[PATCH] kill sigqueue->lock
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226 recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266 int override_rlimit)
267 {
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->user = get_uid(t->user);
281 }
282 return(q);
283 }
284
285 static inline void __sigqueue_free(struct sigqueue *q)
286 {
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292 }
293
294 static void flush_sigqueue(struct sigpending *queue)
295 {
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304 }
305
306 /*
307 * Flush all pending signals for a task.
308 */
309
310 void
311 flush_signals(struct task_struct *t)
312 {
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323 * This function expects the tasklist_lock write-locked.
324 */
325 void __exit_sighand(struct task_struct *tsk)
326 {
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333 }
334
335 void exit_sighand(struct task_struct *tsk)
336 {
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340 }
341
342 /*
343 * This function expects the tasklist_lock write-locked.
344 */
345 void __exit_signal(struct task_struct *tsk)
346 {
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
399 * We are cleaning up the signal_struct here.
400 */
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404 }
405
406 void exit_signal(struct task_struct *tsk)
407 {
408 atomic_dec(&tsk->signal->live);
409
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413 }
414
415 /*
416 * Flush all handlers for a task.
417 */
418
419 void
420 flush_signal_handlers(struct task_struct *t, int force_default)
421 {
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431 }
432
433
434 /* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442 void
443 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452 }
453
454 /* Notify the system that blocking has ended. */
455
456 void
457 unblock_all_signals(void)
458 {
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466 }
467
468 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469 {
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509 }
510
511 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513 {
514 int sig = 0;
515
516 /* SIGKILL must have priority, otherwise it is quite easy
517 * to create an unkillable process, sending sig < SIGKILL
518 * to self */
519 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
520 if (!sigismember(mask, SIGKILL))
521 sig = SIGKILL;
522 }
523
524 if (likely(!sig))
525 sig = next_signal(pending, mask);
526 if (sig) {
527 if (current->notifier) {
528 if (sigismember(current->notifier_mask, sig)) {
529 if (!(current->notifier)(current->notifier_data)) {
530 clear_thread_flag(TIF_SIGPENDING);
531 return 0;
532 }
533 }
534 }
535
536 if (!collect_signal(sig, pending, info))
537 sig = 0;
538
539 }
540 recalc_sigpending();
541
542 return sig;
543 }
544
545 /*
546 * Dequeue a signal and return the element to the caller, which is
547 * expected to free it.
548 *
549 * All callers have to hold the siglock.
550 */
551 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
552 {
553 int signr = __dequeue_signal(&tsk->pending, mask, info);
554 if (!signr)
555 signr = __dequeue_signal(&tsk->signal->shared_pending,
556 mask, info);
557 if (signr && unlikely(sig_kernel_stop(signr))) {
558 /*
559 * Set a marker that we have dequeued a stop signal. Our
560 * caller might release the siglock and then the pending
561 * stop signal it is about to process is no longer in the
562 * pending bitmasks, but must still be cleared by a SIGCONT
563 * (and overruled by a SIGKILL). So those cases clear this
564 * shared flag after we've set it. Note that this flag may
565 * remain set after the signal we return is ignored or
566 * handled. That doesn't matter because its only purpose
567 * is to alert stop-signal processing code when another
568 * processor has come along and cleared the flag.
569 */
570 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
571 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
572 }
573 if ( signr &&
574 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
575 info->si_sys_private){
576 /*
577 * Release the siglock to ensure proper locking order
578 * of timer locks outside of siglocks. Note, we leave
579 * irqs disabled here, since the posix-timers code is
580 * about to disable them again anyway.
581 */
582 spin_unlock(&tsk->sighand->siglock);
583 do_schedule_next_timer(info);
584 spin_lock(&tsk->sighand->siglock);
585 }
586 return signr;
587 }
588
589 /*
590 * Tell a process that it has a new active signal..
591 *
592 * NOTE! we rely on the previous spin_lock to
593 * lock interrupts for us! We can only be called with
594 * "siglock" held, and the local interrupt must
595 * have been disabled when that got acquired!
596 *
597 * No need to set need_resched since signal event passing
598 * goes through ->blocked
599 */
600 void signal_wake_up(struct task_struct *t, int resume)
601 {
602 unsigned int mask;
603
604 set_tsk_thread_flag(t, TIF_SIGPENDING);
605
606 /*
607 * For SIGKILL, we want to wake it up in the stopped/traced case.
608 * We don't check t->state here because there is a race with it
609 * executing another processor and just now entering stopped state.
610 * By using wake_up_state, we ensure the process will wake up and
611 * handle its death signal.
612 */
613 mask = TASK_INTERRUPTIBLE;
614 if (resume)
615 mask |= TASK_STOPPED | TASK_TRACED;
616 if (!wake_up_state(t, mask))
617 kick_process(t);
618 }
619
620 /*
621 * Remove signals in mask from the pending set and queue.
622 * Returns 1 if any signals were found.
623 *
624 * All callers must be holding the siglock.
625 */
626 static int rm_from_queue(unsigned long mask, struct sigpending *s)
627 {
628 struct sigqueue *q, *n;
629
630 if (!sigtestsetmask(&s->signal, mask))
631 return 0;
632
633 sigdelsetmask(&s->signal, mask);
634 list_for_each_entry_safe(q, n, &s->list, list) {
635 if (q->info.si_signo < SIGRTMIN &&
636 (mask & sigmask(q->info.si_signo))) {
637 list_del_init(&q->list);
638 __sigqueue_free(q);
639 }
640 }
641 return 1;
642 }
643
644 /*
645 * Bad permissions for sending the signal
646 */
647 static int check_kill_permission(int sig, struct siginfo *info,
648 struct task_struct *t)
649 {
650 int error = -EINVAL;
651 if (!valid_signal(sig))
652 return error;
653 error = -EPERM;
654 if ((!info || ((unsigned long)info != 1 &&
655 (unsigned long)info != 2 && SI_FROMUSER(info)))
656 && ((sig != SIGCONT) ||
657 (current->signal->session != t->signal->session))
658 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
659 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
660 && !capable(CAP_KILL))
661 return error;
662
663 error = security_task_kill(t, info, sig);
664 if (!error)
665 audit_signal_info(sig, t); /* Let audit system see the signal */
666 return error;
667 }
668
669 /* forward decl */
670 static void do_notify_parent_cldstop(struct task_struct *tsk,
671 int to_self,
672 int why);
673
674 /*
675 * Handle magic process-wide effects of stop/continue signals.
676 * Unlike the signal actions, these happen immediately at signal-generation
677 * time regardless of blocking, ignoring, or handling. This does the
678 * actual continuing for SIGCONT, but not the actual stopping for stop
679 * signals. The process stop is done as a signal action for SIG_DFL.
680 */
681 static void handle_stop_signal(int sig, struct task_struct *p)
682 {
683 struct task_struct *t;
684
685 if (p->signal->flags & SIGNAL_GROUP_EXIT)
686 /*
687 * The process is in the middle of dying already.
688 */
689 return;
690
691 if (sig_kernel_stop(sig)) {
692 /*
693 * This is a stop signal. Remove SIGCONT from all queues.
694 */
695 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
696 t = p;
697 do {
698 rm_from_queue(sigmask(SIGCONT), &t->pending);
699 t = next_thread(t);
700 } while (t != p);
701 } else if (sig == SIGCONT) {
702 /*
703 * Remove all stop signals from all queues,
704 * and wake all threads.
705 */
706 if (unlikely(p->signal->group_stop_count > 0)) {
707 /*
708 * There was a group stop in progress. We'll
709 * pretend it finished before we got here. We are
710 * obliged to report it to the parent: if the
711 * SIGSTOP happened "after" this SIGCONT, then it
712 * would have cleared this pending SIGCONT. If it
713 * happened "before" this SIGCONT, then the parent
714 * got the SIGCHLD about the stop finishing before
715 * the continue happened. We do the notification
716 * now, and it's as if the stop had finished and
717 * the SIGCHLD was pending on entry to this kill.
718 */
719 p->signal->group_stop_count = 0;
720 p->signal->flags = SIGNAL_STOP_CONTINUED;
721 spin_unlock(&p->sighand->siglock);
722 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
723 spin_lock(&p->sighand->siglock);
724 }
725 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
726 t = p;
727 do {
728 unsigned int state;
729 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
730
731 /*
732 * If there is a handler for SIGCONT, we must make
733 * sure that no thread returns to user mode before
734 * we post the signal, in case it was the only
735 * thread eligible to run the signal handler--then
736 * it must not do anything between resuming and
737 * running the handler. With the TIF_SIGPENDING
738 * flag set, the thread will pause and acquire the
739 * siglock that we hold now and until we've queued
740 * the pending signal.
741 *
742 * Wake up the stopped thread _after_ setting
743 * TIF_SIGPENDING
744 */
745 state = TASK_STOPPED;
746 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
747 set_tsk_thread_flag(t, TIF_SIGPENDING);
748 state |= TASK_INTERRUPTIBLE;
749 }
750 wake_up_state(t, state);
751
752 t = next_thread(t);
753 } while (t != p);
754
755 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
756 /*
757 * We were in fact stopped, and are now continued.
758 * Notify the parent with CLD_CONTINUED.
759 */
760 p->signal->flags = SIGNAL_STOP_CONTINUED;
761 p->signal->group_exit_code = 0;
762 spin_unlock(&p->sighand->siglock);
763 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
764 spin_lock(&p->sighand->siglock);
765 } else {
766 /*
767 * We are not stopped, but there could be a stop
768 * signal in the middle of being processed after
769 * being removed from the queue. Clear that too.
770 */
771 p->signal->flags = 0;
772 }
773 } else if (sig == SIGKILL) {
774 /*
775 * Make sure that any pending stop signal already dequeued
776 * is undone by the wakeup for SIGKILL.
777 */
778 p->signal->flags = 0;
779 }
780 }
781
782 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
783 struct sigpending *signals)
784 {
785 struct sigqueue * q = NULL;
786 int ret = 0;
787
788 /*
789 * fast-pathed signals for kernel-internal things like SIGSTOP
790 * or SIGKILL.
791 */
792 if ((unsigned long)info == 2)
793 goto out_set;
794
795 /* Real-time signals must be queued if sent by sigqueue, or
796 some other real-time mechanism. It is implementation
797 defined whether kill() does so. We attempt to do so, on
798 the principle of least surprise, but since kill is not
799 allowed to fail with EAGAIN when low on memory we just
800 make sure at least one signal gets delivered and don't
801 pass on the info struct. */
802
803 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
804 ((unsigned long) info < 2 ||
805 info->si_code >= 0)));
806 if (q) {
807 list_add_tail(&q->list, &signals->list);
808 switch ((unsigned long) info) {
809 case 0:
810 q->info.si_signo = sig;
811 q->info.si_errno = 0;
812 q->info.si_code = SI_USER;
813 q->info.si_pid = current->pid;
814 q->info.si_uid = current->uid;
815 break;
816 case 1:
817 q->info.si_signo = sig;
818 q->info.si_errno = 0;
819 q->info.si_code = SI_KERNEL;
820 q->info.si_pid = 0;
821 q->info.si_uid = 0;
822 break;
823 default:
824 copy_siginfo(&q->info, info);
825 break;
826 }
827 } else {
828 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
829 && info->si_code != SI_USER)
830 /*
831 * Queue overflow, abort. We may abort if the signal was rt
832 * and sent by user using something other than kill().
833 */
834 return -EAGAIN;
835 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
836 /*
837 * Set up a return to indicate that we dropped
838 * the signal.
839 */
840 ret = info->si_sys_private;
841 }
842
843 out_set:
844 sigaddset(&signals->signal, sig);
845 return ret;
846 }
847
848 #define LEGACY_QUEUE(sigptr, sig) \
849 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
850
851
852 static int
853 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
854 {
855 int ret = 0;
856
857 if (!irqs_disabled())
858 BUG();
859 assert_spin_locked(&t->sighand->siglock);
860
861 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
862 /*
863 * Set up a return to indicate that we dropped the signal.
864 */
865 ret = info->si_sys_private;
866
867 /* Short-circuit ignored signals. */
868 if (sig_ignored(t, sig))
869 goto out;
870
871 /* Support queueing exactly one non-rt signal, so that we
872 can get more detailed information about the cause of
873 the signal. */
874 if (LEGACY_QUEUE(&t->pending, sig))
875 goto out;
876
877 ret = send_signal(sig, info, t, &t->pending);
878 if (!ret && !sigismember(&t->blocked, sig))
879 signal_wake_up(t, sig == SIGKILL);
880 out:
881 return ret;
882 }
883
884 /*
885 * Force a signal that the process can't ignore: if necessary
886 * we unblock the signal and change any SIG_IGN to SIG_DFL.
887 */
888
889 int
890 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
891 {
892 unsigned long int flags;
893 int ret;
894
895 spin_lock_irqsave(&t->sighand->siglock, flags);
896 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
897 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
898 sigdelset(&t->blocked, sig);
899 recalc_sigpending_tsk(t);
900 }
901 ret = specific_send_sig_info(sig, info, t);
902 spin_unlock_irqrestore(&t->sighand->siglock, flags);
903
904 return ret;
905 }
906
907 void
908 force_sig_specific(int sig, struct task_struct *t)
909 {
910 unsigned long int flags;
911
912 spin_lock_irqsave(&t->sighand->siglock, flags);
913 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
914 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
915 sigdelset(&t->blocked, sig);
916 recalc_sigpending_tsk(t);
917 specific_send_sig_info(sig, (void *)2, t);
918 spin_unlock_irqrestore(&t->sighand->siglock, flags);
919 }
920
921 /*
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
928 */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (p->state & (TASK_STOPPED | TASK_TRACED))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
940 }
941
942 static void
943 __group_complete_signal(int sig, struct task_struct *p)
944 {
945 struct task_struct *t;
946
947 /*
948 * Now find a thread we can wake up to take the signal off the queue.
949 *
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
952 */
953 if (wants_signal(sig, p))
954 t = p;
955 else if (thread_group_empty(p))
956 /*
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
959 */
960 return;
961 else {
962 /*
963 * Otherwise try to find a suitable thread.
964 */
965 t = p->signal->curr_target;
966 if (t == NULL)
967 /* restart balancing at this thread */
968 t = p->signal->curr_target = p;
969 BUG_ON(t->tgid != p->tgid);
970
971 while (!wants_signal(sig, t)) {
972 t = next_thread(t);
973 if (t == p->signal->curr_target)
974 /*
975 * No thread needs to be woken.
976 * Any eligible threads will see
977 * the signal in the queue soon.
978 */
979 return;
980 }
981 p->signal->curr_target = t;
982 }
983
984 /*
985 * Found a killable thread. If the signal will be fatal,
986 * then start taking the whole group down immediately.
987 */
988 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
989 !sigismember(&t->real_blocked, sig) &&
990 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
991 /*
992 * This signal will be fatal to the whole group.
993 */
994 if (!sig_kernel_coredump(sig)) {
995 /*
996 * Start a group exit and wake everybody up.
997 * This way we don't have other threads
998 * running and doing things after a slower
999 * thread has the fatal signal pending.
1000 */
1001 p->signal->flags = SIGNAL_GROUP_EXIT;
1002 p->signal->group_exit_code = sig;
1003 p->signal->group_stop_count = 0;
1004 t = p;
1005 do {
1006 sigaddset(&t->pending.signal, SIGKILL);
1007 signal_wake_up(t, 1);
1008 t = next_thread(t);
1009 } while (t != p);
1010 return;
1011 }
1012
1013 /*
1014 * There will be a core dump. We make all threads other
1015 * than the chosen one go into a group stop so that nothing
1016 * happens until it gets scheduled, takes the signal off
1017 * the shared queue, and does the core dump. This is a
1018 * little more complicated than strictly necessary, but it
1019 * keeps the signal state that winds up in the core dump
1020 * unchanged from the death state, e.g. which thread had
1021 * the core-dump signal unblocked.
1022 */
1023 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1024 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1025 p->signal->group_stop_count = 0;
1026 p->signal->group_exit_task = t;
1027 t = p;
1028 do {
1029 p->signal->group_stop_count++;
1030 signal_wake_up(t, 0);
1031 t = next_thread(t);
1032 } while (t != p);
1033 wake_up_process(p->signal->group_exit_task);
1034 return;
1035 }
1036
1037 /*
1038 * The signal is already in the shared-pending queue.
1039 * Tell the chosen thread to wake up and dequeue it.
1040 */
1041 signal_wake_up(t, sig == SIGKILL);
1042 return;
1043 }
1044
1045 int
1046 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1047 {
1048 int ret = 0;
1049
1050 assert_spin_locked(&p->sighand->siglock);
1051 handle_stop_signal(sig, p);
1052
1053 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1054 /*
1055 * Set up a return to indicate that we dropped the signal.
1056 */
1057 ret = info->si_sys_private;
1058
1059 /* Short-circuit ignored signals. */
1060 if (sig_ignored(p, sig))
1061 return ret;
1062
1063 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1064 /* This is a non-RT signal and we already have one queued. */
1065 return ret;
1066
1067 /*
1068 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1069 * We always use the shared queue for process-wide signals,
1070 * to avoid several races.
1071 */
1072 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1073 if (unlikely(ret))
1074 return ret;
1075
1076 __group_complete_signal(sig, p);
1077 return 0;
1078 }
1079
1080 /*
1081 * Nuke all other threads in the group.
1082 */
1083 void zap_other_threads(struct task_struct *p)
1084 {
1085 struct task_struct *t;
1086
1087 p->signal->flags = SIGNAL_GROUP_EXIT;
1088 p->signal->group_stop_count = 0;
1089
1090 if (thread_group_empty(p))
1091 return;
1092
1093 for (t = next_thread(p); t != p; t = next_thread(t)) {
1094 /*
1095 * Don't bother with already dead threads
1096 */
1097 if (t->exit_state)
1098 continue;
1099
1100 /*
1101 * We don't want to notify the parent, since we are
1102 * killed as part of a thread group due to another
1103 * thread doing an execve() or similar. So set the
1104 * exit signal to -1 to allow immediate reaping of
1105 * the process. But don't detach the thread group
1106 * leader.
1107 */
1108 if (t != p->group_leader)
1109 t->exit_signal = -1;
1110
1111 sigaddset(&t->pending.signal, SIGKILL);
1112 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1113 signal_wake_up(t, 1);
1114 }
1115 }
1116
1117 /*
1118 * Must be called with the tasklist_lock held for reading!
1119 */
1120 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1121 {
1122 unsigned long flags;
1123 int ret;
1124
1125 ret = check_kill_permission(sig, info, p);
1126 if (!ret && sig && p->sighand) {
1127 spin_lock_irqsave(&p->sighand->siglock, flags);
1128 ret = __group_send_sig_info(sig, info, p);
1129 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1130 }
1131
1132 return ret;
1133 }
1134
1135 /*
1136 * kill_pg_info() sends a signal to a process group: this is what the tty
1137 * control characters do (^C, ^Z etc)
1138 */
1139
1140 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1141 {
1142 struct task_struct *p = NULL;
1143 int retval, success;
1144
1145 if (pgrp <= 0)
1146 return -EINVAL;
1147
1148 success = 0;
1149 retval = -ESRCH;
1150 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1151 int err = group_send_sig_info(sig, info, p);
1152 success |= !err;
1153 retval = err;
1154 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1155 return success ? 0 : retval;
1156 }
1157
1158 int
1159 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1160 {
1161 int retval;
1162
1163 read_lock(&tasklist_lock);
1164 retval = __kill_pg_info(sig, info, pgrp);
1165 read_unlock(&tasklist_lock);
1166
1167 return retval;
1168 }
1169
1170 int
1171 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1172 {
1173 int error;
1174 struct task_struct *p;
1175
1176 read_lock(&tasklist_lock);
1177 p = find_task_by_pid(pid);
1178 error = -ESRCH;
1179 if (p)
1180 error = group_send_sig_info(sig, info, p);
1181 read_unlock(&tasklist_lock);
1182 return error;
1183 }
1184
1185 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1186 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1187 uid_t uid, uid_t euid)
1188 {
1189 int ret = -EINVAL;
1190 struct task_struct *p;
1191
1192 if (!valid_signal(sig))
1193 return ret;
1194
1195 read_lock(&tasklist_lock);
1196 p = find_task_by_pid(pid);
1197 if (!p) {
1198 ret = -ESRCH;
1199 goto out_unlock;
1200 }
1201 if ((!info || ((unsigned long)info != 1 &&
1202 (unsigned long)info != 2 && SI_FROMUSER(info)))
1203 && (euid != p->suid) && (euid != p->uid)
1204 && (uid != p->suid) && (uid != p->uid)) {
1205 ret = -EPERM;
1206 goto out_unlock;
1207 }
1208 if (sig && p->sighand) {
1209 unsigned long flags;
1210 spin_lock_irqsave(&p->sighand->siglock, flags);
1211 ret = __group_send_sig_info(sig, info, p);
1212 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1213 }
1214 out_unlock:
1215 read_unlock(&tasklist_lock);
1216 return ret;
1217 }
1218 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1219
1220 /*
1221 * kill_something_info() interprets pid in interesting ways just like kill(2).
1222 *
1223 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1224 * is probably wrong. Should make it like BSD or SYSV.
1225 */
1226
1227 static int kill_something_info(int sig, struct siginfo *info, int pid)
1228 {
1229 if (!pid) {
1230 return kill_pg_info(sig, info, process_group(current));
1231 } else if (pid == -1) {
1232 int retval = 0, count = 0;
1233 struct task_struct * p;
1234
1235 read_lock(&tasklist_lock);
1236 for_each_process(p) {
1237 if (p->pid > 1 && p->tgid != current->tgid) {
1238 int err = group_send_sig_info(sig, info, p);
1239 ++count;
1240 if (err != -EPERM)
1241 retval = err;
1242 }
1243 }
1244 read_unlock(&tasklist_lock);
1245 return count ? retval : -ESRCH;
1246 } else if (pid < 0) {
1247 return kill_pg_info(sig, info, -pid);
1248 } else {
1249 return kill_proc_info(sig, info, pid);
1250 }
1251 }
1252
1253 /*
1254 * These are for backward compatibility with the rest of the kernel source.
1255 */
1256
1257 /*
1258 * These two are the most common entry points. They send a signal
1259 * just to the specific thread.
1260 */
1261 int
1262 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1263 {
1264 int ret;
1265 unsigned long flags;
1266
1267 /*
1268 * Make sure legacy kernel users don't send in bad values
1269 * (normal paths check this in check_kill_permission).
1270 */
1271 if (!valid_signal(sig))
1272 return -EINVAL;
1273
1274 /*
1275 * We need the tasklist lock even for the specific
1276 * thread case (when we don't need to follow the group
1277 * lists) in order to avoid races with "p->sighand"
1278 * going away or changing from under us.
1279 */
1280 read_lock(&tasklist_lock);
1281 spin_lock_irqsave(&p->sighand->siglock, flags);
1282 ret = specific_send_sig_info(sig, info, p);
1283 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1284 read_unlock(&tasklist_lock);
1285 return ret;
1286 }
1287
1288 int
1289 send_sig(int sig, struct task_struct *p, int priv)
1290 {
1291 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1292 }
1293
1294 /*
1295 * This is the entry point for "process-wide" signals.
1296 * They will go to an appropriate thread in the thread group.
1297 */
1298 int
1299 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1300 {
1301 int ret;
1302 read_lock(&tasklist_lock);
1303 ret = group_send_sig_info(sig, info, p);
1304 read_unlock(&tasklist_lock);
1305 return ret;
1306 }
1307
1308 void
1309 force_sig(int sig, struct task_struct *p)
1310 {
1311 force_sig_info(sig, (void*)1L, p);
1312 }
1313
1314 /*
1315 * When things go south during signal handling, we
1316 * will force a SIGSEGV. And if the signal that caused
1317 * the problem was already a SIGSEGV, we'll want to
1318 * make sure we don't even try to deliver the signal..
1319 */
1320 int
1321 force_sigsegv(int sig, struct task_struct *p)
1322 {
1323 if (sig == SIGSEGV) {
1324 unsigned long flags;
1325 spin_lock_irqsave(&p->sighand->siglock, flags);
1326 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1327 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1328 }
1329 force_sig(SIGSEGV, p);
1330 return 0;
1331 }
1332
1333 int
1334 kill_pg(pid_t pgrp, int sig, int priv)
1335 {
1336 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1337 }
1338
1339 int
1340 kill_proc(pid_t pid, int sig, int priv)
1341 {
1342 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1343 }
1344
1345 /*
1346 * These functions support sending signals using preallocated sigqueue
1347 * structures. This is needed "because realtime applications cannot
1348 * afford to lose notifications of asynchronous events, like timer
1349 * expirations or I/O completions". In the case of Posix Timers
1350 * we allocate the sigqueue structure from the timer_create. If this
1351 * allocation fails we are able to report the failure to the application
1352 * with an EAGAIN error.
1353 */
1354
1355 struct sigqueue *sigqueue_alloc(void)
1356 {
1357 struct sigqueue *q;
1358
1359 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1360 q->flags |= SIGQUEUE_PREALLOC;
1361 return(q);
1362 }
1363
1364 void sigqueue_free(struct sigqueue *q)
1365 {
1366 unsigned long flags;
1367 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368 /*
1369 * If the signal is still pending remove it from the
1370 * pending queue.
1371 */
1372 if (unlikely(!list_empty(&q->list))) {
1373 spinlock_t *lock = &current->sighand->siglock;
1374 read_lock(&tasklist_lock);
1375 spin_lock_irqsave(lock, flags);
1376 if (!list_empty(&q->list))
1377 list_del_init(&q->list);
1378 spin_unlock_irqrestore(lock, flags);
1379 read_unlock(&tasklist_lock);
1380 }
1381 q->flags &= ~SIGQUEUE_PREALLOC;
1382 __sigqueue_free(q);
1383 }
1384
1385 int
1386 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1387 {
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 read_lock(&tasklist_lock);
1393
1394 if (unlikely(p->flags & PF_EXITING)) {
1395 ret = -1;
1396 goto out_err;
1397 }
1398
1399 spin_lock_irqsave(&p->sighand->siglock, flags);
1400
1401 if (unlikely(!list_empty(&q->list))) {
1402 /*
1403 * If an SI_TIMER entry is already queue just increment
1404 * the overrun count.
1405 */
1406 if (q->info.si_code != SI_TIMER)
1407 BUG();
1408 q->info.si_overrun++;
1409 goto out;
1410 }
1411 /* Short-circuit ignored signals. */
1412 if (sig_ignored(p, sig)) {
1413 ret = 1;
1414 goto out;
1415 }
1416
1417 list_add_tail(&q->list, &p->pending.list);
1418 sigaddset(&p->pending.signal, sig);
1419 if (!sigismember(&p->blocked, sig))
1420 signal_wake_up(p, sig == SIGKILL);
1421
1422 out:
1423 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1424 out_err:
1425 read_unlock(&tasklist_lock);
1426
1427 return ret;
1428 }
1429
1430 int
1431 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1432 {
1433 unsigned long flags;
1434 int ret = 0;
1435
1436 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1437 read_lock(&tasklist_lock);
1438 spin_lock_irqsave(&p->sighand->siglock, flags);
1439 handle_stop_signal(sig, p);
1440
1441 /* Short-circuit ignored signals. */
1442 if (sig_ignored(p, sig)) {
1443 ret = 1;
1444 goto out;
1445 }
1446
1447 if (unlikely(!list_empty(&q->list))) {
1448 /*
1449 * If an SI_TIMER entry is already queue just increment
1450 * the overrun count. Other uses should not try to
1451 * send the signal multiple times.
1452 */
1453 if (q->info.si_code != SI_TIMER)
1454 BUG();
1455 q->info.si_overrun++;
1456 goto out;
1457 }
1458
1459 /*
1460 * Put this signal on the shared-pending queue.
1461 * We always use the shared queue for process-wide signals,
1462 * to avoid several races.
1463 */
1464 list_add_tail(&q->list, &p->signal->shared_pending.list);
1465 sigaddset(&p->signal->shared_pending.signal, sig);
1466
1467 __group_complete_signal(sig, p);
1468 out:
1469 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1470 read_unlock(&tasklist_lock);
1471 return(ret);
1472 }
1473
1474 /*
1475 * Wake up any threads in the parent blocked in wait* syscalls.
1476 */
1477 static inline void __wake_up_parent(struct task_struct *p,
1478 struct task_struct *parent)
1479 {
1480 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1481 }
1482
1483 /*
1484 * Let a parent know about the death of a child.
1485 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1486 */
1487
1488 void do_notify_parent(struct task_struct *tsk, int sig)
1489 {
1490 struct siginfo info;
1491 unsigned long flags;
1492 struct sighand_struct *psig;
1493
1494 BUG_ON(sig == -1);
1495
1496 /* do_notify_parent_cldstop should have been called instead. */
1497 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1498
1499 BUG_ON(!tsk->ptrace &&
1500 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1501
1502 info.si_signo = sig;
1503 info.si_errno = 0;
1504 info.si_pid = tsk->pid;
1505 info.si_uid = tsk->uid;
1506
1507 /* FIXME: find out whether or not this is supposed to be c*time. */
1508 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1509 tsk->signal->utime));
1510 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1511 tsk->signal->stime));
1512
1513 info.si_status = tsk->exit_code & 0x7f;
1514 if (tsk->exit_code & 0x80)
1515 info.si_code = CLD_DUMPED;
1516 else if (tsk->exit_code & 0x7f)
1517 info.si_code = CLD_KILLED;
1518 else {
1519 info.si_code = CLD_EXITED;
1520 info.si_status = tsk->exit_code >> 8;
1521 }
1522
1523 psig = tsk->parent->sighand;
1524 spin_lock_irqsave(&psig->siglock, flags);
1525 if (sig == SIGCHLD &&
1526 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1527 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1528 /*
1529 * We are exiting and our parent doesn't care. POSIX.1
1530 * defines special semantics for setting SIGCHLD to SIG_IGN
1531 * or setting the SA_NOCLDWAIT flag: we should be reaped
1532 * automatically and not left for our parent's wait4 call.
1533 * Rather than having the parent do it as a magic kind of
1534 * signal handler, we just set this to tell do_exit that we
1535 * can be cleaned up without becoming a zombie. Note that
1536 * we still call __wake_up_parent in this case, because a
1537 * blocked sys_wait4 might now return -ECHILD.
1538 *
1539 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1540 * is implementation-defined: we do (if you don't want
1541 * it, just use SIG_IGN instead).
1542 */
1543 tsk->exit_signal = -1;
1544 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1545 sig = 0;
1546 }
1547 if (valid_signal(sig) && sig > 0)
1548 __group_send_sig_info(sig, &info, tsk->parent);
1549 __wake_up_parent(tsk, tsk->parent);
1550 spin_unlock_irqrestore(&psig->siglock, flags);
1551 }
1552
1553 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1554 {
1555 struct siginfo info;
1556 unsigned long flags;
1557 struct task_struct *parent;
1558 struct sighand_struct *sighand;
1559
1560 if (to_self)
1561 parent = tsk->parent;
1562 else {
1563 tsk = tsk->group_leader;
1564 parent = tsk->real_parent;
1565 }
1566
1567 info.si_signo = SIGCHLD;
1568 info.si_errno = 0;
1569 info.si_pid = tsk->pid;
1570 info.si_uid = tsk->uid;
1571
1572 /* FIXME: find out whether or not this is supposed to be c*time. */
1573 info.si_utime = cputime_to_jiffies(tsk->utime);
1574 info.si_stime = cputime_to_jiffies(tsk->stime);
1575
1576 info.si_code = why;
1577 switch (why) {
1578 case CLD_CONTINUED:
1579 info.si_status = SIGCONT;
1580 break;
1581 case CLD_STOPPED:
1582 info.si_status = tsk->signal->group_exit_code & 0x7f;
1583 break;
1584 case CLD_TRAPPED:
1585 info.si_status = tsk->exit_code & 0x7f;
1586 break;
1587 default:
1588 BUG();
1589 }
1590
1591 sighand = parent->sighand;
1592 spin_lock_irqsave(&sighand->siglock, flags);
1593 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1594 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1595 __group_send_sig_info(SIGCHLD, &info, parent);
1596 /*
1597 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1598 */
1599 __wake_up_parent(tsk, parent);
1600 spin_unlock_irqrestore(&sighand->siglock, flags);
1601 }
1602
1603 /*
1604 * This must be called with current->sighand->siglock held.
1605 *
1606 * This should be the path for all ptrace stops.
1607 * We always set current->last_siginfo while stopped here.
1608 * That makes it a way to test a stopped process for
1609 * being ptrace-stopped vs being job-control-stopped.
1610 *
1611 * If we actually decide not to stop at all because the tracer is gone,
1612 * we leave nostop_code in current->exit_code.
1613 */
1614 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1615 {
1616 /*
1617 * If there is a group stop in progress,
1618 * we must participate in the bookkeeping.
1619 */
1620 if (current->signal->group_stop_count > 0)
1621 --current->signal->group_stop_count;
1622
1623 current->last_siginfo = info;
1624 current->exit_code = exit_code;
1625
1626 /* Let the debugger run. */
1627 set_current_state(TASK_TRACED);
1628 spin_unlock_irq(&current->sighand->siglock);
1629 read_lock(&tasklist_lock);
1630 if (likely(current->ptrace & PT_PTRACED) &&
1631 likely(current->parent != current->real_parent ||
1632 !(current->ptrace & PT_ATTACHED)) &&
1633 (likely(current->parent->signal != current->signal) ||
1634 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1635 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1636 read_unlock(&tasklist_lock);
1637 schedule();
1638 } else {
1639 /*
1640 * By the time we got the lock, our tracer went away.
1641 * Don't stop here.
1642 */
1643 read_unlock(&tasklist_lock);
1644 set_current_state(TASK_RUNNING);
1645 current->exit_code = nostop_code;
1646 }
1647
1648 /*
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1652 */
1653 spin_lock_irq(&current->sighand->siglock);
1654 current->last_siginfo = NULL;
1655
1656 /*
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1659 */
1660 recalc_sigpending();
1661 }
1662
1663 void ptrace_notify(int exit_code)
1664 {
1665 siginfo_t info;
1666
1667 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1668
1669 memset(&info, 0, sizeof info);
1670 info.si_signo = SIGTRAP;
1671 info.si_code = exit_code;
1672 info.si_pid = current->pid;
1673 info.si_uid = current->uid;
1674
1675 /* Let the debugger run. */
1676 spin_lock_irq(&current->sighand->siglock);
1677 ptrace_stop(exit_code, 0, &info);
1678 spin_unlock_irq(&current->sighand->siglock);
1679 }
1680
1681 static void
1682 finish_stop(int stop_count)
1683 {
1684 int to_self;
1685
1686 /*
1687 * If there are no other threads in the group, or if there is
1688 * a group stop in progress and we are the last to stop,
1689 * report to the parent. When ptraced, every thread reports itself.
1690 */
1691 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1692 to_self = 1;
1693 else if (stop_count == 0)
1694 to_self = 0;
1695 else
1696 goto out;
1697
1698 read_lock(&tasklist_lock);
1699 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1700 read_unlock(&tasklist_lock);
1701
1702 out:
1703 schedule();
1704 /*
1705 * Now we don't run again until continued.
1706 */
1707 current->exit_code = 0;
1708 }
1709
1710 /*
1711 * This performs the stopping for SIGSTOP and other stop signals.
1712 * We have to stop all threads in the thread group.
1713 * Returns nonzero if we've actually stopped and released the siglock.
1714 * Returns zero if we didn't stop and still hold the siglock.
1715 */
1716 static int
1717 do_signal_stop(int signr)
1718 {
1719 struct signal_struct *sig = current->signal;
1720 struct sighand_struct *sighand = current->sighand;
1721 int stop_count = -1;
1722
1723 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1724 return 0;
1725
1726 if (sig->group_stop_count > 0) {
1727 /*
1728 * There is a group stop in progress. We don't need to
1729 * start another one.
1730 */
1731 signr = sig->group_exit_code;
1732 stop_count = --sig->group_stop_count;
1733 current->exit_code = signr;
1734 set_current_state(TASK_STOPPED);
1735 if (stop_count == 0)
1736 sig->flags = SIGNAL_STOP_STOPPED;
1737 spin_unlock_irq(&sighand->siglock);
1738 }
1739 else if (thread_group_empty(current)) {
1740 /*
1741 * Lock must be held through transition to stopped state.
1742 */
1743 current->exit_code = current->signal->group_exit_code = signr;
1744 set_current_state(TASK_STOPPED);
1745 sig->flags = SIGNAL_STOP_STOPPED;
1746 spin_unlock_irq(&sighand->siglock);
1747 }
1748 else {
1749 /*
1750 * There is no group stop already in progress.
1751 * We must initiate one now, but that requires
1752 * dropping siglock to get both the tasklist lock
1753 * and siglock again in the proper order. Note that
1754 * this allows an intervening SIGCONT to be posted.
1755 * We need to check for that and bail out if necessary.
1756 */
1757 struct task_struct *t;
1758
1759 spin_unlock_irq(&sighand->siglock);
1760
1761 /* signals can be posted during this window */
1762
1763 read_lock(&tasklist_lock);
1764 spin_lock_irq(&sighand->siglock);
1765
1766 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1767 /*
1768 * Another stop or continue happened while we
1769 * didn't have the lock. We can just swallow this
1770 * signal now. If we raced with a SIGCONT, that
1771 * should have just cleared it now. If we raced
1772 * with another processor delivering a stop signal,
1773 * then the SIGCONT that wakes us up should clear it.
1774 */
1775 read_unlock(&tasklist_lock);
1776 return 0;
1777 }
1778
1779 if (sig->group_stop_count == 0) {
1780 sig->group_exit_code = signr;
1781 stop_count = 0;
1782 for (t = next_thread(current); t != current;
1783 t = next_thread(t))
1784 /*
1785 * Setting state to TASK_STOPPED for a group
1786 * stop is always done with the siglock held,
1787 * so this check has no races.
1788 */
1789 if (!t->exit_state &&
1790 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1791 stop_count++;
1792 signal_wake_up(t, 0);
1793 }
1794 sig->group_stop_count = stop_count;
1795 }
1796 else {
1797 /* A race with another thread while unlocked. */
1798 signr = sig->group_exit_code;
1799 stop_count = --sig->group_stop_count;
1800 }
1801
1802 current->exit_code = signr;
1803 set_current_state(TASK_STOPPED);
1804 if (stop_count == 0)
1805 sig->flags = SIGNAL_STOP_STOPPED;
1806
1807 spin_unlock_irq(&sighand->siglock);
1808 read_unlock(&tasklist_lock);
1809 }
1810
1811 finish_stop(stop_count);
1812 return 1;
1813 }
1814
1815 /*
1816 * Do appropriate magic when group_stop_count > 0.
1817 * We return nonzero if we stopped, after releasing the siglock.
1818 * We return zero if we still hold the siglock and should look
1819 * for another signal without checking group_stop_count again.
1820 */
1821 static inline int handle_group_stop(void)
1822 {
1823 int stop_count;
1824
1825 if (current->signal->group_exit_task == current) {
1826 /*
1827 * Group stop is so we can do a core dump,
1828 * We are the initiating thread, so get on with it.
1829 */
1830 current->signal->group_exit_task = NULL;
1831 return 0;
1832 }
1833
1834 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1835 /*
1836 * Group stop is so another thread can do a core dump,
1837 * or else we are racing against a death signal.
1838 * Just punt the stop so we can get the next signal.
1839 */
1840 return 0;
1841
1842 /*
1843 * There is a group stop in progress. We stop
1844 * without any associated signal being in our queue.
1845 */
1846 stop_count = --current->signal->group_stop_count;
1847 if (stop_count == 0)
1848 current->signal->flags = SIGNAL_STOP_STOPPED;
1849 current->exit_code = current->signal->group_exit_code;
1850 set_current_state(TASK_STOPPED);
1851 spin_unlock_irq(&current->sighand->siglock);
1852 finish_stop(stop_count);
1853 return 1;
1854 }
1855
1856 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1857 struct pt_regs *regs, void *cookie)
1858 {
1859 sigset_t *mask = &current->blocked;
1860 int signr = 0;
1861
1862 relock:
1863 spin_lock_irq(&current->sighand->siglock);
1864 for (;;) {
1865 struct k_sigaction *ka;
1866
1867 if (unlikely(current->signal->group_stop_count > 0) &&
1868 handle_group_stop())
1869 goto relock;
1870
1871 signr = dequeue_signal(current, mask, info);
1872
1873 if (!signr)
1874 break; /* will return 0 */
1875
1876 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1877 ptrace_signal_deliver(regs, cookie);
1878
1879 /* Let the debugger run. */
1880 ptrace_stop(signr, signr, info);
1881
1882 /* We're back. Did the debugger cancel the sig? */
1883 signr = current->exit_code;
1884 if (signr == 0)
1885 continue;
1886
1887 current->exit_code = 0;
1888
1889 /* Update the siginfo structure if the signal has
1890 changed. If the debugger wanted something
1891 specific in the siginfo structure then it should
1892 have updated *info via PTRACE_SETSIGINFO. */
1893 if (signr != info->si_signo) {
1894 info->si_signo = signr;
1895 info->si_errno = 0;
1896 info->si_code = SI_USER;
1897 info->si_pid = current->parent->pid;
1898 info->si_uid = current->parent->uid;
1899 }
1900
1901 /* If the (new) signal is now blocked, requeue it. */
1902 if (sigismember(&current->blocked, signr)) {
1903 specific_send_sig_info(signr, info, current);
1904 continue;
1905 }
1906 }
1907
1908 ka = &current->sighand->action[signr-1];
1909 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1910 continue;
1911 if (ka->sa.sa_handler != SIG_DFL) {
1912 /* Run the handler. */
1913 *return_ka = *ka;
1914
1915 if (ka->sa.sa_flags & SA_ONESHOT)
1916 ka->sa.sa_handler = SIG_DFL;
1917
1918 break; /* will return non-zero "signr" value */
1919 }
1920
1921 /*
1922 * Now we are doing the default action for this signal.
1923 */
1924 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1925 continue;
1926
1927 /* Init gets no signals it doesn't want. */
1928 if (current->pid == 1)
1929 continue;
1930
1931 if (sig_kernel_stop(signr)) {
1932 /*
1933 * The default action is to stop all threads in
1934 * the thread group. The job control signals
1935 * do nothing in an orphaned pgrp, but SIGSTOP
1936 * always works. Note that siglock needs to be
1937 * dropped during the call to is_orphaned_pgrp()
1938 * because of lock ordering with tasklist_lock.
1939 * This allows an intervening SIGCONT to be posted.
1940 * We need to check for that and bail out if necessary.
1941 */
1942 if (signr != SIGSTOP) {
1943 spin_unlock_irq(&current->sighand->siglock);
1944
1945 /* signals can be posted during this window */
1946
1947 if (is_orphaned_pgrp(process_group(current)))
1948 goto relock;
1949
1950 spin_lock_irq(&current->sighand->siglock);
1951 }
1952
1953 if (likely(do_signal_stop(signr))) {
1954 /* It released the siglock. */
1955 goto relock;
1956 }
1957
1958 /*
1959 * We didn't actually stop, due to a race
1960 * with SIGCONT or something like that.
1961 */
1962 continue;
1963 }
1964
1965 spin_unlock_irq(&current->sighand->siglock);
1966
1967 /*
1968 * Anything else is fatal, maybe with a core dump.
1969 */
1970 current->flags |= PF_SIGNALED;
1971 if (sig_kernel_coredump(signr)) {
1972 /*
1973 * If it was able to dump core, this kills all
1974 * other threads in the group and synchronizes with
1975 * their demise. If we lost the race with another
1976 * thread getting here, it set group_exit_code
1977 * first and our do_group_exit call below will use
1978 * that value and ignore the one we pass it.
1979 */
1980 do_coredump((long)signr, signr, regs);
1981 }
1982
1983 /*
1984 * Death signals, no core dump.
1985 */
1986 do_group_exit(signr);
1987 /* NOTREACHED */
1988 }
1989 spin_unlock_irq(&current->sighand->siglock);
1990 return signr;
1991 }
1992
1993 EXPORT_SYMBOL(recalc_sigpending);
1994 EXPORT_SYMBOL_GPL(dequeue_signal);
1995 EXPORT_SYMBOL(flush_signals);
1996 EXPORT_SYMBOL(force_sig);
1997 EXPORT_SYMBOL(kill_pg);
1998 EXPORT_SYMBOL(kill_proc);
1999 EXPORT_SYMBOL(ptrace_notify);
2000 EXPORT_SYMBOL(send_sig);
2001 EXPORT_SYMBOL(send_sig_info);
2002 EXPORT_SYMBOL(sigprocmask);
2003 EXPORT_SYMBOL(block_all_signals);
2004 EXPORT_SYMBOL(unblock_all_signals);
2005
2006
2007 /*
2008 * System call entry points.
2009 */
2010
2011 asmlinkage long sys_restart_syscall(void)
2012 {
2013 struct restart_block *restart = &current_thread_info()->restart_block;
2014 return restart->fn(restart);
2015 }
2016
2017 long do_no_restart_syscall(struct restart_block *param)
2018 {
2019 return -EINTR;
2020 }
2021
2022 /*
2023 * We don't need to get the kernel lock - this is all local to this
2024 * particular thread.. (and that's good, because this is _heavily_
2025 * used by various programs)
2026 */
2027
2028 /*
2029 * This is also useful for kernel threads that want to temporarily
2030 * (or permanently) block certain signals.
2031 *
2032 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2033 * interface happily blocks "unblockable" signals like SIGKILL
2034 * and friends.
2035 */
2036 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2037 {
2038 int error;
2039 sigset_t old_block;
2040
2041 spin_lock_irq(&current->sighand->siglock);
2042 old_block = current->blocked;
2043 error = 0;
2044 switch (how) {
2045 case SIG_BLOCK:
2046 sigorsets(&current->blocked, &current->blocked, set);
2047 break;
2048 case SIG_UNBLOCK:
2049 signandsets(&current->blocked, &current->blocked, set);
2050 break;
2051 case SIG_SETMASK:
2052 current->blocked = *set;
2053 break;
2054 default:
2055 error = -EINVAL;
2056 }
2057 recalc_sigpending();
2058 spin_unlock_irq(&current->sighand->siglock);
2059 if (oldset)
2060 *oldset = old_block;
2061 return error;
2062 }
2063
2064 asmlinkage long
2065 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2066 {
2067 int error = -EINVAL;
2068 sigset_t old_set, new_set;
2069
2070 /* XXX: Don't preclude handling different sized sigset_t's. */
2071 if (sigsetsize != sizeof(sigset_t))
2072 goto out;
2073
2074 if (set) {
2075 error = -EFAULT;
2076 if (copy_from_user(&new_set, set, sizeof(*set)))
2077 goto out;
2078 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2079
2080 error = sigprocmask(how, &new_set, &old_set);
2081 if (error)
2082 goto out;
2083 if (oset)
2084 goto set_old;
2085 } else if (oset) {
2086 spin_lock_irq(&current->sighand->siglock);
2087 old_set = current->blocked;
2088 spin_unlock_irq(&current->sighand->siglock);
2089
2090 set_old:
2091 error = -EFAULT;
2092 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2093 goto out;
2094 }
2095 error = 0;
2096 out:
2097 return error;
2098 }
2099
2100 long do_sigpending(void __user *set, unsigned long sigsetsize)
2101 {
2102 long error = -EINVAL;
2103 sigset_t pending;
2104
2105 if (sigsetsize > sizeof(sigset_t))
2106 goto out;
2107
2108 spin_lock_irq(&current->sighand->siglock);
2109 sigorsets(&pending, &current->pending.signal,
2110 &current->signal->shared_pending.signal);
2111 spin_unlock_irq(&current->sighand->siglock);
2112
2113 /* Outside the lock because only this thread touches it. */
2114 sigandsets(&pending, &current->blocked, &pending);
2115
2116 error = -EFAULT;
2117 if (!copy_to_user(set, &pending, sigsetsize))
2118 error = 0;
2119
2120 out:
2121 return error;
2122 }
2123
2124 asmlinkage long
2125 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2126 {
2127 return do_sigpending(set, sigsetsize);
2128 }
2129
2130 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2131
2132 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2133 {
2134 int err;
2135
2136 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2137 return -EFAULT;
2138 if (from->si_code < 0)
2139 return __copy_to_user(to, from, sizeof(siginfo_t))
2140 ? -EFAULT : 0;
2141 /*
2142 * If you change siginfo_t structure, please be sure
2143 * this code is fixed accordingly.
2144 * It should never copy any pad contained in the structure
2145 * to avoid security leaks, but must copy the generic
2146 * 3 ints plus the relevant union member.
2147 */
2148 err = __put_user(from->si_signo, &to->si_signo);
2149 err |= __put_user(from->si_errno, &to->si_errno);
2150 err |= __put_user((short)from->si_code, &to->si_code);
2151 switch (from->si_code & __SI_MASK) {
2152 case __SI_KILL:
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2155 break;
2156 case __SI_TIMER:
2157 err |= __put_user(from->si_tid, &to->si_tid);
2158 err |= __put_user(from->si_overrun, &to->si_overrun);
2159 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 break;
2161 case __SI_POLL:
2162 err |= __put_user(from->si_band, &to->si_band);
2163 err |= __put_user(from->si_fd, &to->si_fd);
2164 break;
2165 case __SI_FAULT:
2166 err |= __put_user(from->si_addr, &to->si_addr);
2167 #ifdef __ARCH_SI_TRAPNO
2168 err |= __put_user(from->si_trapno, &to->si_trapno);
2169 #endif
2170 break;
2171 case __SI_CHLD:
2172 err |= __put_user(from->si_pid, &to->si_pid);
2173 err |= __put_user(from->si_uid, &to->si_uid);
2174 err |= __put_user(from->si_status, &to->si_status);
2175 err |= __put_user(from->si_utime, &to->si_utime);
2176 err |= __put_user(from->si_stime, &to->si_stime);
2177 break;
2178 case __SI_RT: /* This is not generated by the kernel as of now. */
2179 case __SI_MESGQ: /* But this is */
2180 err |= __put_user(from->si_pid, &to->si_pid);
2181 err |= __put_user(from->si_uid, &to->si_uid);
2182 err |= __put_user(from->si_ptr, &to->si_ptr);
2183 break;
2184 default: /* this is just in case for now ... */
2185 err |= __put_user(from->si_pid, &to->si_pid);
2186 err |= __put_user(from->si_uid, &to->si_uid);
2187 break;
2188 }
2189 return err;
2190 }
2191
2192 #endif
2193
2194 asmlinkage long
2195 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2196 siginfo_t __user *uinfo,
2197 const struct timespec __user *uts,
2198 size_t sigsetsize)
2199 {
2200 int ret, sig;
2201 sigset_t these;
2202 struct timespec ts;
2203 siginfo_t info;
2204 long timeout = 0;
2205
2206 /* XXX: Don't preclude handling different sized sigset_t's. */
2207 if (sigsetsize != sizeof(sigset_t))
2208 return -EINVAL;
2209
2210 if (copy_from_user(&these, uthese, sizeof(these)))
2211 return -EFAULT;
2212
2213 /*
2214 * Invert the set of allowed signals to get those we
2215 * want to block.
2216 */
2217 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2218 signotset(&these);
2219
2220 if (uts) {
2221 if (copy_from_user(&ts, uts, sizeof(ts)))
2222 return -EFAULT;
2223 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2224 || ts.tv_sec < 0)
2225 return -EINVAL;
2226 }
2227
2228 spin_lock_irq(&current->sighand->siglock);
2229 sig = dequeue_signal(current, &these, &info);
2230 if (!sig) {
2231 timeout = MAX_SCHEDULE_TIMEOUT;
2232 if (uts)
2233 timeout = (timespec_to_jiffies(&ts)
2234 + (ts.tv_sec || ts.tv_nsec));
2235
2236 if (timeout) {
2237 /* None ready -- temporarily unblock those we're
2238 * interested while we are sleeping in so that we'll
2239 * be awakened when they arrive. */
2240 current->real_blocked = current->blocked;
2241 sigandsets(&current->blocked, &current->blocked, &these);
2242 recalc_sigpending();
2243 spin_unlock_irq(&current->sighand->siglock);
2244
2245 timeout = schedule_timeout_interruptible(timeout);
2246
2247 try_to_freeze();
2248 spin_lock_irq(&current->sighand->siglock);
2249 sig = dequeue_signal(current, &these, &info);
2250 current->blocked = current->real_blocked;
2251 siginitset(&current->real_blocked, 0);
2252 recalc_sigpending();
2253 }
2254 }
2255 spin_unlock_irq(&current->sighand->siglock);
2256
2257 if (sig) {
2258 ret = sig;
2259 if (uinfo) {
2260 if (copy_siginfo_to_user(uinfo, &info))
2261 ret = -EFAULT;
2262 }
2263 } else {
2264 ret = -EAGAIN;
2265 if (timeout)
2266 ret = -EINTR;
2267 }
2268
2269 return ret;
2270 }
2271
2272 asmlinkage long
2273 sys_kill(int pid, int sig)
2274 {
2275 struct siginfo info;
2276
2277 info.si_signo = sig;
2278 info.si_errno = 0;
2279 info.si_code = SI_USER;
2280 info.si_pid = current->tgid;
2281 info.si_uid = current->uid;
2282
2283 return kill_something_info(sig, &info, pid);
2284 }
2285
2286 /**
2287 * sys_tgkill - send signal to one specific thread
2288 * @tgid: the thread group ID of the thread
2289 * @pid: the PID of the thread
2290 * @sig: signal to be sent
2291 *
2292 * This syscall also checks the tgid and returns -ESRCH even if the PID
2293 * exists but it's not belonging to the target process anymore. This
2294 * method solves the problem of threads exiting and PIDs getting reused.
2295 */
2296 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2297 {
2298 struct siginfo info;
2299 int error;
2300 struct task_struct *p;
2301
2302 /* This is only valid for single tasks */
2303 if (pid <= 0 || tgid <= 0)
2304 return -EINVAL;
2305
2306 info.si_signo = sig;
2307 info.si_errno = 0;
2308 info.si_code = SI_TKILL;
2309 info.si_pid = current->tgid;
2310 info.si_uid = current->uid;
2311
2312 read_lock(&tasklist_lock);
2313 p = find_task_by_pid(pid);
2314 error = -ESRCH;
2315 if (p && (p->tgid == tgid)) {
2316 error = check_kill_permission(sig, &info, p);
2317 /*
2318 * The null signal is a permissions and process existence
2319 * probe. No signal is actually delivered.
2320 */
2321 if (!error && sig && p->sighand) {
2322 spin_lock_irq(&p->sighand->siglock);
2323 handle_stop_signal(sig, p);
2324 error = specific_send_sig_info(sig, &info, p);
2325 spin_unlock_irq(&p->sighand->siglock);
2326 }
2327 }
2328 read_unlock(&tasklist_lock);
2329 return error;
2330 }
2331
2332 /*
2333 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2334 */
2335 asmlinkage long
2336 sys_tkill(int pid, int sig)
2337 {
2338 struct siginfo info;
2339 int error;
2340 struct task_struct *p;
2341
2342 /* This is only valid for single tasks */
2343 if (pid <= 0)
2344 return -EINVAL;
2345
2346 info.si_signo = sig;
2347 info.si_errno = 0;
2348 info.si_code = SI_TKILL;
2349 info.si_pid = current->tgid;
2350 info.si_uid = current->uid;
2351
2352 read_lock(&tasklist_lock);
2353 p = find_task_by_pid(pid);
2354 error = -ESRCH;
2355 if (p) {
2356 error = check_kill_permission(sig, &info, p);
2357 /*
2358 * The null signal is a permissions and process existence
2359 * probe. No signal is actually delivered.
2360 */
2361 if (!error && sig && p->sighand) {
2362 spin_lock_irq(&p->sighand->siglock);
2363 handle_stop_signal(sig, p);
2364 error = specific_send_sig_info(sig, &info, p);
2365 spin_unlock_irq(&p->sighand->siglock);
2366 }
2367 }
2368 read_unlock(&tasklist_lock);
2369 return error;
2370 }
2371
2372 asmlinkage long
2373 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2374 {
2375 siginfo_t info;
2376
2377 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2378 return -EFAULT;
2379
2380 /* Not even root can pretend to send signals from the kernel.
2381 Nor can they impersonate a kill(), which adds source info. */
2382 if (info.si_code >= 0)
2383 return -EPERM;
2384 info.si_signo = sig;
2385
2386 /* POSIX.1b doesn't mention process groups. */
2387 return kill_proc_info(sig, &info, pid);
2388 }
2389
2390 int
2391 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2392 {
2393 struct k_sigaction *k;
2394
2395 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2396 return -EINVAL;
2397
2398 k = &current->sighand->action[sig-1];
2399
2400 spin_lock_irq(&current->sighand->siglock);
2401 if (signal_pending(current)) {
2402 /*
2403 * If there might be a fatal signal pending on multiple
2404 * threads, make sure we take it before changing the action.
2405 */
2406 spin_unlock_irq(&current->sighand->siglock);
2407 return -ERESTARTNOINTR;
2408 }
2409
2410 if (oact)
2411 *oact = *k;
2412
2413 if (act) {
2414 /*
2415 * POSIX 3.3.1.3:
2416 * "Setting a signal action to SIG_IGN for a signal that is
2417 * pending shall cause the pending signal to be discarded,
2418 * whether or not it is blocked."
2419 *
2420 * "Setting a signal action to SIG_DFL for a signal that is
2421 * pending and whose default action is to ignore the signal
2422 * (for example, SIGCHLD), shall cause the pending signal to
2423 * be discarded, whether or not it is blocked"
2424 */
2425 if (act->sa.sa_handler == SIG_IGN ||
2426 (act->sa.sa_handler == SIG_DFL &&
2427 sig_kernel_ignore(sig))) {
2428 /*
2429 * This is a fairly rare case, so we only take the
2430 * tasklist_lock once we're sure we'll need it.
2431 * Now we must do this little unlock and relock
2432 * dance to maintain the lock hierarchy.
2433 */
2434 struct task_struct *t = current;
2435 spin_unlock_irq(&t->sighand->siglock);
2436 read_lock(&tasklist_lock);
2437 spin_lock_irq(&t->sighand->siglock);
2438 *k = *act;
2439 sigdelsetmask(&k->sa.sa_mask,
2440 sigmask(SIGKILL) | sigmask(SIGSTOP));
2441 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2442 do {
2443 rm_from_queue(sigmask(sig), &t->pending);
2444 recalc_sigpending_tsk(t);
2445 t = next_thread(t);
2446 } while (t != current);
2447 spin_unlock_irq(&current->sighand->siglock);
2448 read_unlock(&tasklist_lock);
2449 return 0;
2450 }
2451
2452 *k = *act;
2453 sigdelsetmask(&k->sa.sa_mask,
2454 sigmask(SIGKILL) | sigmask(SIGSTOP));
2455 }
2456
2457 spin_unlock_irq(&current->sighand->siglock);
2458 return 0;
2459 }
2460
2461 int
2462 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2463 {
2464 stack_t oss;
2465 int error;
2466
2467 if (uoss) {
2468 oss.ss_sp = (void __user *) current->sas_ss_sp;
2469 oss.ss_size = current->sas_ss_size;
2470 oss.ss_flags = sas_ss_flags(sp);
2471 }
2472
2473 if (uss) {
2474 void __user *ss_sp;
2475 size_t ss_size;
2476 int ss_flags;
2477
2478 error = -EFAULT;
2479 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2480 || __get_user(ss_sp, &uss->ss_sp)
2481 || __get_user(ss_flags, &uss->ss_flags)
2482 || __get_user(ss_size, &uss->ss_size))
2483 goto out;
2484
2485 error = -EPERM;
2486 if (on_sig_stack(sp))
2487 goto out;
2488
2489 error = -EINVAL;
2490 /*
2491 *
2492 * Note - this code used to test ss_flags incorrectly
2493 * old code may have been written using ss_flags==0
2494 * to mean ss_flags==SS_ONSTACK (as this was the only
2495 * way that worked) - this fix preserves that older
2496 * mechanism
2497 */
2498 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2499 goto out;
2500
2501 if (ss_flags == SS_DISABLE) {
2502 ss_size = 0;
2503 ss_sp = NULL;
2504 } else {
2505 error = -ENOMEM;
2506 if (ss_size < MINSIGSTKSZ)
2507 goto out;
2508 }
2509
2510 current->sas_ss_sp = (unsigned long) ss_sp;
2511 current->sas_ss_size = ss_size;
2512 }
2513
2514 if (uoss) {
2515 error = -EFAULT;
2516 if (copy_to_user(uoss, &oss, sizeof(oss)))
2517 goto out;
2518 }
2519
2520 error = 0;
2521 out:
2522 return error;
2523 }
2524
2525 #ifdef __ARCH_WANT_SYS_SIGPENDING
2526
2527 asmlinkage long
2528 sys_sigpending(old_sigset_t __user *set)
2529 {
2530 return do_sigpending(set, sizeof(*set));
2531 }
2532
2533 #endif
2534
2535 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2536 /* Some platforms have their own version with special arguments others
2537 support only sys_rt_sigprocmask. */
2538
2539 asmlinkage long
2540 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2541 {
2542 int error;
2543 old_sigset_t old_set, new_set;
2544
2545 if (set) {
2546 error = -EFAULT;
2547 if (copy_from_user(&new_set, set, sizeof(*set)))
2548 goto out;
2549 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2550
2551 spin_lock_irq(&current->sighand->siglock);
2552 old_set = current->blocked.sig[0];
2553
2554 error = 0;
2555 switch (how) {
2556 default:
2557 error = -EINVAL;
2558 break;
2559 case SIG_BLOCK:
2560 sigaddsetmask(&current->blocked, new_set);
2561 break;
2562 case SIG_UNBLOCK:
2563 sigdelsetmask(&current->blocked, new_set);
2564 break;
2565 case SIG_SETMASK:
2566 current->blocked.sig[0] = new_set;
2567 break;
2568 }
2569
2570 recalc_sigpending();
2571 spin_unlock_irq(&current->sighand->siglock);
2572 if (error)
2573 goto out;
2574 if (oset)
2575 goto set_old;
2576 } else if (oset) {
2577 old_set = current->blocked.sig[0];
2578 set_old:
2579 error = -EFAULT;
2580 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2581 goto out;
2582 }
2583 error = 0;
2584 out:
2585 return error;
2586 }
2587 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2588
2589 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2590 asmlinkage long
2591 sys_rt_sigaction(int sig,
2592 const struct sigaction __user *act,
2593 struct sigaction __user *oact,
2594 size_t sigsetsize)
2595 {
2596 struct k_sigaction new_sa, old_sa;
2597 int ret = -EINVAL;
2598
2599 /* XXX: Don't preclude handling different sized sigset_t's. */
2600 if (sigsetsize != sizeof(sigset_t))
2601 goto out;
2602
2603 if (act) {
2604 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2605 return -EFAULT;
2606 }
2607
2608 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2609
2610 if (!ret && oact) {
2611 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2612 return -EFAULT;
2613 }
2614 out:
2615 return ret;
2616 }
2617 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2618
2619 #ifdef __ARCH_WANT_SYS_SGETMASK
2620
2621 /*
2622 * For backwards compatibility. Functionality superseded by sigprocmask.
2623 */
2624 asmlinkage long
2625 sys_sgetmask(void)
2626 {
2627 /* SMP safe */
2628 return current->blocked.sig[0];
2629 }
2630
2631 asmlinkage long
2632 sys_ssetmask(int newmask)
2633 {
2634 int old;
2635
2636 spin_lock_irq(&current->sighand->siglock);
2637 old = current->blocked.sig[0];
2638
2639 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2640 sigmask(SIGSTOP)));
2641 recalc_sigpending();
2642 spin_unlock_irq(&current->sighand->siglock);
2643
2644 return old;
2645 }
2646 #endif /* __ARCH_WANT_SGETMASK */
2647
2648 #ifdef __ARCH_WANT_SYS_SIGNAL
2649 /*
2650 * For backwards compatibility. Functionality superseded by sigaction.
2651 */
2652 asmlinkage unsigned long
2653 sys_signal(int sig, __sighandler_t handler)
2654 {
2655 struct k_sigaction new_sa, old_sa;
2656 int ret;
2657
2658 new_sa.sa.sa_handler = handler;
2659 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2660
2661 ret = do_sigaction(sig, &new_sa, &old_sa);
2662
2663 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2664 }
2665 #endif /* __ARCH_WANT_SYS_SIGNAL */
2666
2667 #ifdef __ARCH_WANT_SYS_PAUSE
2668
2669 asmlinkage long
2670 sys_pause(void)
2671 {
2672 current->state = TASK_INTERRUPTIBLE;
2673 schedule();
2674 return -ERESTARTNOHAND;
2675 }
2676
2677 #endif
2678
2679 void __init signals_init(void)
2680 {
2681 sigqueue_cachep =
2682 kmem_cache_create("sigqueue",
2683 sizeof(struct sigqueue),
2684 __alignof__(struct sigqueue),
2685 SLAB_PANIC, NULL, NULL);
2686 }
This page took 0.105826 seconds and 6 git commands to generate.