[PATCH] kill_proc_info_as_uid: don't use hardcoded constants
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226 recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266 int override_rlimit)
267 {
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->user = get_uid(t->user);
281 }
282 return(q);
283 }
284
285 static inline void __sigqueue_free(struct sigqueue *q)
286 {
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292 }
293
294 static void flush_sigqueue(struct sigpending *queue)
295 {
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304 }
305
306 /*
307 * Flush all pending signals for a task.
308 */
309
310 void
311 flush_signals(struct task_struct *t)
312 {
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323 * This function expects the tasklist_lock write-locked.
324 */
325 void __exit_sighand(struct task_struct *tsk)
326 {
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 sighand_free(sighand);
333 }
334
335 void exit_sighand(struct task_struct *tsk)
336 {
337 write_lock_irq(&tasklist_lock);
338 rcu_read_lock();
339 if (tsk->sighand != NULL) {
340 struct sighand_struct *sighand = rcu_dereference(tsk->sighand);
341 spin_lock(&sighand->siglock);
342 __exit_sighand(tsk);
343 spin_unlock(&sighand->siglock);
344 }
345 rcu_read_unlock();
346 write_unlock_irq(&tasklist_lock);
347 }
348
349 /*
350 * This function expects the tasklist_lock write-locked.
351 */
352 void __exit_signal(struct task_struct *tsk)
353 {
354 struct signal_struct * sig = tsk->signal;
355 struct sighand_struct * sighand;
356
357 if (!sig)
358 BUG();
359 if (!atomic_read(&sig->count))
360 BUG();
361 rcu_read_lock();
362 sighand = rcu_dereference(tsk->sighand);
363 spin_lock(&sighand->siglock);
364 posix_cpu_timers_exit(tsk);
365 if (atomic_dec_and_test(&sig->count)) {
366 posix_cpu_timers_exit_group(tsk);
367 if (tsk == sig->curr_target)
368 sig->curr_target = next_thread(tsk);
369 tsk->signal = NULL;
370 __exit_sighand(tsk);
371 spin_unlock(&sighand->siglock);
372 flush_sigqueue(&sig->shared_pending);
373 } else {
374 /*
375 * If there is any task waiting for the group exit
376 * then notify it:
377 */
378 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
379 wake_up_process(sig->group_exit_task);
380 sig->group_exit_task = NULL;
381 }
382 if (tsk == sig->curr_target)
383 sig->curr_target = next_thread(tsk);
384 tsk->signal = NULL;
385 /*
386 * Accumulate here the counters for all threads but the
387 * group leader as they die, so they can be added into
388 * the process-wide totals when those are taken.
389 * The group leader stays around as a zombie as long
390 * as there are other threads. When it gets reaped,
391 * the exit.c code will add its counts into these totals.
392 * We won't ever get here for the group leader, since it
393 * will have been the last reference on the signal_struct.
394 */
395 sig->utime = cputime_add(sig->utime, tsk->utime);
396 sig->stime = cputime_add(sig->stime, tsk->stime);
397 sig->min_flt += tsk->min_flt;
398 sig->maj_flt += tsk->maj_flt;
399 sig->nvcsw += tsk->nvcsw;
400 sig->nivcsw += tsk->nivcsw;
401 sig->sched_time += tsk->sched_time;
402 __exit_sighand(tsk);
403 spin_unlock(&sighand->siglock);
404 sig = NULL; /* Marker for below. */
405 }
406 rcu_read_unlock();
407 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
408 flush_sigqueue(&tsk->pending);
409 if (sig) {
410 /*
411 * We are cleaning up the signal_struct here.
412 */
413 exit_thread_group_keys(sig);
414 kmem_cache_free(signal_cachep, sig);
415 }
416 }
417
418 void exit_signal(struct task_struct *tsk)
419 {
420 atomic_dec(&tsk->signal->live);
421
422 write_lock_irq(&tasklist_lock);
423 __exit_signal(tsk);
424 write_unlock_irq(&tasklist_lock);
425 }
426
427 /*
428 * Flush all handlers for a task.
429 */
430
431 void
432 flush_signal_handlers(struct task_struct *t, int force_default)
433 {
434 int i;
435 struct k_sigaction *ka = &t->sighand->action[0];
436 for (i = _NSIG ; i != 0 ; i--) {
437 if (force_default || ka->sa.sa_handler != SIG_IGN)
438 ka->sa.sa_handler = SIG_DFL;
439 ka->sa.sa_flags = 0;
440 sigemptyset(&ka->sa.sa_mask);
441 ka++;
442 }
443 }
444
445
446 /* Notify the system that a driver wants to block all signals for this
447 * process, and wants to be notified if any signals at all were to be
448 * sent/acted upon. If the notifier routine returns non-zero, then the
449 * signal will be acted upon after all. If the notifier routine returns 0,
450 * then then signal will be blocked. Only one block per process is
451 * allowed. priv is a pointer to private data that the notifier routine
452 * can use to determine if the signal should be blocked or not. */
453
454 void
455 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 {
457 unsigned long flags;
458
459 spin_lock_irqsave(&current->sighand->siglock, flags);
460 current->notifier_mask = mask;
461 current->notifier_data = priv;
462 current->notifier = notifier;
463 spin_unlock_irqrestore(&current->sighand->siglock, flags);
464 }
465
466 /* Notify the system that blocking has ended. */
467
468 void
469 unblock_all_signals(void)
470 {
471 unsigned long flags;
472
473 spin_lock_irqsave(&current->sighand->siglock, flags);
474 current->notifier = NULL;
475 current->notifier_data = NULL;
476 recalc_sigpending();
477 spin_unlock_irqrestore(&current->sighand->siglock, flags);
478 }
479
480 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 {
482 struct sigqueue *q, *first = NULL;
483 int still_pending = 0;
484
485 if (unlikely(!sigismember(&list->signal, sig)))
486 return 0;
487
488 /*
489 * Collect the siginfo appropriate to this signal. Check if
490 * there is another siginfo for the same signal.
491 */
492 list_for_each_entry(q, &list->list, list) {
493 if (q->info.si_signo == sig) {
494 if (first) {
495 still_pending = 1;
496 break;
497 }
498 first = q;
499 }
500 }
501 if (first) {
502 list_del_init(&first->list);
503 copy_siginfo(info, &first->info);
504 __sigqueue_free(first);
505 if (!still_pending)
506 sigdelset(&list->signal, sig);
507 } else {
508
509 /* Ok, it wasn't in the queue. This must be
510 a fast-pathed signal or we must have been
511 out of queue space. So zero out the info.
512 */
513 sigdelset(&list->signal, sig);
514 info->si_signo = sig;
515 info->si_errno = 0;
516 info->si_code = 0;
517 info->si_pid = 0;
518 info->si_uid = 0;
519 }
520 return 1;
521 }
522
523 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
524 siginfo_t *info)
525 {
526 int sig = 0;
527
528 sig = next_signal(pending, mask);
529 if (sig) {
530 if (current->notifier) {
531 if (sigismember(current->notifier_mask, sig)) {
532 if (!(current->notifier)(current->notifier_data)) {
533 clear_thread_flag(TIF_SIGPENDING);
534 return 0;
535 }
536 }
537 }
538
539 if (!collect_signal(sig, pending, info))
540 sig = 0;
541
542 }
543 recalc_sigpending();
544
545 return sig;
546 }
547
548 /*
549 * Dequeue a signal and return the element to the caller, which is
550 * expected to free it.
551 *
552 * All callers have to hold the siglock.
553 */
554 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
555 {
556 int signr = __dequeue_signal(&tsk->pending, mask, info);
557 if (!signr)
558 signr = __dequeue_signal(&tsk->signal->shared_pending,
559 mask, info);
560 if (signr && unlikely(sig_kernel_stop(signr))) {
561 /*
562 * Set a marker that we have dequeued a stop signal. Our
563 * caller might release the siglock and then the pending
564 * stop signal it is about to process is no longer in the
565 * pending bitmasks, but must still be cleared by a SIGCONT
566 * (and overruled by a SIGKILL). So those cases clear this
567 * shared flag after we've set it. Note that this flag may
568 * remain set after the signal we return is ignored or
569 * handled. That doesn't matter because its only purpose
570 * is to alert stop-signal processing code when another
571 * processor has come along and cleared the flag.
572 */
573 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
574 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
575 }
576 if ( signr &&
577 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
578 info->si_sys_private){
579 /*
580 * Release the siglock to ensure proper locking order
581 * of timer locks outside of siglocks. Note, we leave
582 * irqs disabled here, since the posix-timers code is
583 * about to disable them again anyway.
584 */
585 spin_unlock(&tsk->sighand->siglock);
586 do_schedule_next_timer(info);
587 spin_lock(&tsk->sighand->siglock);
588 }
589 return signr;
590 }
591
592 /*
593 * Tell a process that it has a new active signal..
594 *
595 * NOTE! we rely on the previous spin_lock to
596 * lock interrupts for us! We can only be called with
597 * "siglock" held, and the local interrupt must
598 * have been disabled when that got acquired!
599 *
600 * No need to set need_resched since signal event passing
601 * goes through ->blocked
602 */
603 void signal_wake_up(struct task_struct *t, int resume)
604 {
605 unsigned int mask;
606
607 set_tsk_thread_flag(t, TIF_SIGPENDING);
608
609 /*
610 * For SIGKILL, we want to wake it up in the stopped/traced case.
611 * We don't check t->state here because there is a race with it
612 * executing another processor and just now entering stopped state.
613 * By using wake_up_state, we ensure the process will wake up and
614 * handle its death signal.
615 */
616 mask = TASK_INTERRUPTIBLE;
617 if (resume)
618 mask |= TASK_STOPPED | TASK_TRACED;
619 if (!wake_up_state(t, mask))
620 kick_process(t);
621 }
622
623 /*
624 * Remove signals in mask from the pending set and queue.
625 * Returns 1 if any signals were found.
626 *
627 * All callers must be holding the siglock.
628 *
629 * This version takes a sigset mask and looks at all signals,
630 * not just those in the first mask word.
631 */
632 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
633 {
634 struct sigqueue *q, *n;
635 sigset_t m;
636
637 sigandsets(&m, mask, &s->signal);
638 if (sigisemptyset(&m))
639 return 0;
640
641 signandsets(&s->signal, &s->signal, mask);
642 list_for_each_entry_safe(q, n, &s->list, list) {
643 if (sigismember(mask, q->info.si_signo)) {
644 list_del_init(&q->list);
645 __sigqueue_free(q);
646 }
647 }
648 return 1;
649 }
650 /*
651 * Remove signals in mask from the pending set and queue.
652 * Returns 1 if any signals were found.
653 *
654 * All callers must be holding the siglock.
655 */
656 static int rm_from_queue(unsigned long mask, struct sigpending *s)
657 {
658 struct sigqueue *q, *n;
659
660 if (!sigtestsetmask(&s->signal, mask))
661 return 0;
662
663 sigdelsetmask(&s->signal, mask);
664 list_for_each_entry_safe(q, n, &s->list, list) {
665 if (q->info.si_signo < SIGRTMIN &&
666 (mask & sigmask(q->info.si_signo))) {
667 list_del_init(&q->list);
668 __sigqueue_free(q);
669 }
670 }
671 return 1;
672 }
673
674 /*
675 * Bad permissions for sending the signal
676 */
677 static int check_kill_permission(int sig, struct siginfo *info,
678 struct task_struct *t)
679 {
680 int error = -EINVAL;
681 if (!valid_signal(sig))
682 return error;
683 error = -EPERM;
684 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
685 && ((sig != SIGCONT) ||
686 (current->signal->session != t->signal->session))
687 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
688 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
689 && !capable(CAP_KILL))
690 return error;
691
692 error = security_task_kill(t, info, sig);
693 if (!error)
694 audit_signal_info(sig, t); /* Let audit system see the signal */
695 return error;
696 }
697
698 /* forward decl */
699 static void do_notify_parent_cldstop(struct task_struct *tsk,
700 int to_self,
701 int why);
702
703 /*
704 * Handle magic process-wide effects of stop/continue signals.
705 * Unlike the signal actions, these happen immediately at signal-generation
706 * time regardless of blocking, ignoring, or handling. This does the
707 * actual continuing for SIGCONT, but not the actual stopping for stop
708 * signals. The process stop is done as a signal action for SIG_DFL.
709 */
710 static void handle_stop_signal(int sig, struct task_struct *p)
711 {
712 struct task_struct *t;
713
714 if (p->signal->flags & SIGNAL_GROUP_EXIT)
715 /*
716 * The process is in the middle of dying already.
717 */
718 return;
719
720 if (sig_kernel_stop(sig)) {
721 /*
722 * This is a stop signal. Remove SIGCONT from all queues.
723 */
724 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
725 t = p;
726 do {
727 rm_from_queue(sigmask(SIGCONT), &t->pending);
728 t = next_thread(t);
729 } while (t != p);
730 } else if (sig == SIGCONT) {
731 /*
732 * Remove all stop signals from all queues,
733 * and wake all threads.
734 */
735 if (unlikely(p->signal->group_stop_count > 0)) {
736 /*
737 * There was a group stop in progress. We'll
738 * pretend it finished before we got here. We are
739 * obliged to report it to the parent: if the
740 * SIGSTOP happened "after" this SIGCONT, then it
741 * would have cleared this pending SIGCONT. If it
742 * happened "before" this SIGCONT, then the parent
743 * got the SIGCHLD about the stop finishing before
744 * the continue happened. We do the notification
745 * now, and it's as if the stop had finished and
746 * the SIGCHLD was pending on entry to this kill.
747 */
748 p->signal->group_stop_count = 0;
749 p->signal->flags = SIGNAL_STOP_CONTINUED;
750 spin_unlock(&p->sighand->siglock);
751 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
752 spin_lock(&p->sighand->siglock);
753 }
754 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
755 t = p;
756 do {
757 unsigned int state;
758 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
759
760 /*
761 * If there is a handler for SIGCONT, we must make
762 * sure that no thread returns to user mode before
763 * we post the signal, in case it was the only
764 * thread eligible to run the signal handler--then
765 * it must not do anything between resuming and
766 * running the handler. With the TIF_SIGPENDING
767 * flag set, the thread will pause and acquire the
768 * siglock that we hold now and until we've queued
769 * the pending signal.
770 *
771 * Wake up the stopped thread _after_ setting
772 * TIF_SIGPENDING
773 */
774 state = TASK_STOPPED;
775 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
776 set_tsk_thread_flag(t, TIF_SIGPENDING);
777 state |= TASK_INTERRUPTIBLE;
778 }
779 wake_up_state(t, state);
780
781 t = next_thread(t);
782 } while (t != p);
783
784 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
785 /*
786 * We were in fact stopped, and are now continued.
787 * Notify the parent with CLD_CONTINUED.
788 */
789 p->signal->flags = SIGNAL_STOP_CONTINUED;
790 p->signal->group_exit_code = 0;
791 spin_unlock(&p->sighand->siglock);
792 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
793 spin_lock(&p->sighand->siglock);
794 } else {
795 /*
796 * We are not stopped, but there could be a stop
797 * signal in the middle of being processed after
798 * being removed from the queue. Clear that too.
799 */
800 p->signal->flags = 0;
801 }
802 } else if (sig == SIGKILL) {
803 /*
804 * Make sure that any pending stop signal already dequeued
805 * is undone by the wakeup for SIGKILL.
806 */
807 p->signal->flags = 0;
808 }
809 }
810
811 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
812 struct sigpending *signals)
813 {
814 struct sigqueue * q = NULL;
815 int ret = 0;
816
817 /*
818 * fast-pathed signals for kernel-internal things like SIGSTOP
819 * or SIGKILL.
820 */
821 if (info == SEND_SIG_FORCED)
822 goto out_set;
823
824 /* Real-time signals must be queued if sent by sigqueue, or
825 some other real-time mechanism. It is implementation
826 defined whether kill() does so. We attempt to do so, on
827 the principle of least surprise, but since kill is not
828 allowed to fail with EAGAIN when low on memory we just
829 make sure at least one signal gets delivered and don't
830 pass on the info struct. */
831
832 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
833 (is_si_special(info) ||
834 info->si_code >= 0)));
835 if (q) {
836 list_add_tail(&q->list, &signals->list);
837 switch ((unsigned long) info) {
838 case (unsigned long) SEND_SIG_NOINFO:
839 q->info.si_signo = sig;
840 q->info.si_errno = 0;
841 q->info.si_code = SI_USER;
842 q->info.si_pid = current->pid;
843 q->info.si_uid = current->uid;
844 break;
845 case (unsigned long) SEND_SIG_PRIV:
846 q->info.si_signo = sig;
847 q->info.si_errno = 0;
848 q->info.si_code = SI_KERNEL;
849 q->info.si_pid = 0;
850 q->info.si_uid = 0;
851 break;
852 default:
853 copy_siginfo(&q->info, info);
854 break;
855 }
856 } else if (!is_si_special(info)) {
857 if (sig >= SIGRTMIN && info->si_code != SI_USER)
858 /*
859 * Queue overflow, abort. We may abort if the signal was rt
860 * and sent by user using something other than kill().
861 */
862 return -EAGAIN;
863 }
864
865 out_set:
866 sigaddset(&signals->signal, sig);
867 return ret;
868 }
869
870 #define LEGACY_QUEUE(sigptr, sig) \
871 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
872
873
874 static int
875 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
876 {
877 int ret = 0;
878
879 if (!irqs_disabled())
880 BUG();
881 assert_spin_locked(&t->sighand->siglock);
882
883 /* Short-circuit ignored signals. */
884 if (sig_ignored(t, sig))
885 goto out;
886
887 /* Support queueing exactly one non-rt signal, so that we
888 can get more detailed information about the cause of
889 the signal. */
890 if (LEGACY_QUEUE(&t->pending, sig))
891 goto out;
892
893 ret = send_signal(sig, info, t, &t->pending);
894 if (!ret && !sigismember(&t->blocked, sig))
895 signal_wake_up(t, sig == SIGKILL);
896 out:
897 return ret;
898 }
899
900 /*
901 * Force a signal that the process can't ignore: if necessary
902 * we unblock the signal and change any SIG_IGN to SIG_DFL.
903 */
904
905 int
906 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
907 {
908 unsigned long int flags;
909 int ret;
910
911 spin_lock_irqsave(&t->sighand->siglock, flags);
912 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
913 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
914 }
915 if (sigismember(&t->blocked, sig)) {
916 sigdelset(&t->blocked, sig);
917 }
918 recalc_sigpending_tsk(t);
919 ret = specific_send_sig_info(sig, info, t);
920 spin_unlock_irqrestore(&t->sighand->siglock, flags);
921
922 return ret;
923 }
924
925 void
926 force_sig_specific(int sig, struct task_struct *t)
927 {
928 force_sig_info(sig, SEND_SIG_FORCED, t);
929 }
930
931 /*
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
938 */
939 static inline int wants_signal(int sig, struct task_struct *p)
940 {
941 if (sigismember(&p->blocked, sig))
942 return 0;
943 if (p->flags & PF_EXITING)
944 return 0;
945 if (sig == SIGKILL)
946 return 1;
947 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return 0;
949 return task_curr(p) || !signal_pending(p);
950 }
951
952 static void
953 __group_complete_signal(int sig, struct task_struct *p)
954 {
955 struct task_struct *t;
956
957 /*
958 * Now find a thread we can wake up to take the signal off the queue.
959 *
960 * If the main thread wants the signal, it gets first crack.
961 * Probably the least surprising to the average bear.
962 */
963 if (wants_signal(sig, p))
964 t = p;
965 else if (thread_group_empty(p))
966 /*
967 * There is just one thread and it does not need to be woken.
968 * It will dequeue unblocked signals before it runs again.
969 */
970 return;
971 else {
972 /*
973 * Otherwise try to find a suitable thread.
974 */
975 t = p->signal->curr_target;
976 if (t == NULL)
977 /* restart balancing at this thread */
978 t = p->signal->curr_target = p;
979 BUG_ON(t->tgid != p->tgid);
980
981 while (!wants_signal(sig, t)) {
982 t = next_thread(t);
983 if (t == p->signal->curr_target)
984 /*
985 * No thread needs to be woken.
986 * Any eligible threads will see
987 * the signal in the queue soon.
988 */
989 return;
990 }
991 p->signal->curr_target = t;
992 }
993
994 /*
995 * Found a killable thread. If the signal will be fatal,
996 * then start taking the whole group down immediately.
997 */
998 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999 !sigismember(&t->real_blocked, sig) &&
1000 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001 /*
1002 * This signal will be fatal to the whole group.
1003 */
1004 if (!sig_kernel_coredump(sig)) {
1005 /*
1006 * Start a group exit and wake everybody up.
1007 * This way we don't have other threads
1008 * running and doing things after a slower
1009 * thread has the fatal signal pending.
1010 */
1011 p->signal->flags = SIGNAL_GROUP_EXIT;
1012 p->signal->group_exit_code = sig;
1013 p->signal->group_stop_count = 0;
1014 t = p;
1015 do {
1016 sigaddset(&t->pending.signal, SIGKILL);
1017 signal_wake_up(t, 1);
1018 t = next_thread(t);
1019 } while (t != p);
1020 return;
1021 }
1022
1023 /*
1024 * There will be a core dump. We make all threads other
1025 * than the chosen one go into a group stop so that nothing
1026 * happens until it gets scheduled, takes the signal off
1027 * the shared queue, and does the core dump. This is a
1028 * little more complicated than strictly necessary, but it
1029 * keeps the signal state that winds up in the core dump
1030 * unchanged from the death state, e.g. which thread had
1031 * the core-dump signal unblocked.
1032 */
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035 p->signal->group_stop_count = 0;
1036 p->signal->group_exit_task = t;
1037 t = p;
1038 do {
1039 p->signal->group_stop_count++;
1040 signal_wake_up(t, 0);
1041 t = next_thread(t);
1042 } while (t != p);
1043 wake_up_process(p->signal->group_exit_task);
1044 return;
1045 }
1046
1047 /*
1048 * The signal is already in the shared-pending queue.
1049 * Tell the chosen thread to wake up and dequeue it.
1050 */
1051 signal_wake_up(t, sig == SIGKILL);
1052 return;
1053 }
1054
1055 int
1056 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1057 {
1058 int ret = 0;
1059
1060 assert_spin_locked(&p->sighand->siglock);
1061 handle_stop_signal(sig, p);
1062
1063 /* Short-circuit ignored signals. */
1064 if (sig_ignored(p, sig))
1065 return ret;
1066
1067 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1068 /* This is a non-RT signal and we already have one queued. */
1069 return ret;
1070
1071 /*
1072 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1073 * We always use the shared queue for process-wide signals,
1074 * to avoid several races.
1075 */
1076 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1077 if (unlikely(ret))
1078 return ret;
1079
1080 __group_complete_signal(sig, p);
1081 return 0;
1082 }
1083
1084 /*
1085 * Nuke all other threads in the group.
1086 */
1087 void zap_other_threads(struct task_struct *p)
1088 {
1089 struct task_struct *t;
1090
1091 p->signal->flags = SIGNAL_GROUP_EXIT;
1092 p->signal->group_stop_count = 0;
1093
1094 if (thread_group_empty(p))
1095 return;
1096
1097 for (t = next_thread(p); t != p; t = next_thread(t)) {
1098 /*
1099 * Don't bother with already dead threads
1100 */
1101 if (t->exit_state)
1102 continue;
1103
1104 /*
1105 * We don't want to notify the parent, since we are
1106 * killed as part of a thread group due to another
1107 * thread doing an execve() or similar. So set the
1108 * exit signal to -1 to allow immediate reaping of
1109 * the process. But don't detach the thread group
1110 * leader.
1111 */
1112 if (t != p->group_leader)
1113 t->exit_signal = -1;
1114
1115 /* SIGKILL will be handled before any pending SIGSTOP */
1116 sigaddset(&t->pending.signal, SIGKILL);
1117 signal_wake_up(t, 1);
1118 }
1119 }
1120
1121 /*
1122 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1123 */
1124 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1125 {
1126 unsigned long flags;
1127 struct sighand_struct *sp;
1128 int ret;
1129
1130 retry:
1131 ret = check_kill_permission(sig, info, p);
1132 if (!ret && sig && (sp = rcu_dereference(p->sighand))) {
1133 spin_lock_irqsave(&sp->siglock, flags);
1134 if (p->sighand != sp) {
1135 spin_unlock_irqrestore(&sp->siglock, flags);
1136 goto retry;
1137 }
1138 if ((atomic_read(&sp->count) == 0) ||
1139 (atomic_read(&p->usage) == 0)) {
1140 spin_unlock_irqrestore(&sp->siglock, flags);
1141 return -ESRCH;
1142 }
1143 ret = __group_send_sig_info(sig, info, p);
1144 spin_unlock_irqrestore(&sp->siglock, flags);
1145 }
1146
1147 return ret;
1148 }
1149
1150 /*
1151 * kill_pg_info() sends a signal to a process group: this is what the tty
1152 * control characters do (^C, ^Z etc)
1153 */
1154
1155 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1156 {
1157 struct task_struct *p = NULL;
1158 int retval, success;
1159
1160 if (pgrp <= 0)
1161 return -EINVAL;
1162
1163 success = 0;
1164 retval = -ESRCH;
1165 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1166 int err = group_send_sig_info(sig, info, p);
1167 success |= !err;
1168 retval = err;
1169 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1170 return success ? 0 : retval;
1171 }
1172
1173 int
1174 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1175 {
1176 int retval;
1177
1178 read_lock(&tasklist_lock);
1179 retval = __kill_pg_info(sig, info, pgrp);
1180 read_unlock(&tasklist_lock);
1181
1182 return retval;
1183 }
1184
1185 int
1186 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1187 {
1188 int error;
1189 int acquired_tasklist_lock = 0;
1190 struct task_struct *p;
1191
1192 rcu_read_lock();
1193 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) {
1194 read_lock(&tasklist_lock);
1195 acquired_tasklist_lock = 1;
1196 }
1197 p = find_task_by_pid(pid);
1198 error = -ESRCH;
1199 if (p)
1200 error = group_send_sig_info(sig, info, p);
1201 if (unlikely(acquired_tasklist_lock))
1202 read_unlock(&tasklist_lock);
1203 rcu_read_unlock();
1204 return error;
1205 }
1206
1207 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1208 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1209 uid_t uid, uid_t euid)
1210 {
1211 int ret = -EINVAL;
1212 struct task_struct *p;
1213
1214 if (!valid_signal(sig))
1215 return ret;
1216
1217 read_lock(&tasklist_lock);
1218 p = find_task_by_pid(pid);
1219 if (!p) {
1220 ret = -ESRCH;
1221 goto out_unlock;
1222 }
1223 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1224 && (euid != p->suid) && (euid != p->uid)
1225 && (uid != p->suid) && (uid != p->uid)) {
1226 ret = -EPERM;
1227 goto out_unlock;
1228 }
1229 if (sig && p->sighand) {
1230 unsigned long flags;
1231 spin_lock_irqsave(&p->sighand->siglock, flags);
1232 ret = __group_send_sig_info(sig, info, p);
1233 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1234 }
1235 out_unlock:
1236 read_unlock(&tasklist_lock);
1237 return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1240
1241 /*
1242 * kill_something_info() interprets pid in interesting ways just like kill(2).
1243 *
1244 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1245 * is probably wrong. Should make it like BSD or SYSV.
1246 */
1247
1248 static int kill_something_info(int sig, struct siginfo *info, int pid)
1249 {
1250 if (!pid) {
1251 return kill_pg_info(sig, info, process_group(current));
1252 } else if (pid == -1) {
1253 int retval = 0, count = 0;
1254 struct task_struct * p;
1255
1256 read_lock(&tasklist_lock);
1257 for_each_process(p) {
1258 if (p->pid > 1 && p->tgid != current->tgid) {
1259 int err = group_send_sig_info(sig, info, p);
1260 ++count;
1261 if (err != -EPERM)
1262 retval = err;
1263 }
1264 }
1265 read_unlock(&tasklist_lock);
1266 return count ? retval : -ESRCH;
1267 } else if (pid < 0) {
1268 return kill_pg_info(sig, info, -pid);
1269 } else {
1270 return kill_proc_info(sig, info, pid);
1271 }
1272 }
1273
1274 /*
1275 * These are for backward compatibility with the rest of the kernel source.
1276 */
1277
1278 /*
1279 * These two are the most common entry points. They send a signal
1280 * just to the specific thread.
1281 */
1282 int
1283 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1284 {
1285 int ret;
1286 unsigned long flags;
1287
1288 /*
1289 * Make sure legacy kernel users don't send in bad values
1290 * (normal paths check this in check_kill_permission).
1291 */
1292 if (!valid_signal(sig))
1293 return -EINVAL;
1294
1295 /*
1296 * We need the tasklist lock even for the specific
1297 * thread case (when we don't need to follow the group
1298 * lists) in order to avoid races with "p->sighand"
1299 * going away or changing from under us.
1300 */
1301 read_lock(&tasklist_lock);
1302 spin_lock_irqsave(&p->sighand->siglock, flags);
1303 ret = specific_send_sig_info(sig, info, p);
1304 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 read_unlock(&tasklist_lock);
1306 return ret;
1307 }
1308
1309 #define __si_special(priv) \
1310 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1311
1312 int
1313 send_sig(int sig, struct task_struct *p, int priv)
1314 {
1315 return send_sig_info(sig, __si_special(priv), p);
1316 }
1317
1318 /*
1319 * This is the entry point for "process-wide" signals.
1320 * They will go to an appropriate thread in the thread group.
1321 */
1322 int
1323 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1324 {
1325 int ret;
1326 read_lock(&tasklist_lock);
1327 ret = group_send_sig_info(sig, info, p);
1328 read_unlock(&tasklist_lock);
1329 return ret;
1330 }
1331
1332 void
1333 force_sig(int sig, struct task_struct *p)
1334 {
1335 force_sig_info(sig, SEND_SIG_PRIV, p);
1336 }
1337
1338 /*
1339 * When things go south during signal handling, we
1340 * will force a SIGSEGV. And if the signal that caused
1341 * the problem was already a SIGSEGV, we'll want to
1342 * make sure we don't even try to deliver the signal..
1343 */
1344 int
1345 force_sigsegv(int sig, struct task_struct *p)
1346 {
1347 if (sig == SIGSEGV) {
1348 unsigned long flags;
1349 spin_lock_irqsave(&p->sighand->siglock, flags);
1350 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1351 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1352 }
1353 force_sig(SIGSEGV, p);
1354 return 0;
1355 }
1356
1357 int
1358 kill_pg(pid_t pgrp, int sig, int priv)
1359 {
1360 return kill_pg_info(sig, __si_special(priv), pgrp);
1361 }
1362
1363 int
1364 kill_proc(pid_t pid, int sig, int priv)
1365 {
1366 return kill_proc_info(sig, __si_special(priv), pid);
1367 }
1368
1369 /*
1370 * These functions support sending signals using preallocated sigqueue
1371 * structures. This is needed "because realtime applications cannot
1372 * afford to lose notifications of asynchronous events, like timer
1373 * expirations or I/O completions". In the case of Posix Timers
1374 * we allocate the sigqueue structure from the timer_create. If this
1375 * allocation fails we are able to report the failure to the application
1376 * with an EAGAIN error.
1377 */
1378
1379 struct sigqueue *sigqueue_alloc(void)
1380 {
1381 struct sigqueue *q;
1382
1383 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1384 q->flags |= SIGQUEUE_PREALLOC;
1385 return(q);
1386 }
1387
1388 void sigqueue_free(struct sigqueue *q)
1389 {
1390 unsigned long flags;
1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 /*
1393 * If the signal is still pending remove it from the
1394 * pending queue.
1395 */
1396 if (unlikely(!list_empty(&q->list))) {
1397 spinlock_t *lock = &current->sighand->siglock;
1398 read_lock(&tasklist_lock);
1399 spin_lock_irqsave(lock, flags);
1400 if (!list_empty(&q->list))
1401 list_del_init(&q->list);
1402 spin_unlock_irqrestore(lock, flags);
1403 read_unlock(&tasklist_lock);
1404 }
1405 q->flags &= ~SIGQUEUE_PREALLOC;
1406 __sigqueue_free(q);
1407 }
1408
1409 int
1410 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1411 {
1412 unsigned long flags;
1413 int ret = 0;
1414 struct sighand_struct *sh;
1415
1416 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1417
1418 /*
1419 * The rcu based delayed sighand destroy makes it possible to
1420 * run this without tasklist lock held. The task struct itself
1421 * cannot go away as create_timer did get_task_struct().
1422 *
1423 * We return -1, when the task is marked exiting, so
1424 * posix_timer_event can redirect it to the group leader
1425 */
1426 rcu_read_lock();
1427
1428 if (unlikely(p->flags & PF_EXITING)) {
1429 ret = -1;
1430 goto out_err;
1431 }
1432
1433 retry:
1434 sh = rcu_dereference(p->sighand);
1435
1436 spin_lock_irqsave(&sh->siglock, flags);
1437 if (p->sighand != sh) {
1438 /* We raced with exec() in a multithreaded process... */
1439 spin_unlock_irqrestore(&sh->siglock, flags);
1440 goto retry;
1441 }
1442
1443 /*
1444 * We do the check here again to handle the following scenario:
1445 *
1446 * CPU 0 CPU 1
1447 * send_sigqueue
1448 * check PF_EXITING
1449 * interrupt exit code running
1450 * __exit_signal
1451 * lock sighand->siglock
1452 * unlock sighand->siglock
1453 * lock sh->siglock
1454 * add(tsk->pending) flush_sigqueue(tsk->pending)
1455 *
1456 */
1457
1458 if (unlikely(p->flags & PF_EXITING)) {
1459 ret = -1;
1460 goto out;
1461 }
1462
1463 if (unlikely(!list_empty(&q->list))) {
1464 /*
1465 * If an SI_TIMER entry is already queue just increment
1466 * the overrun count.
1467 */
1468 if (q->info.si_code != SI_TIMER)
1469 BUG();
1470 q->info.si_overrun++;
1471 goto out;
1472 }
1473 /* Short-circuit ignored signals. */
1474 if (sig_ignored(p, sig)) {
1475 ret = 1;
1476 goto out;
1477 }
1478
1479 list_add_tail(&q->list, &p->pending.list);
1480 sigaddset(&p->pending.signal, sig);
1481 if (!sigismember(&p->blocked, sig))
1482 signal_wake_up(p, sig == SIGKILL);
1483
1484 out:
1485 spin_unlock_irqrestore(&sh->siglock, flags);
1486 out_err:
1487 rcu_read_unlock();
1488
1489 return ret;
1490 }
1491
1492 int
1493 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1494 {
1495 unsigned long flags;
1496 int ret = 0;
1497
1498 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1499
1500 read_lock(&tasklist_lock);
1501 /* Since it_lock is held, p->sighand cannot be NULL. */
1502 spin_lock_irqsave(&p->sighand->siglock, flags);
1503 handle_stop_signal(sig, p);
1504
1505 /* Short-circuit ignored signals. */
1506 if (sig_ignored(p, sig)) {
1507 ret = 1;
1508 goto out;
1509 }
1510
1511 if (unlikely(!list_empty(&q->list))) {
1512 /*
1513 * If an SI_TIMER entry is already queue just increment
1514 * the overrun count. Other uses should not try to
1515 * send the signal multiple times.
1516 */
1517 if (q->info.si_code != SI_TIMER)
1518 BUG();
1519 q->info.si_overrun++;
1520 goto out;
1521 }
1522
1523 /*
1524 * Put this signal on the shared-pending queue.
1525 * We always use the shared queue for process-wide signals,
1526 * to avoid several races.
1527 */
1528 list_add_tail(&q->list, &p->signal->shared_pending.list);
1529 sigaddset(&p->signal->shared_pending.signal, sig);
1530
1531 __group_complete_signal(sig, p);
1532 out:
1533 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1534 read_unlock(&tasklist_lock);
1535 return ret;
1536 }
1537
1538 /*
1539 * Wake up any threads in the parent blocked in wait* syscalls.
1540 */
1541 static inline void __wake_up_parent(struct task_struct *p,
1542 struct task_struct *parent)
1543 {
1544 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1545 }
1546
1547 /*
1548 * Let a parent know about the death of a child.
1549 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1550 */
1551
1552 void do_notify_parent(struct task_struct *tsk, int sig)
1553 {
1554 struct siginfo info;
1555 unsigned long flags;
1556 struct sighand_struct *psig;
1557
1558 BUG_ON(sig == -1);
1559
1560 /* do_notify_parent_cldstop should have been called instead. */
1561 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1562
1563 BUG_ON(!tsk->ptrace &&
1564 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1565
1566 info.si_signo = sig;
1567 info.si_errno = 0;
1568 info.si_pid = tsk->pid;
1569 info.si_uid = tsk->uid;
1570
1571 /* FIXME: find out whether or not this is supposed to be c*time. */
1572 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1573 tsk->signal->utime));
1574 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1575 tsk->signal->stime));
1576
1577 info.si_status = tsk->exit_code & 0x7f;
1578 if (tsk->exit_code & 0x80)
1579 info.si_code = CLD_DUMPED;
1580 else if (tsk->exit_code & 0x7f)
1581 info.si_code = CLD_KILLED;
1582 else {
1583 info.si_code = CLD_EXITED;
1584 info.si_status = tsk->exit_code >> 8;
1585 }
1586
1587 psig = tsk->parent->sighand;
1588 spin_lock_irqsave(&psig->siglock, flags);
1589 if (!tsk->ptrace && sig == SIGCHLD &&
1590 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1591 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1592 /*
1593 * We are exiting and our parent doesn't care. POSIX.1
1594 * defines special semantics for setting SIGCHLD to SIG_IGN
1595 * or setting the SA_NOCLDWAIT flag: we should be reaped
1596 * automatically and not left for our parent's wait4 call.
1597 * Rather than having the parent do it as a magic kind of
1598 * signal handler, we just set this to tell do_exit that we
1599 * can be cleaned up without becoming a zombie. Note that
1600 * we still call __wake_up_parent in this case, because a
1601 * blocked sys_wait4 might now return -ECHILD.
1602 *
1603 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1604 * is implementation-defined: we do (if you don't want
1605 * it, just use SIG_IGN instead).
1606 */
1607 tsk->exit_signal = -1;
1608 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1609 sig = 0;
1610 }
1611 if (valid_signal(sig) && sig > 0)
1612 __group_send_sig_info(sig, &info, tsk->parent);
1613 __wake_up_parent(tsk, tsk->parent);
1614 spin_unlock_irqrestore(&psig->siglock, flags);
1615 }
1616
1617 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1618 {
1619 struct siginfo info;
1620 unsigned long flags;
1621 struct task_struct *parent;
1622 struct sighand_struct *sighand;
1623
1624 if (to_self)
1625 parent = tsk->parent;
1626 else {
1627 tsk = tsk->group_leader;
1628 parent = tsk->real_parent;
1629 }
1630
1631 info.si_signo = SIGCHLD;
1632 info.si_errno = 0;
1633 info.si_pid = tsk->pid;
1634 info.si_uid = tsk->uid;
1635
1636 /* FIXME: find out whether or not this is supposed to be c*time. */
1637 info.si_utime = cputime_to_jiffies(tsk->utime);
1638 info.si_stime = cputime_to_jiffies(tsk->stime);
1639
1640 info.si_code = why;
1641 switch (why) {
1642 case CLD_CONTINUED:
1643 info.si_status = SIGCONT;
1644 break;
1645 case CLD_STOPPED:
1646 info.si_status = tsk->signal->group_exit_code & 0x7f;
1647 break;
1648 case CLD_TRAPPED:
1649 info.si_status = tsk->exit_code & 0x7f;
1650 break;
1651 default:
1652 BUG();
1653 }
1654
1655 sighand = parent->sighand;
1656 spin_lock_irqsave(&sighand->siglock, flags);
1657 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1658 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1659 __group_send_sig_info(SIGCHLD, &info, parent);
1660 /*
1661 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1662 */
1663 __wake_up_parent(tsk, parent);
1664 spin_unlock_irqrestore(&sighand->siglock, flags);
1665 }
1666
1667 /*
1668 * This must be called with current->sighand->siglock held.
1669 *
1670 * This should be the path for all ptrace stops.
1671 * We always set current->last_siginfo while stopped here.
1672 * That makes it a way to test a stopped process for
1673 * being ptrace-stopped vs being job-control-stopped.
1674 *
1675 * If we actually decide not to stop at all because the tracer is gone,
1676 * we leave nostop_code in current->exit_code.
1677 */
1678 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1679 {
1680 /*
1681 * If there is a group stop in progress,
1682 * we must participate in the bookkeeping.
1683 */
1684 if (current->signal->group_stop_count > 0)
1685 --current->signal->group_stop_count;
1686
1687 current->last_siginfo = info;
1688 current->exit_code = exit_code;
1689
1690 /* Let the debugger run. */
1691 set_current_state(TASK_TRACED);
1692 spin_unlock_irq(&current->sighand->siglock);
1693 read_lock(&tasklist_lock);
1694 if (likely(current->ptrace & PT_PTRACED) &&
1695 likely(current->parent != current->real_parent ||
1696 !(current->ptrace & PT_ATTACHED)) &&
1697 (likely(current->parent->signal != current->signal) ||
1698 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1699 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1700 read_unlock(&tasklist_lock);
1701 schedule();
1702 } else {
1703 /*
1704 * By the time we got the lock, our tracer went away.
1705 * Don't stop here.
1706 */
1707 read_unlock(&tasklist_lock);
1708 set_current_state(TASK_RUNNING);
1709 current->exit_code = nostop_code;
1710 }
1711
1712 /*
1713 * We are back. Now reacquire the siglock before touching
1714 * last_siginfo, so that we are sure to have synchronized with
1715 * any signal-sending on another CPU that wants to examine it.
1716 */
1717 spin_lock_irq(&current->sighand->siglock);
1718 current->last_siginfo = NULL;
1719
1720 /*
1721 * Queued signals ignored us while we were stopped for tracing.
1722 * So check for any that we should take before resuming user mode.
1723 */
1724 recalc_sigpending();
1725 }
1726
1727 void ptrace_notify(int exit_code)
1728 {
1729 siginfo_t info;
1730
1731 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1732
1733 memset(&info, 0, sizeof info);
1734 info.si_signo = SIGTRAP;
1735 info.si_code = exit_code;
1736 info.si_pid = current->pid;
1737 info.si_uid = current->uid;
1738
1739 /* Let the debugger run. */
1740 spin_lock_irq(&current->sighand->siglock);
1741 ptrace_stop(exit_code, 0, &info);
1742 spin_unlock_irq(&current->sighand->siglock);
1743 }
1744
1745 static void
1746 finish_stop(int stop_count)
1747 {
1748 int to_self;
1749
1750 /*
1751 * If there are no other threads in the group, or if there is
1752 * a group stop in progress and we are the last to stop,
1753 * report to the parent. When ptraced, every thread reports itself.
1754 */
1755 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1756 to_self = 1;
1757 else if (stop_count == 0)
1758 to_self = 0;
1759 else
1760 goto out;
1761
1762 read_lock(&tasklist_lock);
1763 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1764 read_unlock(&tasklist_lock);
1765
1766 out:
1767 schedule();
1768 /*
1769 * Now we don't run again until continued.
1770 */
1771 current->exit_code = 0;
1772 }
1773
1774 /*
1775 * This performs the stopping for SIGSTOP and other stop signals.
1776 * We have to stop all threads in the thread group.
1777 * Returns nonzero if we've actually stopped and released the siglock.
1778 * Returns zero if we didn't stop and still hold the siglock.
1779 */
1780 static int
1781 do_signal_stop(int signr)
1782 {
1783 struct signal_struct *sig = current->signal;
1784 struct sighand_struct *sighand = current->sighand;
1785 int stop_count = -1;
1786
1787 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1788 return 0;
1789
1790 if (sig->group_stop_count > 0) {
1791 /*
1792 * There is a group stop in progress. We don't need to
1793 * start another one.
1794 */
1795 signr = sig->group_exit_code;
1796 stop_count = --sig->group_stop_count;
1797 current->exit_code = signr;
1798 set_current_state(TASK_STOPPED);
1799 if (stop_count == 0)
1800 sig->flags = SIGNAL_STOP_STOPPED;
1801 spin_unlock_irq(&sighand->siglock);
1802 }
1803 else if (thread_group_empty(current)) {
1804 /*
1805 * Lock must be held through transition to stopped state.
1806 */
1807 current->exit_code = current->signal->group_exit_code = signr;
1808 set_current_state(TASK_STOPPED);
1809 sig->flags = SIGNAL_STOP_STOPPED;
1810 spin_unlock_irq(&sighand->siglock);
1811 }
1812 else {
1813 /*
1814 * There is no group stop already in progress.
1815 * We must initiate one now, but that requires
1816 * dropping siglock to get both the tasklist lock
1817 * and siglock again in the proper order. Note that
1818 * this allows an intervening SIGCONT to be posted.
1819 * We need to check for that and bail out if necessary.
1820 */
1821 struct task_struct *t;
1822
1823 spin_unlock_irq(&sighand->siglock);
1824
1825 /* signals can be posted during this window */
1826
1827 read_lock(&tasklist_lock);
1828 spin_lock_irq(&sighand->siglock);
1829
1830 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1831 /*
1832 * Another stop or continue happened while we
1833 * didn't have the lock. We can just swallow this
1834 * signal now. If we raced with a SIGCONT, that
1835 * should have just cleared it now. If we raced
1836 * with another processor delivering a stop signal,
1837 * then the SIGCONT that wakes us up should clear it.
1838 */
1839 read_unlock(&tasklist_lock);
1840 return 0;
1841 }
1842
1843 if (sig->group_stop_count == 0) {
1844 sig->group_exit_code = signr;
1845 stop_count = 0;
1846 for (t = next_thread(current); t != current;
1847 t = next_thread(t))
1848 /*
1849 * Setting state to TASK_STOPPED for a group
1850 * stop is always done with the siglock held,
1851 * so this check has no races.
1852 */
1853 if (!t->exit_state &&
1854 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1855 stop_count++;
1856 signal_wake_up(t, 0);
1857 }
1858 sig->group_stop_count = stop_count;
1859 }
1860 else {
1861 /* A race with another thread while unlocked. */
1862 signr = sig->group_exit_code;
1863 stop_count = --sig->group_stop_count;
1864 }
1865
1866 current->exit_code = signr;
1867 set_current_state(TASK_STOPPED);
1868 if (stop_count == 0)
1869 sig->flags = SIGNAL_STOP_STOPPED;
1870
1871 spin_unlock_irq(&sighand->siglock);
1872 read_unlock(&tasklist_lock);
1873 }
1874
1875 finish_stop(stop_count);
1876 return 1;
1877 }
1878
1879 /*
1880 * Do appropriate magic when group_stop_count > 0.
1881 * We return nonzero if we stopped, after releasing the siglock.
1882 * We return zero if we still hold the siglock and should look
1883 * for another signal without checking group_stop_count again.
1884 */
1885 static inline int handle_group_stop(void)
1886 {
1887 int stop_count;
1888
1889 if (current->signal->group_exit_task == current) {
1890 /*
1891 * Group stop is so we can do a core dump,
1892 * We are the initiating thread, so get on with it.
1893 */
1894 current->signal->group_exit_task = NULL;
1895 return 0;
1896 }
1897
1898 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1899 /*
1900 * Group stop is so another thread can do a core dump,
1901 * or else we are racing against a death signal.
1902 * Just punt the stop so we can get the next signal.
1903 */
1904 return 0;
1905
1906 /*
1907 * There is a group stop in progress. We stop
1908 * without any associated signal being in our queue.
1909 */
1910 stop_count = --current->signal->group_stop_count;
1911 if (stop_count == 0)
1912 current->signal->flags = SIGNAL_STOP_STOPPED;
1913 current->exit_code = current->signal->group_exit_code;
1914 set_current_state(TASK_STOPPED);
1915 spin_unlock_irq(&current->sighand->siglock);
1916 finish_stop(stop_count);
1917 return 1;
1918 }
1919
1920 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1921 struct pt_regs *regs, void *cookie)
1922 {
1923 sigset_t *mask = &current->blocked;
1924 int signr = 0;
1925
1926 relock:
1927 spin_lock_irq(&current->sighand->siglock);
1928 for (;;) {
1929 struct k_sigaction *ka;
1930
1931 if (unlikely(current->signal->group_stop_count > 0) &&
1932 handle_group_stop())
1933 goto relock;
1934
1935 signr = dequeue_signal(current, mask, info);
1936
1937 if (!signr)
1938 break; /* will return 0 */
1939
1940 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1941 ptrace_signal_deliver(regs, cookie);
1942
1943 /* Let the debugger run. */
1944 ptrace_stop(signr, signr, info);
1945
1946 /* We're back. Did the debugger cancel the sig or group_exit? */
1947 signr = current->exit_code;
1948 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1949 continue;
1950
1951 current->exit_code = 0;
1952
1953 /* Update the siginfo structure if the signal has
1954 changed. If the debugger wanted something
1955 specific in the siginfo structure then it should
1956 have updated *info via PTRACE_SETSIGINFO. */
1957 if (signr != info->si_signo) {
1958 info->si_signo = signr;
1959 info->si_errno = 0;
1960 info->si_code = SI_USER;
1961 info->si_pid = current->parent->pid;
1962 info->si_uid = current->parent->uid;
1963 }
1964
1965 /* If the (new) signal is now blocked, requeue it. */
1966 if (sigismember(&current->blocked, signr)) {
1967 specific_send_sig_info(signr, info, current);
1968 continue;
1969 }
1970 }
1971
1972 ka = &current->sighand->action[signr-1];
1973 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1974 continue;
1975 if (ka->sa.sa_handler != SIG_DFL) {
1976 /* Run the handler. */
1977 *return_ka = *ka;
1978
1979 if (ka->sa.sa_flags & SA_ONESHOT)
1980 ka->sa.sa_handler = SIG_DFL;
1981
1982 break; /* will return non-zero "signr" value */
1983 }
1984
1985 /*
1986 * Now we are doing the default action for this signal.
1987 */
1988 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1989 continue;
1990
1991 /* Init gets no signals it doesn't want. */
1992 if (current->pid == 1)
1993 continue;
1994
1995 if (sig_kernel_stop(signr)) {
1996 /*
1997 * The default action is to stop all threads in
1998 * the thread group. The job control signals
1999 * do nothing in an orphaned pgrp, but SIGSTOP
2000 * always works. Note that siglock needs to be
2001 * dropped during the call to is_orphaned_pgrp()
2002 * because of lock ordering with tasklist_lock.
2003 * This allows an intervening SIGCONT to be posted.
2004 * We need to check for that and bail out if necessary.
2005 */
2006 if (signr != SIGSTOP) {
2007 spin_unlock_irq(&current->sighand->siglock);
2008
2009 /* signals can be posted during this window */
2010
2011 if (is_orphaned_pgrp(process_group(current)))
2012 goto relock;
2013
2014 spin_lock_irq(&current->sighand->siglock);
2015 }
2016
2017 if (likely(do_signal_stop(signr))) {
2018 /* It released the siglock. */
2019 goto relock;
2020 }
2021
2022 /*
2023 * We didn't actually stop, due to a race
2024 * with SIGCONT or something like that.
2025 */
2026 continue;
2027 }
2028
2029 spin_unlock_irq(&current->sighand->siglock);
2030
2031 /*
2032 * Anything else is fatal, maybe with a core dump.
2033 */
2034 current->flags |= PF_SIGNALED;
2035 if (sig_kernel_coredump(signr)) {
2036 /*
2037 * If it was able to dump core, this kills all
2038 * other threads in the group and synchronizes with
2039 * their demise. If we lost the race with another
2040 * thread getting here, it set group_exit_code
2041 * first and our do_group_exit call below will use
2042 * that value and ignore the one we pass it.
2043 */
2044 do_coredump((long)signr, signr, regs);
2045 }
2046
2047 /*
2048 * Death signals, no core dump.
2049 */
2050 do_group_exit(signr);
2051 /* NOTREACHED */
2052 }
2053 spin_unlock_irq(&current->sighand->siglock);
2054 return signr;
2055 }
2056
2057 EXPORT_SYMBOL(recalc_sigpending);
2058 EXPORT_SYMBOL_GPL(dequeue_signal);
2059 EXPORT_SYMBOL(flush_signals);
2060 EXPORT_SYMBOL(force_sig);
2061 EXPORT_SYMBOL(kill_pg);
2062 EXPORT_SYMBOL(kill_proc);
2063 EXPORT_SYMBOL(ptrace_notify);
2064 EXPORT_SYMBOL(send_sig);
2065 EXPORT_SYMBOL(send_sig_info);
2066 EXPORT_SYMBOL(sigprocmask);
2067 EXPORT_SYMBOL(block_all_signals);
2068 EXPORT_SYMBOL(unblock_all_signals);
2069
2070
2071 /*
2072 * System call entry points.
2073 */
2074
2075 asmlinkage long sys_restart_syscall(void)
2076 {
2077 struct restart_block *restart = &current_thread_info()->restart_block;
2078 return restart->fn(restart);
2079 }
2080
2081 long do_no_restart_syscall(struct restart_block *param)
2082 {
2083 return -EINTR;
2084 }
2085
2086 /*
2087 * We don't need to get the kernel lock - this is all local to this
2088 * particular thread.. (and that's good, because this is _heavily_
2089 * used by various programs)
2090 */
2091
2092 /*
2093 * This is also useful for kernel threads that want to temporarily
2094 * (or permanently) block certain signals.
2095 *
2096 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2097 * interface happily blocks "unblockable" signals like SIGKILL
2098 * and friends.
2099 */
2100 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2101 {
2102 int error;
2103 sigset_t old_block;
2104
2105 spin_lock_irq(&current->sighand->siglock);
2106 old_block = current->blocked;
2107 error = 0;
2108 switch (how) {
2109 case SIG_BLOCK:
2110 sigorsets(&current->blocked, &current->blocked, set);
2111 break;
2112 case SIG_UNBLOCK:
2113 signandsets(&current->blocked, &current->blocked, set);
2114 break;
2115 case SIG_SETMASK:
2116 current->blocked = *set;
2117 break;
2118 default:
2119 error = -EINVAL;
2120 }
2121 recalc_sigpending();
2122 spin_unlock_irq(&current->sighand->siglock);
2123 if (oldset)
2124 *oldset = old_block;
2125 return error;
2126 }
2127
2128 asmlinkage long
2129 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2130 {
2131 int error = -EINVAL;
2132 sigset_t old_set, new_set;
2133
2134 /* XXX: Don't preclude handling different sized sigset_t's. */
2135 if (sigsetsize != sizeof(sigset_t))
2136 goto out;
2137
2138 if (set) {
2139 error = -EFAULT;
2140 if (copy_from_user(&new_set, set, sizeof(*set)))
2141 goto out;
2142 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2143
2144 error = sigprocmask(how, &new_set, &old_set);
2145 if (error)
2146 goto out;
2147 if (oset)
2148 goto set_old;
2149 } else if (oset) {
2150 spin_lock_irq(&current->sighand->siglock);
2151 old_set = current->blocked;
2152 spin_unlock_irq(&current->sighand->siglock);
2153
2154 set_old:
2155 error = -EFAULT;
2156 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2157 goto out;
2158 }
2159 error = 0;
2160 out:
2161 return error;
2162 }
2163
2164 long do_sigpending(void __user *set, unsigned long sigsetsize)
2165 {
2166 long error = -EINVAL;
2167 sigset_t pending;
2168
2169 if (sigsetsize > sizeof(sigset_t))
2170 goto out;
2171
2172 spin_lock_irq(&current->sighand->siglock);
2173 sigorsets(&pending, &current->pending.signal,
2174 &current->signal->shared_pending.signal);
2175 spin_unlock_irq(&current->sighand->siglock);
2176
2177 /* Outside the lock because only this thread touches it. */
2178 sigandsets(&pending, &current->blocked, &pending);
2179
2180 error = -EFAULT;
2181 if (!copy_to_user(set, &pending, sigsetsize))
2182 error = 0;
2183
2184 out:
2185 return error;
2186 }
2187
2188 asmlinkage long
2189 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2190 {
2191 return do_sigpending(set, sigsetsize);
2192 }
2193
2194 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2195
2196 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2197 {
2198 int err;
2199
2200 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2201 return -EFAULT;
2202 if (from->si_code < 0)
2203 return __copy_to_user(to, from, sizeof(siginfo_t))
2204 ? -EFAULT : 0;
2205 /*
2206 * If you change siginfo_t structure, please be sure
2207 * this code is fixed accordingly.
2208 * It should never copy any pad contained in the structure
2209 * to avoid security leaks, but must copy the generic
2210 * 3 ints plus the relevant union member.
2211 */
2212 err = __put_user(from->si_signo, &to->si_signo);
2213 err |= __put_user(from->si_errno, &to->si_errno);
2214 err |= __put_user((short)from->si_code, &to->si_code);
2215 switch (from->si_code & __SI_MASK) {
2216 case __SI_KILL:
2217 err |= __put_user(from->si_pid, &to->si_pid);
2218 err |= __put_user(from->si_uid, &to->si_uid);
2219 break;
2220 case __SI_TIMER:
2221 err |= __put_user(from->si_tid, &to->si_tid);
2222 err |= __put_user(from->si_overrun, &to->si_overrun);
2223 err |= __put_user(from->si_ptr, &to->si_ptr);
2224 break;
2225 case __SI_POLL:
2226 err |= __put_user(from->si_band, &to->si_band);
2227 err |= __put_user(from->si_fd, &to->si_fd);
2228 break;
2229 case __SI_FAULT:
2230 err |= __put_user(from->si_addr, &to->si_addr);
2231 #ifdef __ARCH_SI_TRAPNO
2232 err |= __put_user(from->si_trapno, &to->si_trapno);
2233 #endif
2234 break;
2235 case __SI_CHLD:
2236 err |= __put_user(from->si_pid, &to->si_pid);
2237 err |= __put_user(from->si_uid, &to->si_uid);
2238 err |= __put_user(from->si_status, &to->si_status);
2239 err |= __put_user(from->si_utime, &to->si_utime);
2240 err |= __put_user(from->si_stime, &to->si_stime);
2241 break;
2242 case __SI_RT: /* This is not generated by the kernel as of now. */
2243 case __SI_MESGQ: /* But this is */
2244 err |= __put_user(from->si_pid, &to->si_pid);
2245 err |= __put_user(from->si_uid, &to->si_uid);
2246 err |= __put_user(from->si_ptr, &to->si_ptr);
2247 break;
2248 default: /* this is just in case for now ... */
2249 err |= __put_user(from->si_pid, &to->si_pid);
2250 err |= __put_user(from->si_uid, &to->si_uid);
2251 break;
2252 }
2253 return err;
2254 }
2255
2256 #endif
2257
2258 asmlinkage long
2259 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2260 siginfo_t __user *uinfo,
2261 const struct timespec __user *uts,
2262 size_t sigsetsize)
2263 {
2264 int ret, sig;
2265 sigset_t these;
2266 struct timespec ts;
2267 siginfo_t info;
2268 long timeout = 0;
2269
2270 /* XXX: Don't preclude handling different sized sigset_t's. */
2271 if (sigsetsize != sizeof(sigset_t))
2272 return -EINVAL;
2273
2274 if (copy_from_user(&these, uthese, sizeof(these)))
2275 return -EFAULT;
2276
2277 /*
2278 * Invert the set of allowed signals to get those we
2279 * want to block.
2280 */
2281 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2282 signotset(&these);
2283
2284 if (uts) {
2285 if (copy_from_user(&ts, uts, sizeof(ts)))
2286 return -EFAULT;
2287 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2288 || ts.tv_sec < 0)
2289 return -EINVAL;
2290 }
2291
2292 spin_lock_irq(&current->sighand->siglock);
2293 sig = dequeue_signal(current, &these, &info);
2294 if (!sig) {
2295 timeout = MAX_SCHEDULE_TIMEOUT;
2296 if (uts)
2297 timeout = (timespec_to_jiffies(&ts)
2298 + (ts.tv_sec || ts.tv_nsec));
2299
2300 if (timeout) {
2301 /* None ready -- temporarily unblock those we're
2302 * interested while we are sleeping in so that we'll
2303 * be awakened when they arrive. */
2304 current->real_blocked = current->blocked;
2305 sigandsets(&current->blocked, &current->blocked, &these);
2306 recalc_sigpending();
2307 spin_unlock_irq(&current->sighand->siglock);
2308
2309 timeout = schedule_timeout_interruptible(timeout);
2310
2311 try_to_freeze();
2312 spin_lock_irq(&current->sighand->siglock);
2313 sig = dequeue_signal(current, &these, &info);
2314 current->blocked = current->real_blocked;
2315 siginitset(&current->real_blocked, 0);
2316 recalc_sigpending();
2317 }
2318 }
2319 spin_unlock_irq(&current->sighand->siglock);
2320
2321 if (sig) {
2322 ret = sig;
2323 if (uinfo) {
2324 if (copy_siginfo_to_user(uinfo, &info))
2325 ret = -EFAULT;
2326 }
2327 } else {
2328 ret = -EAGAIN;
2329 if (timeout)
2330 ret = -EINTR;
2331 }
2332
2333 return ret;
2334 }
2335
2336 asmlinkage long
2337 sys_kill(int pid, int sig)
2338 {
2339 struct siginfo info;
2340
2341 info.si_signo = sig;
2342 info.si_errno = 0;
2343 info.si_code = SI_USER;
2344 info.si_pid = current->tgid;
2345 info.si_uid = current->uid;
2346
2347 return kill_something_info(sig, &info, pid);
2348 }
2349
2350 static int do_tkill(int tgid, int pid, int sig)
2351 {
2352 int error;
2353 struct siginfo info;
2354 struct task_struct *p;
2355
2356 error = -ESRCH;
2357 info.si_signo = sig;
2358 info.si_errno = 0;
2359 info.si_code = SI_TKILL;
2360 info.si_pid = current->tgid;
2361 info.si_uid = current->uid;
2362
2363 read_lock(&tasklist_lock);
2364 p = find_task_by_pid(pid);
2365 if (p && (tgid <= 0 || p->tgid == tgid)) {
2366 error = check_kill_permission(sig, &info, p);
2367 /*
2368 * The null signal is a permissions and process existence
2369 * probe. No signal is actually delivered.
2370 */
2371 if (!error && sig && p->sighand) {
2372 spin_lock_irq(&p->sighand->siglock);
2373 handle_stop_signal(sig, p);
2374 error = specific_send_sig_info(sig, &info, p);
2375 spin_unlock_irq(&p->sighand->siglock);
2376 }
2377 }
2378 read_unlock(&tasklist_lock);
2379
2380 return error;
2381 }
2382
2383 /**
2384 * sys_tgkill - send signal to one specific thread
2385 * @tgid: the thread group ID of the thread
2386 * @pid: the PID of the thread
2387 * @sig: signal to be sent
2388 *
2389 * This syscall also checks the tgid and returns -ESRCH even if the PID
2390 * exists but it's not belonging to the target process anymore. This
2391 * method solves the problem of threads exiting and PIDs getting reused.
2392 */
2393 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2394 {
2395 /* This is only valid for single tasks */
2396 if (pid <= 0 || tgid <= 0)
2397 return -EINVAL;
2398
2399 return do_tkill(tgid, pid, sig);
2400 }
2401
2402 /*
2403 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2404 */
2405 asmlinkage long
2406 sys_tkill(int pid, int sig)
2407 {
2408 /* This is only valid for single tasks */
2409 if (pid <= 0)
2410 return -EINVAL;
2411
2412 return do_tkill(0, pid, sig);
2413 }
2414
2415 asmlinkage long
2416 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2417 {
2418 siginfo_t info;
2419
2420 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2421 return -EFAULT;
2422
2423 /* Not even root can pretend to send signals from the kernel.
2424 Nor can they impersonate a kill(), which adds source info. */
2425 if (info.si_code >= 0)
2426 return -EPERM;
2427 info.si_signo = sig;
2428
2429 /* POSIX.1b doesn't mention process groups. */
2430 return kill_proc_info(sig, &info, pid);
2431 }
2432
2433 int
2434 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2435 {
2436 struct k_sigaction *k;
2437 sigset_t mask;
2438
2439 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2440 return -EINVAL;
2441
2442 k = &current->sighand->action[sig-1];
2443
2444 spin_lock_irq(&current->sighand->siglock);
2445 if (signal_pending(current)) {
2446 /*
2447 * If there might be a fatal signal pending on multiple
2448 * threads, make sure we take it before changing the action.
2449 */
2450 spin_unlock_irq(&current->sighand->siglock);
2451 return -ERESTARTNOINTR;
2452 }
2453
2454 if (oact)
2455 *oact = *k;
2456
2457 if (act) {
2458 /*
2459 * POSIX 3.3.1.3:
2460 * "Setting a signal action to SIG_IGN for a signal that is
2461 * pending shall cause the pending signal to be discarded,
2462 * whether or not it is blocked."
2463 *
2464 * "Setting a signal action to SIG_DFL for a signal that is
2465 * pending and whose default action is to ignore the signal
2466 * (for example, SIGCHLD), shall cause the pending signal to
2467 * be discarded, whether or not it is blocked"
2468 */
2469 if (act->sa.sa_handler == SIG_IGN ||
2470 (act->sa.sa_handler == SIG_DFL &&
2471 sig_kernel_ignore(sig))) {
2472 /*
2473 * This is a fairly rare case, so we only take the
2474 * tasklist_lock once we're sure we'll need it.
2475 * Now we must do this little unlock and relock
2476 * dance to maintain the lock hierarchy.
2477 */
2478 struct task_struct *t = current;
2479 spin_unlock_irq(&t->sighand->siglock);
2480 read_lock(&tasklist_lock);
2481 spin_lock_irq(&t->sighand->siglock);
2482 *k = *act;
2483 sigdelsetmask(&k->sa.sa_mask,
2484 sigmask(SIGKILL) | sigmask(SIGSTOP));
2485 sigemptyset(&mask);
2486 sigaddset(&mask, sig);
2487 rm_from_queue_full(&mask, &t->signal->shared_pending);
2488 do {
2489 rm_from_queue_full(&mask, &t->pending);
2490 recalc_sigpending_tsk(t);
2491 t = next_thread(t);
2492 } while (t != current);
2493 spin_unlock_irq(&current->sighand->siglock);
2494 read_unlock(&tasklist_lock);
2495 return 0;
2496 }
2497
2498 *k = *act;
2499 sigdelsetmask(&k->sa.sa_mask,
2500 sigmask(SIGKILL) | sigmask(SIGSTOP));
2501 }
2502
2503 spin_unlock_irq(&current->sighand->siglock);
2504 return 0;
2505 }
2506
2507 int
2508 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2509 {
2510 stack_t oss;
2511 int error;
2512
2513 if (uoss) {
2514 oss.ss_sp = (void __user *) current->sas_ss_sp;
2515 oss.ss_size = current->sas_ss_size;
2516 oss.ss_flags = sas_ss_flags(sp);
2517 }
2518
2519 if (uss) {
2520 void __user *ss_sp;
2521 size_t ss_size;
2522 int ss_flags;
2523
2524 error = -EFAULT;
2525 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2526 || __get_user(ss_sp, &uss->ss_sp)
2527 || __get_user(ss_flags, &uss->ss_flags)
2528 || __get_user(ss_size, &uss->ss_size))
2529 goto out;
2530
2531 error = -EPERM;
2532 if (on_sig_stack(sp))
2533 goto out;
2534
2535 error = -EINVAL;
2536 /*
2537 *
2538 * Note - this code used to test ss_flags incorrectly
2539 * old code may have been written using ss_flags==0
2540 * to mean ss_flags==SS_ONSTACK (as this was the only
2541 * way that worked) - this fix preserves that older
2542 * mechanism
2543 */
2544 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2545 goto out;
2546
2547 if (ss_flags == SS_DISABLE) {
2548 ss_size = 0;
2549 ss_sp = NULL;
2550 } else {
2551 error = -ENOMEM;
2552 if (ss_size < MINSIGSTKSZ)
2553 goto out;
2554 }
2555
2556 current->sas_ss_sp = (unsigned long) ss_sp;
2557 current->sas_ss_size = ss_size;
2558 }
2559
2560 if (uoss) {
2561 error = -EFAULT;
2562 if (copy_to_user(uoss, &oss, sizeof(oss)))
2563 goto out;
2564 }
2565
2566 error = 0;
2567 out:
2568 return error;
2569 }
2570
2571 #ifdef __ARCH_WANT_SYS_SIGPENDING
2572
2573 asmlinkage long
2574 sys_sigpending(old_sigset_t __user *set)
2575 {
2576 return do_sigpending(set, sizeof(*set));
2577 }
2578
2579 #endif
2580
2581 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2582 /* Some platforms have their own version with special arguments others
2583 support only sys_rt_sigprocmask. */
2584
2585 asmlinkage long
2586 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2587 {
2588 int error;
2589 old_sigset_t old_set, new_set;
2590
2591 if (set) {
2592 error = -EFAULT;
2593 if (copy_from_user(&new_set, set, sizeof(*set)))
2594 goto out;
2595 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2596
2597 spin_lock_irq(&current->sighand->siglock);
2598 old_set = current->blocked.sig[0];
2599
2600 error = 0;
2601 switch (how) {
2602 default:
2603 error = -EINVAL;
2604 break;
2605 case SIG_BLOCK:
2606 sigaddsetmask(&current->blocked, new_set);
2607 break;
2608 case SIG_UNBLOCK:
2609 sigdelsetmask(&current->blocked, new_set);
2610 break;
2611 case SIG_SETMASK:
2612 current->blocked.sig[0] = new_set;
2613 break;
2614 }
2615
2616 recalc_sigpending();
2617 spin_unlock_irq(&current->sighand->siglock);
2618 if (error)
2619 goto out;
2620 if (oset)
2621 goto set_old;
2622 } else if (oset) {
2623 old_set = current->blocked.sig[0];
2624 set_old:
2625 error = -EFAULT;
2626 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2627 goto out;
2628 }
2629 error = 0;
2630 out:
2631 return error;
2632 }
2633 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2634
2635 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2636 asmlinkage long
2637 sys_rt_sigaction(int sig,
2638 const struct sigaction __user *act,
2639 struct sigaction __user *oact,
2640 size_t sigsetsize)
2641 {
2642 struct k_sigaction new_sa, old_sa;
2643 int ret = -EINVAL;
2644
2645 /* XXX: Don't preclude handling different sized sigset_t's. */
2646 if (sigsetsize != sizeof(sigset_t))
2647 goto out;
2648
2649 if (act) {
2650 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2651 return -EFAULT;
2652 }
2653
2654 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2655
2656 if (!ret && oact) {
2657 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2658 return -EFAULT;
2659 }
2660 out:
2661 return ret;
2662 }
2663 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2664
2665 #ifdef __ARCH_WANT_SYS_SGETMASK
2666
2667 /*
2668 * For backwards compatibility. Functionality superseded by sigprocmask.
2669 */
2670 asmlinkage long
2671 sys_sgetmask(void)
2672 {
2673 /* SMP safe */
2674 return current->blocked.sig[0];
2675 }
2676
2677 asmlinkage long
2678 sys_ssetmask(int newmask)
2679 {
2680 int old;
2681
2682 spin_lock_irq(&current->sighand->siglock);
2683 old = current->blocked.sig[0];
2684
2685 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2686 sigmask(SIGSTOP)));
2687 recalc_sigpending();
2688 spin_unlock_irq(&current->sighand->siglock);
2689
2690 return old;
2691 }
2692 #endif /* __ARCH_WANT_SGETMASK */
2693
2694 #ifdef __ARCH_WANT_SYS_SIGNAL
2695 /*
2696 * For backwards compatibility. Functionality superseded by sigaction.
2697 */
2698 asmlinkage unsigned long
2699 sys_signal(int sig, __sighandler_t handler)
2700 {
2701 struct k_sigaction new_sa, old_sa;
2702 int ret;
2703
2704 new_sa.sa.sa_handler = handler;
2705 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2706
2707 ret = do_sigaction(sig, &new_sa, &old_sa);
2708
2709 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2710 }
2711 #endif /* __ARCH_WANT_SYS_SIGNAL */
2712
2713 #ifdef __ARCH_WANT_SYS_PAUSE
2714
2715 asmlinkage long
2716 sys_pause(void)
2717 {
2718 current->state = TASK_INTERRUPTIBLE;
2719 schedule();
2720 return -ERESTARTNOHAND;
2721 }
2722
2723 #endif
2724
2725 void __init signals_init(void)
2726 {
2727 sigqueue_cachep =
2728 kmem_cache_create("sigqueue",
2729 sizeof(struct sigqueue),
2730 __alignof__(struct sigqueue),
2731 SLAB_PANIC, NULL, NULL);
2732 }
This page took 0.122812 seconds and 6 git commands to generate.