |= PF_SIGNALED;
1849 if ((signr != SIGKILL) && print_fatal_signals)
1850 print_fatal_signal(regs, signr);
1851 if (sig_kernel_coredump(signr)) {
1852 /*
1853 * If it was able to dump core, this kills all
1854 * other threads in the group and synchronizes with
1855 * their demise. If we lost the race with another
1856 * thread getting here, it set group_exit_code
1857 * first and our do_group_exit call below will use
1858 * that value and ignore the one we pass it.
1859 */
1860 do_coredump((long)signr, signr, regs);
1861 }
1862
1863 /*
1864 * Death signals, no core dump.
1865 */
1866 do_group_exit(signr);
1867 /* NOTREACHED */
1868 }
1869 spin_unlock_irq(&sighand->siglock);
1870 return signr;
1871 }
1872
1873 void exit_signals(struct task_struct *tsk)
1874 {
1875 int group_stop = 0;
1876 struct task_struct *t;
1877
1878 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1879 tsk->flags |= PF_EXITING;
1880 return;
1881 }
1882
1883 spin_lock_irq(&tsk->sighand->siglock);
1884 /*
1885 * From now this task is not visible for group-wide signals,
1886 * see wants_signal(), do_signal_stop().
1887 */
1888 tsk->flags |= PF_EXITING;
1889 if (!signal_pending(tsk))
1890 goto out;
1891
1892 /* It could be that __group_complete_signal() choose us to
1893 * notify about group-wide signal. Another thread should be
1894 * woken now to take the signal since we will not.
1895 */
1896 for (t = tsk; (t = next_thread(t)) != tsk; )
1897 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1898 recalc_sigpending_and_wake(t);
1899
1900 if (unlikely(tsk->signal->group_stop_count) &&
1901 !--tsk->signal->group_stop_count) {
1902 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1903 group_stop = 1;
1904 }
1905 out:
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 if (unlikely(group_stop)) {
1909 read_lock(&tasklist_lock);
1910 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1911 read_unlock(&tasklist_lock);
1912 }
1913 }
1914
1915 EXPORT_SYMBOL(recalc_sigpending);
1916 EXPORT_SYMBOL_GPL(dequeue_signal);
1917 EXPORT_SYMBOL(flush_signals);
1918 EXPORT_SYMBOL(force_sig);
1919 EXPORT_SYMBOL(kill_proc);
1920 EXPORT_SYMBOL(ptrace_notify);
1921 EXPORT_SYMBOL(send_sig);
1922 EXPORT_SYMBOL(send_sig_info);
1923 EXPORT_SYMBOL(sigprocmask);
1924 EXPORT_SYMBOL(block_all_signals);
1925 EXPORT_SYMBOL(unblock_all_signals);
1926
1927
1928 /*
1929 * System call entry points.
1930 */
1931
1932 asmlinkage long sys_restart_syscall(void)
1933 {
1934 struct restart_block *restart = &current_thread_info()->restart_block;
1935 return restart->fn(restart);
1936 }
1937
1938 long do_no_restart_syscall(struct restart_block *param)
1939 {
1940 return -EINTR;
1941 }
1942
1943 /*
1944 * We don't need to get the kernel lock - this is all local to this
1945 * particular thread.. (and that's good, because this is _heavily_
1946 * used by various programs)
1947 */
1948
1949 /*
1950 * This is also useful for kernel threads that want to temporarily
1951 * (or permanently) block certain signals.
1952 *
1953 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1954 * interface happily blocks "unblockable" signals like SIGKILL
1955 * and friends.
1956 */
1957 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1958 {
1959 int error;
1960
1961 spin_lock_irq(&current->sighand->siglock);
1962 if (oldset)
1963 *oldset = current->blocked;
1964
1965 error = 0;
1966 switch (how) {
1967 case SIG_BLOCK:
1968 sigorsets(&current->blocked, &current->blocked, set);
1969 break;
1970 case SIG_UNBLOCK:
1971 signandsets(&current->blocked, &current->blocked, set);
1972 break;
1973 case SIG_SETMASK:
1974 current->blocked = *set;
1975 break;
1976 default:
1977 error = -EINVAL;
1978 }
1979 recalc_sigpending();
1980 spin_unlock_irq(&current->sighand->siglock);
1981
1982 return error;
1983 }
1984
1985 asmlinkage long
1986 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1987 {
1988 int error = -EINVAL;
1989 sigset_t old_set, new_set;
1990
1991 /* XXX: Don't preclude handling different sized sigset_t's. */
1992 if (sigsetsize != sizeof(sigset_t))
1993 goto out;
1994
1995 if (set) {
1996 error = -EFAULT;
1997 if (copy_from_user(&new_set, set, sizeof(*set)))
1998 goto out;
1999 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2000
2001 error = sigprocmask(how, &new_set, &old_set);
2002 if (error)
2003 goto out;
2004 if (oset)
2005 goto set_old;
2006 } else if (oset) {
2007 spin_lock_irq(&current->sighand->siglock);
2008 old_set = current->blocked;
2009 spin_unlock_irq(&current->sighand->siglock);
2010
2011 set_old:
2012 error = -EFAULT;
2013 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2014 goto out;
2015 }
2016 error = 0;
2017 out:
2018 return error;
2019 }
2020
2021 long do_sigpending(void __user *set, unsigned long sigsetsize)
2022 {
2023 long error = -EINVAL;
2024 sigset_t pending;
2025
2026 if (sigsetsize > sizeof(sigset_t))
2027 goto out;
2028
2029 spin_lock_irq(&current->sighand->siglock);
2030 sigorsets(&pending, &current->pending.signal,
2031 &current->signal->shared_pending.signal);
2032 spin_unlock_irq(&current->sighand->siglock);
2033
2034 /* Outside the lock because only this thread touches it. */
2035 sigandsets(&pending, &current->blocked, &pending);
2036
2037 error = -EFAULT;
2038 if (!copy_to_user(set, &pending, sigsetsize))
2039 error = 0;
2040
2041 out:
2042 return error;
2043 }
2044
2045 asmlinkage long
2046 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2047 {
2048 return do_sigpending(set, sigsetsize);
2049 }
2050
2051 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2052
2053 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2054 {
2055 int err;
2056
2057 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2058 return -EFAULT;
2059 if (from->si_code < 0)
2060 return __copy_to_user(to, from, sizeof(siginfo_t))
2061 ? -EFAULT : 0;
2062 /*
2063 * If you change siginfo_t structure, please be sure
2064 * this code is fixed accordingly.
2065 * Please remember to update the signalfd_copyinfo() function
2066 * inside fs/signalfd.c too, in case siginfo_t changes.
2067 * It should never copy any pad contained in the structure
2068 * to avoid security leaks, but must copy the generic
2069 * 3 ints plus the relevant union member.
2070 */
2071 err = __put_user(from->si_signo, &to->si_signo);
2072 err |= __put_user(from->si_errno, &to->si_errno);
2073 err |= __put_user((short)from->si_code, &to->si_code);
2074 switch (from->si_code & __SI_MASK) {
2075 case __SI_KILL:
2076 err |= __put_user(from->si_pid, &to->si_pid);
2077 err |= __put_user(from->si_uid, &to->si_uid);
2078 break;
2079 case __SI_TIMER:
2080 err |= __put_user(from->si_tid, &to->si_tid);
2081 err |= __put_user(from->si_overrun, &to->si_overrun);
2082 err |= __put_user(from->si_ptr, &to->si_ptr);
2083 break;
2084 case __SI_POLL:
2085 err |= __put_user(from->si_band, &to->si_band);
2086 err |= __put_user(from->si_fd, &to->si_fd);
2087 break;
2088 case __SI_FAULT:
2089 err |= __put_user(from->si_addr, &to->si_addr);
2090 #ifdef __ARCH_SI_TRAPNO
2091 err |= __put_user(from->si_trapno, &to->si_trapno);
2092 #endif
2093 break;
2094 case __SI_CHLD:
2095 err |= __put_user(from->si_pid, &to->si_pid);
2096 err |= __put_user(from->si_uid, &to->si_uid);
2097 err |= __put_user(from->si_status, &to->si_status);
2098 err |= __put_user(from->si_utime, &to->si_utime);
2099 err |= __put_user(from->si_stime, &to->si_stime);
2100 break;
2101 case __SI_RT: /* This is not generated by the kernel as of now. */
2102 case __SI_MESGQ: /* But this is */
2103 err |= __put_user(from->si_pid, &to->si_pid);
2104 err |= __put_user(from->si_uid, &to->si_uid);
2105 err |= __put_user(from->si_ptr, &to->si_ptr);
2106 break;
2107 default: /* this is just in case for now ... */
2108 err |= __put_user(from->si_pid, &to->si_pid);
2109 err |= __put_user(from->si_uid, &to->si_uid);
2110 break;
2111 }
2112 return err;
2113 }
2114
2115 #endif
2116
2117 asmlinkage long
2118 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2119 siginfo_t __user *uinfo,
2120 const struct timespec __user *uts,
2121 size_t sigsetsize)
2122 {
2123 int ret, sig;
2124 sigset_t these;
2125 struct timespec ts;
2126 siginfo_t info;
2127 long timeout = 0;
2128
2129 /* XXX: Don't preclude handling different sized sigset_t's. */
2130 if (sigsetsize != sizeof(sigset_t))
2131 return -EINVAL;
2132
2133 if (copy_from_user(&these, uthese, sizeof(these)))
2134 return -EFAULT;
2135
2136 /*
2137 * Invert the set of allowed signals to get those we
2138 * want to block.
2139 */
2140 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2141 signotset(&these);
2142
2143 if (uts) {
2144 if (copy_from_user(&ts, uts, sizeof(ts)))
2145 return -EFAULT;
2146 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2147 || ts.tv_sec < 0)
2148 return -EINVAL;
2149 }
2150
2151 spin_lock_irq(&current->sighand->siglock);
2152 sig = dequeue_signal(current, &these, &info);
2153 if (!sig) {
2154 timeout = MAX_SCHEDULE_TIMEOUT;
2155 if (uts)
2156 timeout = (timespec_to_jiffies(&ts)
2157 + (ts.tv_sec || ts.tv_nsec));
2158
2159 if (timeout) {
2160 /* None ready -- temporarily unblock those we're
2161 * interested while we are sleeping in so that we'll
2162 * be awakened when they arrive. */
2163 current->real_blocked = current->blocked;
2164 sigandsets(&current->blocked, &current->blocked, &these);
2165 recalc_sigpending();
2166 spin_unlock_irq(&current->sighand->siglock);
2167
2168 timeout = schedule_timeout_interruptible(timeout);
2169
2170 spin_lock_irq(&current->sighand->siglock);
2171 sig = dequeue_signal(current, &these, &info);
2172 current->blocked = current->real_blocked;
2173 siginitset(&current->real_blocked, 0);
2174 recalc_sigpending();
2175 }
2176 }
2177 spin_unlock_irq(&current->sighand->siglock);
2178
2179 if (sig) {
2180 ret = sig;
2181 if (uinfo) {
2182 if (copy_siginfo_to_user(uinfo, &info))
2183 ret = -EFAULT;
2184 }
2185 } else {
2186 ret = -EAGAIN;
2187 if (timeout)
2188 ret = -EINTR;
2189 }
2190
2191 return ret;
2192 }
2193
2194 asmlinkage long
2195 sys_kill(int pid, int sig)
2196 {
2197 struct siginfo info;
2198
2199 info.si_signo = sig;
2200 info.si_errno = 0;
2201 info.si_code = SI_USER;
2202 info.si_pid = task_tgid_vnr(current);
2203 info.si_uid = current->uid;
2204
2205 return kill_something_info(sig, &info, pid);
2206 }
2207
2208 static int do_tkill(int tgid, int pid, int sig)
2209 {
2210 int error;
2211 struct siginfo info;
2212 struct task_struct *p;
2213 unsigned long flags;
2214
2215 error = -ESRCH;
2216 info.si_signo = sig;
2217 info.si_errno = 0;
2218 info.si_code = SI_TKILL;
2219 info.si_pid = task_tgid_vnr(current);
2220 info.si_uid = current->uid;
2221
2222 rcu_read_lock();
2223 p = find_task_by_vpid(pid);
2224 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2225 error = check_kill_permission(sig, &info, p);
2226 /*
2227 * The null signal is a permissions and process existence
2228 * probe. No signal is actually delivered.
2229 *
2230 * If lock_task_sighand() fails we pretend the task dies
2231 * after receiving the signal. The window is tiny, and the
2232 * signal is private anyway.
2233 */
2234 if (!error && sig && lock_task_sighand(p, &flags)) {
2235 error = specific_send_sig_info(sig, &info, p);
2236 unlock_task_sighand(p, &flags);
2237 }
2238 }
2239 rcu_read_unlock();
2240
2241 return error;
2242 }
2243
2244 /**
2245 * sys_tgkill - send signal to one specific thread
2246 * @tgid: the thread group ID of the thread
2247 * @pid: the PID of the thread
2248 * @sig: signal to be sent
2249 *
2250 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2251 * exists but it's not belonging to the target process anymore. This
2252 * method solves the problem of threads exiting and PIDs getting reused.
2253 */
2254 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2255 {
2256 /* This is only valid for single tasks */
2257 if (pid <= 0 || tgid <= 0)
2258 return -EINVAL;
2259
2260 return do_tkill(tgid, pid, sig);
2261 }
2262
2263 /*
2264 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2265 */
2266 asmlinkage long
2267 sys_tkill(int pid, int sig)
2268 {
2269 /* This is only valid for single tasks */
2270 if (pid <= 0)
2271 return -EINVAL;
2272
2273 return do_tkill(0, pid, sig);
2274 }
2275
2276 asmlinkage long
2277 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2278 {
2279 siginfo_t info;
2280
2281 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2282 return -EFAULT;
2283
2284 /* Not even root can pretend to send signals from the kernel.
2285 Nor can they impersonate a kill(), which adds source info. */
2286 if (info.si_code >= 0)
2287 return -EPERM;
2288 info.si_signo = sig;
2289
2290 /* POSIX.1b doesn't mention process groups. */
2291 return kill_proc_info(sig, &info, pid);
2292 }
2293
2294 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2295 {
2296 struct task_struct *t = current;
2297 struct k_sigaction *k;
2298 sigset_t mask;
2299
2300 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2301 return -EINVAL;
2302
2303 k = &t->sighand->action[sig-1];
2304
2305 spin_lock_irq(&current->sighand->siglock);
2306 if (oact)
2307 *oact = *k;
2308
2309 if (act) {
2310 sigdelsetmask(&act->sa.sa_mask,
2311 sigmask(SIGKILL) | sigmask(SIGSTOP));
2312 *k = *act;
2313 /*
2314 * POSIX 3.3.1.3:
2315 * "Setting a signal action to SIG_IGN for a signal that is
2316 * pending shall cause the pending signal to be discarded,
2317 * whether or not it is blocked."
2318 *
2319 * "Setting a signal action to SIG_DFL for a signal that is
2320 * pending and whose default action is to ignore the signal
2321 * (for example, SIGCHLD), shall cause the pending signal to
2322 * be discarded, whether or not it is blocked"
2323 */
2324 if (__sig_ignored(t, sig)) {
2325 sigemptyset(&mask);
2326 sigaddset(&mask, sig);
2327 rm_from_queue_full(&mask, &t->signal->shared_pending);
2328 do {
2329 rm_from_queue_full(&mask, &t->pending);
2330 t = next_thread(t);
2331 } while (t != current);
2332 }
2333 }
2334
2335 spin_unlock_irq(&current->sighand->siglock);
2336 return 0;
2337 }
2338
2339 int
2340 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2341 {
2342 stack_t oss;
2343 int error;
2344
2345 if (uoss) {
2346 oss.ss_sp = (void __user *) current->sas_ss_sp;
2347 oss.ss_size = current->sas_ss_size;
2348 oss.ss_flags = sas_ss_flags(sp);
2349 }
2350
2351 if (uss) {
2352 void __user *ss_sp;
2353 size_t ss_size;
2354 int ss_flags;
2355
2356 error = -EFAULT;
2357 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2358 || __get_user(ss_sp, &uss->ss_sp)
2359 || __get_user(ss_flags, &uss->ss_flags)
2360 || __get_user(ss_size, &uss->ss_size))
2361 goto out;
2362
2363 error = -EPERM;
2364 if (on_sig_stack(sp))
2365 goto out;
2366
2367 error = -EINVAL;
2368 /*
2369 *
2370 * Note - this code used to test ss_flags incorrectly
2371 * old code may have been written using ss_flags==0
2372 * to mean ss_flags==SS_ONSTACK (as this was the only
2373 * way that worked) - this fix preserves that older
2374 * mechanism
2375 */
2376 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2377 goto out;
2378
2379 if (ss_flags == SS_DISABLE) {
2380 ss_size = 0;
2381 ss_sp = NULL;
2382 } else {
2383 error = -ENOMEM;
2384 if (ss_size < MINSIGSTKSZ)
2385 goto out;
2386 }
2387
2388 current->sas_ss_sp = (unsigned long) ss_sp;
2389 current->sas_ss_size = ss_size;
2390 }
2391
2392 if (uoss) {
2393 error = -EFAULT;
2394 if (copy_to_user(uoss, &oss, sizeof(oss)))
2395 goto out;
2396 }
2397
2398 error = 0;
2399 out:
2400 return error;
2401 }
2402
2403 #ifdef __ARCH_WANT_SYS_SIGPENDING
2404
2405 asmlinkage long
2406 sys_sigpending(old_sigset_t __user *set)
2407 {
2408 return do_sigpending(set, sizeof(*set));
2409 }
2410
2411 #endif
2412
2413 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2414 /* Some platforms have their own version with special arguments others
2415 support only sys_rt_sigprocmask. */
2416
2417 asmlinkage long
2418 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2419 {
2420 int error;
2421 old_sigset_t old_set, new_set;
2422
2423 if (set) {
2424 error = -EFAULT;
2425 if (copy_from_user(&new_set, set, sizeof(*set)))
2426 goto out;
2427 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2428
2429 spin_lock_irq(&current->sighand->siglock);
2430 old_set = current->blocked.sig[0];
2431
2432 error = 0;
2433 switch (how) {
2434 default:
2435 error = -EINVAL;
2436 break;
2437 case SIG_BLOCK:
2438 sigaddsetmask(&current->blocked, new_set);
2439 break;
2440 case SIG_UNBLOCK:
2441 sigdelsetmask(&current->blocked, new_set);
2442 break;
2443 case SIG_SETMASK:
2444 current->blocked.sig[0] = new_set;
2445 break;
2446 }
2447
2448 recalc_sigpending();
2449 spin_unlock_irq(&current->sighand->siglock);
2450 if (error)
2451 goto out;
2452 if (oset)
2453 goto set_old;
2454 } else if (oset) {
2455 old_set = current->blocked.sig[0];
2456 set_old:
2457 error = -EFAULT;
2458 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2459 goto out;
2460 }
2461 error = 0;
2462 out:
2463 return error;
2464 }
2465 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2466
2467 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2468 asmlinkage long
2469 sys_rt_sigaction(int sig,
2470 const struct sigaction __user *act,
2471 struct sigaction __user *oact,
2472 size_t sigsetsize)
2473 {
2474 struct k_sigaction new_sa, old_sa;
2475 int ret = -EINVAL;
2476
2477 /* XXX: Don't preclude handling different sized sigset_t's. */
2478 if (sigsetsize != sizeof(sigset_t))
2479 goto out;
2480
2481 if (act) {
2482 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2483 return -EFAULT;
2484 }
2485
2486 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2487
2488 if (!ret && oact) {
2489 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2490 return -EFAULT;
2491 }
2492 out:
2493 return ret;
2494 }
2495 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2496
2497 #ifdef __ARCH_WANT_SYS_SGETMASK
2498
2499 /*
2500 * For backwards compatibility. Functionality superseded by sigprocmask.
2501 */
2502 asmlinkage long
2503 sys_sgetmask(void)
2504 {
2505 /* SMP safe */
2506 return current->blocked.sig[0];
2507 }
2508
2509 asmlinkage long
2510 sys_ssetmask(int newmask)
2511 {
2512 int old;
2513
2514 spin_lock_irq(&current->sighand->siglock);
2515 old = current->blocked.sig[0];
2516
2517 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2518 sigmask(SIGSTOP)));
2519 recalc_sigpending();
2520 spin_unlock_irq(&current->sighand->siglock);
2521
2522 return old;
2523 }
2524 #endif /* __ARCH_WANT_SGETMASK */
2525
2526 #ifdef __ARCH_WANT_SYS_SIGNAL
2527 /*
2528 * For backwards compatibility. Functionality superseded by sigaction.
2529 */
2530 asmlinkage unsigned long
2531 sys_signal(int sig, __sighandler_t handler)
2532 {
2533 struct k_sigaction new_sa, old_sa;
2534 int ret;
2535
2536 new_sa.sa.sa_handler = handler;
2537 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2538 sigemptyset(&new_sa.sa.sa_mask);
2539
2540 ret = do_sigaction(sig, &new_sa, &old_sa);
2541
2542 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2543 }
2544 #endif /* __ARCH_WANT_SYS_SIGNAL */
2545
2546 #ifdef __ARCH_WANT_SYS_PAUSE
2547
2548 asmlinkage long
2549 sys_pause(void)
2550 {
2551 current->state = TASK_INTERRUPTIBLE;
2552 schedule();
2553 return -ERESTARTNOHAND;
2554 }
2555
2556 #endif
2557
2558 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2559 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2560 {
2561 sigset_t newset;
2562
2563 /* XXX: Don't preclude handling different sized sigset_t's. */
2564 if (sigsetsize != sizeof(sigset_t))
2565 return -EINVAL;
2566
2567 if (copy_from_user(&newset, unewset, sizeof(newset)))
2568 return -EFAULT;
2569 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2570
2571 spin_lock_irq(&current->sighand->siglock);
2572 current->saved_sigmask = current->blocked;
2573 current->blocked = newset;
2574 recalc_sigpending();
2575 spin_unlock_irq(&current->sighand->siglock);
2576
2577 current->state = TASK_INTERRUPTIBLE;
2578 schedule();
2579 set_thread_flag(TIF_RESTORE_SIGMASK);
2580 return -ERESTARTNOHAND;
2581 }
2582 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2583
2584 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2585 {
2586 return NULL;
2587 }
2588
2589 void __init signals_init(void)
2590 {
2591 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2592 }
This page took 0.096335 seconds and 4 git commands to generate.