signals: consolidate checking for ignored/legacy signals
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66
67 /*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95 }
96
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113 }
114
115 /*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123 }
124
125 void recalc_sigpending(void)
126 {
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130 }
131
132 /* Given the mask, find the first available signal that should be serviced. */
133
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165 }
166
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169 {
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192 }
193
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201 }
202
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213 }
214
215 /*
216 * Flush all pending signals for a task.
217 */
218 void flush_signals(struct task_struct *t)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228
229 void ignore_signals(struct task_struct *t)
230 {
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237 }
238
239 /*
240 * Flush all handlers for a task.
241 */
242
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255 }
256
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266
267
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287
288 /* Notify the system that blocking has ended. */
289
290 void
291 unblock_all_signals(void)
292 {
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343 }
344
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347 {
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365 }
366
367 /*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private) {
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439 }
440
441 /*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470 }
471
472 /*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498 }
499 /*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521 }
522
523 /*
524 * Bad permissions for sending the signal
525 */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528 {
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547 }
548
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552 /*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658 }
659
660 static inline int legacy_queue(struct sigpending *signals, int sig)
661 {
662 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
663 }
664
665 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
666 struct sigpending *signals)
667 {
668 struct sigqueue * q = NULL;
669
670 /*
671 * Short-circuit ignored signals and support queuing
672 * exactly one non-rt signal, so that we can get more
673 * detailed information about the cause of the signal.
674 */
675 if (sig_ignored(t, sig) || legacy_queue(signals, sig))
676 return 0;
677
678 /*
679 * Deliver the signal to listening signalfds. This must be called
680 * with the sighand lock held.
681 */
682 signalfd_notify(t, sig);
683
684 /*
685 * fast-pathed signals for kernel-internal things like SIGSTOP
686 * or SIGKILL.
687 */
688 if (info == SEND_SIG_FORCED)
689 goto out_set;
690
691 /* Real-time signals must be queued if sent by sigqueue, or
692 some other real-time mechanism. It is implementation
693 defined whether kill() does so. We attempt to do so, on
694 the principle of least surprise, but since kill is not
695 allowed to fail with EAGAIN when low on memory we just
696 make sure at least one signal gets delivered and don't
697 pass on the info struct. */
698
699 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
700 (is_si_special(info) ||
701 info->si_code >= 0)));
702 if (q) {
703 list_add_tail(&q->list, &signals->list);
704 switch ((unsigned long) info) {
705 case (unsigned long) SEND_SIG_NOINFO:
706 q->info.si_signo = sig;
707 q->info.si_errno = 0;
708 q->info.si_code = SI_USER;
709 q->info.si_pid = task_pid_vnr(current);
710 q->info.si_uid = current->uid;
711 break;
712 case (unsigned long) SEND_SIG_PRIV:
713 q->info.si_signo = sig;
714 q->info.si_errno = 0;
715 q->info.si_code = SI_KERNEL;
716 q->info.si_pid = 0;
717 q->info.si_uid = 0;
718 break;
719 default:
720 copy_siginfo(&q->info, info);
721 break;
722 }
723 } else if (!is_si_special(info)) {
724 if (sig >= SIGRTMIN && info->si_code != SI_USER)
725 /*
726 * Queue overflow, abort. We may abort if the signal was rt
727 * and sent by user using something other than kill().
728 */
729 return -EAGAIN;
730 }
731
732 out_set:
733 sigaddset(&signals->signal, sig);
734 return 1;
735 }
736
737 int print_fatal_signals;
738
739 static void print_fatal_signal(struct pt_regs *regs, int signr)
740 {
741 printk("%s/%d: potentially unexpected fatal signal %d.\n",
742 current->comm, task_pid_nr(current), signr);
743
744 #if defined(__i386__) && !defined(__arch_um__)
745 printk("code at %08lx: ", regs->ip);
746 {
747 int i;
748 for (i = 0; i < 16; i++) {
749 unsigned char insn;
750
751 __get_user(insn, (unsigned char *)(regs->ip + i));
752 printk("%02x ", insn);
753 }
754 }
755 #endif
756 printk("\n");
757 show_regs(regs);
758 }
759
760 static int __init setup_print_fatal_signals(char *str)
761 {
762 get_option (&str, &print_fatal_signals);
763
764 return 1;
765 }
766
767 __setup("print-fatal-signals=", setup_print_fatal_signals);
768
769 static int
770 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
771 {
772 int ret;
773
774 BUG_ON(!irqs_disabled());
775 assert_spin_locked(&t->sighand->siglock);
776
777 ret = send_signal(sig, info, t, &t->pending);
778 if (ret <= 0)
779 return ret;
780
781 if (!sigismember(&t->blocked, sig))
782 signal_wake_up(t, sig == SIGKILL);
783 return 0;
784 }
785
786 /*
787 * Force a signal that the process can't ignore: if necessary
788 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 *
790 * Note: If we unblock the signal, we always reset it to SIG_DFL,
791 * since we do not want to have a signal handler that was blocked
792 * be invoked when user space had explicitly blocked it.
793 *
794 * We don't want to have recursive SIGSEGV's etc, for example.
795 */
796 int
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 {
799 unsigned long int flags;
800 int ret, blocked, ignored;
801 struct k_sigaction *action;
802
803 spin_lock_irqsave(&t->sighand->siglock, flags);
804 action = &t->sighand->action[sig-1];
805 ignored = action->sa.sa_handler == SIG_IGN;
806 blocked = sigismember(&t->blocked, sig);
807 if (blocked || ignored) {
808 action->sa.sa_handler = SIG_DFL;
809 if (blocked) {
810 sigdelset(&t->blocked, sig);
811 recalc_sigpending_and_wake(t);
812 }
813 }
814 ret = specific_send_sig_info(sig, info, t);
815 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816
817 return ret;
818 }
819
820 void
821 force_sig_specific(int sig, struct task_struct *t)
822 {
823 force_sig_info(sig, SEND_SIG_FORCED, t);
824 }
825
826 /*
827 * Test if P wants to take SIG. After we've checked all threads with this,
828 * it's equivalent to finding no threads not blocking SIG. Any threads not
829 * blocking SIG were ruled out because they are not running and already
830 * have pending signals. Such threads will dequeue from the shared queue
831 * as soon as they're available, so putting the signal on the shared queue
832 * will be equivalent to sending it to one such thread.
833 */
834 static inline int wants_signal(int sig, struct task_struct *p)
835 {
836 if (sigismember(&p->blocked, sig))
837 return 0;
838 if (p->flags & PF_EXITING)
839 return 0;
840 if (sig == SIGKILL)
841 return 1;
842 if (task_is_stopped_or_traced(p))
843 return 0;
844 return task_curr(p) || !signal_pending(p);
845 }
846
847 static void
848 __group_complete_signal(int sig, struct task_struct *p)
849 {
850 struct task_struct *t;
851
852 /*
853 * Now find a thread we can wake up to take the signal off the queue.
854 *
855 * If the main thread wants the signal, it gets first crack.
856 * Probably the least surprising to the average bear.
857 */
858 if (wants_signal(sig, p))
859 t = p;
860 else if (thread_group_empty(p))
861 /*
862 * There is just one thread and it does not need to be woken.
863 * It will dequeue unblocked signals before it runs again.
864 */
865 return;
866 else {
867 /*
868 * Otherwise try to find a suitable thread.
869 */
870 t = p->signal->curr_target;
871 if (t == NULL)
872 /* restart balancing at this thread */
873 t = p->signal->curr_target = p;
874
875 while (!wants_signal(sig, t)) {
876 t = next_thread(t);
877 if (t == p->signal->curr_target)
878 /*
879 * No thread needs to be woken.
880 * Any eligible threads will see
881 * the signal in the queue soon.
882 */
883 return;
884 }
885 p->signal->curr_target = t;
886 }
887
888 /*
889 * Found a killable thread. If the signal will be fatal,
890 * then start taking the whole group down immediately.
891 */
892 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
893 !sigismember(&t->real_blocked, sig) &&
894 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 /*
896 * This signal will be fatal to the whole group.
897 */
898 if (!sig_kernel_coredump(sig)) {
899 /*
900 * Start a group exit and wake everybody up.
901 * This way we don't have other threads
902 * running and doing things after a slower
903 * thread has the fatal signal pending.
904 */
905 p->signal->flags = SIGNAL_GROUP_EXIT;
906 p->signal->group_exit_code = sig;
907 p->signal->group_stop_count = 0;
908 t = p;
909 do {
910 sigaddset(&t->pending.signal, SIGKILL);
911 signal_wake_up(t, 1);
912 } while_each_thread(p, t);
913 return;
914 }
915 }
916
917 /*
918 * The signal is already in the shared-pending queue.
919 * Tell the chosen thread to wake up and dequeue it.
920 */
921 signal_wake_up(t, sig == SIGKILL);
922 return;
923 }
924
925 int
926 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
927 {
928 int ret;
929
930 assert_spin_locked(&p->sighand->siglock);
931 handle_stop_signal(sig, p);
932
933 /*
934 * Put this signal on the shared-pending queue, or fail with EAGAIN.
935 * We always use the shared queue for process-wide signals,
936 * to avoid several races.
937 */
938 ret = send_signal(sig, info, p, &p->signal->shared_pending);
939 if (ret <= 0)
940 return ret;
941
942 __group_complete_signal(sig, p);
943 return 0;
944 }
945
946 /*
947 * Nuke all other threads in the group.
948 */
949 void zap_other_threads(struct task_struct *p)
950 {
951 struct task_struct *t;
952
953 p->signal->group_stop_count = 0;
954
955 for (t = next_thread(p); t != p; t = next_thread(t)) {
956 /*
957 * Don't bother with already dead threads
958 */
959 if (t->exit_state)
960 continue;
961
962 /* SIGKILL will be handled before any pending SIGSTOP */
963 sigaddset(&t->pending.signal, SIGKILL);
964 signal_wake_up(t, 1);
965 }
966 }
967
968 int __fatal_signal_pending(struct task_struct *tsk)
969 {
970 return sigismember(&tsk->pending.signal, SIGKILL);
971 }
972 EXPORT_SYMBOL(__fatal_signal_pending);
973
974 /*
975 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
976 */
977 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
978 {
979 struct sighand_struct *sighand;
980
981 for (;;) {
982 sighand = rcu_dereference(tsk->sighand);
983 if (unlikely(sighand == NULL))
984 break;
985
986 spin_lock_irqsave(&sighand->siglock, *flags);
987 if (likely(sighand == tsk->sighand))
988 break;
989 spin_unlock_irqrestore(&sighand->siglock, *flags);
990 }
991
992 return sighand;
993 }
994
995 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
996 {
997 unsigned long flags;
998 int ret;
999
1000 ret = check_kill_permission(sig, info, p);
1001
1002 if (!ret && sig) {
1003 ret = -ESRCH;
1004 if (lock_task_sighand(p, &flags)) {
1005 ret = __group_send_sig_info(sig, info, p);
1006 unlock_task_sighand(p, &flags);
1007 }
1008 }
1009
1010 return ret;
1011 }
1012
1013 /*
1014 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1015 * control characters do (^C, ^Z etc)
1016 */
1017
1018 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1019 {
1020 struct task_struct *p = NULL;
1021 int retval, success;
1022
1023 success = 0;
1024 retval = -ESRCH;
1025 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1026 int err = group_send_sig_info(sig, info, p);
1027 success |= !err;
1028 retval = err;
1029 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1030 return success ? 0 : retval;
1031 }
1032
1033 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1034 {
1035 int error = -ESRCH;
1036 struct task_struct *p;
1037
1038 rcu_read_lock();
1039 if (unlikely(sig_needs_tasklist(sig)))
1040 read_lock(&tasklist_lock);
1041
1042 retry:
1043 p = pid_task(pid, PIDTYPE_PID);
1044 if (p) {
1045 error = group_send_sig_info(sig, info, p);
1046 if (unlikely(error == -ESRCH))
1047 /*
1048 * The task was unhashed in between, try again.
1049 * If it is dead, pid_task() will return NULL,
1050 * if we race with de_thread() it will find the
1051 * new leader.
1052 */
1053 goto retry;
1054 }
1055
1056 if (unlikely(sig_needs_tasklist(sig)))
1057 read_unlock(&tasklist_lock);
1058 rcu_read_unlock();
1059 return error;
1060 }
1061
1062 int
1063 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1064 {
1065 int error;
1066 rcu_read_lock();
1067 error = kill_pid_info(sig, info, find_vpid(pid));
1068 rcu_read_unlock();
1069 return error;
1070 }
1071
1072 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1073 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1074 uid_t uid, uid_t euid, u32 secid)
1075 {
1076 int ret = -EINVAL;
1077 struct task_struct *p;
1078
1079 if (!valid_signal(sig))
1080 return ret;
1081
1082 read_lock(&tasklist_lock);
1083 p = pid_task(pid, PIDTYPE_PID);
1084 if (!p) {
1085 ret = -ESRCH;
1086 goto out_unlock;
1087 }
1088 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1089 && (euid != p->suid) && (euid != p->uid)
1090 && (uid != p->suid) && (uid != p->uid)) {
1091 ret = -EPERM;
1092 goto out_unlock;
1093 }
1094 ret = security_task_kill(p, info, sig, secid);
1095 if (ret)
1096 goto out_unlock;
1097 if (sig && p->sighand) {
1098 unsigned long flags;
1099 spin_lock_irqsave(&p->sighand->siglock, flags);
1100 ret = __group_send_sig_info(sig, info, p);
1101 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1102 }
1103 out_unlock:
1104 read_unlock(&tasklist_lock);
1105 return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1108
1109 /*
1110 * kill_something_info() interprets pid in interesting ways just like kill(2).
1111 *
1112 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1113 * is probably wrong. Should make it like BSD or SYSV.
1114 */
1115
1116 static int kill_something_info(int sig, struct siginfo *info, int pid)
1117 {
1118 int ret;
1119
1120 if (pid > 0) {
1121 rcu_read_lock();
1122 ret = kill_pid_info(sig, info, find_vpid(pid));
1123 rcu_read_unlock();
1124 return ret;
1125 }
1126
1127 read_lock(&tasklist_lock);
1128 if (pid != -1) {
1129 ret = __kill_pgrp_info(sig, info,
1130 pid ? find_vpid(-pid) : task_pgrp(current));
1131 } else {
1132 int retval = 0, count = 0;
1133 struct task_struct * p;
1134
1135 for_each_process(p) {
1136 if (p->pid > 1 && !same_thread_group(p, current)) {
1137 int err = group_send_sig_info(sig, info, p);
1138 ++count;
1139 if (err != -EPERM)
1140 retval = err;
1141 }
1142 }
1143 ret = count ? retval : -ESRCH;
1144 }
1145 read_unlock(&tasklist_lock);
1146
1147 return ret;
1148 }
1149
1150 /*
1151 * These are for backward compatibility with the rest of the kernel source.
1152 */
1153
1154 /*
1155 * These two are the most common entry points. They send a signal
1156 * just to the specific thread.
1157 */
1158 int
1159 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1160 {
1161 int ret;
1162 unsigned long flags;
1163
1164 /*
1165 * Make sure legacy kernel users don't send in bad values
1166 * (normal paths check this in check_kill_permission).
1167 */
1168 if (!valid_signal(sig))
1169 return -EINVAL;
1170
1171 /*
1172 * We need the tasklist lock even for the specific
1173 * thread case (when we don't need to follow the group
1174 * lists) in order to avoid races with "p->sighand"
1175 * going away or changing from under us.
1176 */
1177 read_lock(&tasklist_lock);
1178 spin_lock_irqsave(&p->sighand->siglock, flags);
1179 ret = specific_send_sig_info(sig, info, p);
1180 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1181 read_unlock(&tasklist_lock);
1182 return ret;
1183 }
1184
1185 #define __si_special(priv) \
1186 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1187
1188 int
1189 send_sig(int sig, struct task_struct *p, int priv)
1190 {
1191 return send_sig_info(sig, __si_special(priv), p);
1192 }
1193
1194 void
1195 force_sig(int sig, struct task_struct *p)
1196 {
1197 force_sig_info(sig, SEND_SIG_PRIV, p);
1198 }
1199
1200 /*
1201 * When things go south during signal handling, we
1202 * will force a SIGSEGV. And if the signal that caused
1203 * the problem was already a SIGSEGV, we'll want to
1204 * make sure we don't even try to deliver the signal..
1205 */
1206 int
1207 force_sigsegv(int sig, struct task_struct *p)
1208 {
1209 if (sig == SIGSEGV) {
1210 unsigned long flags;
1211 spin_lock_irqsave(&p->sighand->siglock, flags);
1212 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1213 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1214 }
1215 force_sig(SIGSEGV, p);
1216 return 0;
1217 }
1218
1219 int kill_pgrp(struct pid *pid, int sig, int priv)
1220 {
1221 int ret;
1222
1223 read_lock(&tasklist_lock);
1224 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1225 read_unlock(&tasklist_lock);
1226
1227 return ret;
1228 }
1229 EXPORT_SYMBOL(kill_pgrp);
1230
1231 int kill_pid(struct pid *pid, int sig, int priv)
1232 {
1233 return kill_pid_info(sig, __si_special(priv), pid);
1234 }
1235 EXPORT_SYMBOL(kill_pid);
1236
1237 int
1238 kill_proc(pid_t pid, int sig, int priv)
1239 {
1240 int ret;
1241
1242 rcu_read_lock();
1243 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1244 rcu_read_unlock();
1245 return ret;
1246 }
1247
1248 /*
1249 * These functions support sending signals using preallocated sigqueue
1250 * structures. This is needed "because realtime applications cannot
1251 * afford to lose notifications of asynchronous events, like timer
1252 * expirations or I/O completions". In the case of Posix Timers
1253 * we allocate the sigqueue structure from the timer_create. If this
1254 * allocation fails we are able to report the failure to the application
1255 * with an EAGAIN error.
1256 */
1257
1258 struct sigqueue *sigqueue_alloc(void)
1259 {
1260 struct sigqueue *q;
1261
1262 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1263 q->flags |= SIGQUEUE_PREALLOC;
1264 return(q);
1265 }
1266
1267 void sigqueue_free(struct sigqueue *q)
1268 {
1269 unsigned long flags;
1270 spinlock_t *lock = &current->sighand->siglock;
1271
1272 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1273 /*
1274 * If the signal is still pending remove it from the
1275 * pending queue. We must hold ->siglock while testing
1276 * q->list to serialize with collect_signal().
1277 */
1278 spin_lock_irqsave(lock, flags);
1279 if (!list_empty(&q->list))
1280 list_del_init(&q->list);
1281 spin_unlock_irqrestore(lock, flags);
1282
1283 q->flags &= ~SIGQUEUE_PREALLOC;
1284 __sigqueue_free(q);
1285 }
1286
1287 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1288 {
1289 unsigned long flags;
1290 int ret = 0;
1291
1292 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1293
1294 /*
1295 * The rcu based delayed sighand destroy makes it possible to
1296 * run this without tasklist lock held. The task struct itself
1297 * cannot go away as create_timer did get_task_struct().
1298 *
1299 * We return -1, when the task is marked exiting, so
1300 * posix_timer_event can redirect it to the group leader
1301 */
1302 rcu_read_lock();
1303
1304 if (!likely(lock_task_sighand(p, &flags))) {
1305 ret = -1;
1306 goto out_err;
1307 }
1308
1309 if (unlikely(!list_empty(&q->list))) {
1310 /*
1311 * If an SI_TIMER entry is already queue just increment
1312 * the overrun count.
1313 */
1314 BUG_ON(q->info.si_code != SI_TIMER);
1315 q->info.si_overrun++;
1316 goto out;
1317 }
1318 /* Short-circuit ignored signals. */
1319 if (sig_ignored(p, sig)) {
1320 ret = 1;
1321 goto out;
1322 }
1323 /*
1324 * Deliver the signal to listening signalfds. This must be called
1325 * with the sighand lock held.
1326 */
1327 signalfd_notify(p, sig);
1328
1329 list_add_tail(&q->list, &p->pending.list);
1330 sigaddset(&p->pending.signal, sig);
1331 if (!sigismember(&p->blocked, sig))
1332 signal_wake_up(p, sig == SIGKILL);
1333
1334 out:
1335 unlock_task_sighand(p, &flags);
1336 out_err:
1337 rcu_read_unlock();
1338
1339 return ret;
1340 }
1341
1342 int
1343 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1344 {
1345 unsigned long flags;
1346 int ret = 0;
1347
1348 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1349
1350 read_lock(&tasklist_lock);
1351 /* Since it_lock is held, p->sighand cannot be NULL. */
1352 spin_lock_irqsave(&p->sighand->siglock, flags);
1353 handle_stop_signal(sig, p);
1354
1355 /* Short-circuit ignored signals. */
1356 if (sig_ignored(p, sig)) {
1357 ret = 1;
1358 goto out;
1359 }
1360
1361 if (unlikely(!list_empty(&q->list))) {
1362 /*
1363 * If an SI_TIMER entry is already queue just increment
1364 * the overrun count. Other uses should not try to
1365 * send the signal multiple times.
1366 */
1367 BUG_ON(q->info.si_code != SI_TIMER);
1368 q->info.si_overrun++;
1369 goto out;
1370 }
1371 /*
1372 * Deliver the signal to listening signalfds. This must be called
1373 * with the sighand lock held.
1374 */
1375 signalfd_notify(p, sig);
1376
1377 /*
1378 * Put this signal on the shared-pending queue.
1379 * We always use the shared queue for process-wide signals,
1380 * to avoid several races.
1381 */
1382 list_add_tail(&q->list, &p->signal->shared_pending.list);
1383 sigaddset(&p->signal->shared_pending.signal, sig);
1384
1385 __group_complete_signal(sig, p);
1386 out:
1387 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1388 read_unlock(&tasklist_lock);
1389 return ret;
1390 }
1391
1392 /*
1393 * Wake up any threads in the parent blocked in wait* syscalls.
1394 */
1395 static inline void __wake_up_parent(struct task_struct *p,
1396 struct task_struct *parent)
1397 {
1398 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1399 }
1400
1401 /*
1402 * Let a parent know about the death of a child.
1403 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1404 */
1405
1406 void do_notify_parent(struct task_struct *tsk, int sig)
1407 {
1408 struct siginfo info;
1409 unsigned long flags;
1410 struct sighand_struct *psig;
1411
1412 BUG_ON(sig == -1);
1413
1414 /* do_notify_parent_cldstop should have been called instead. */
1415 BUG_ON(task_is_stopped_or_traced(tsk));
1416
1417 BUG_ON(!tsk->ptrace &&
1418 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1419
1420 info.si_signo = sig;
1421 info.si_errno = 0;
1422 /*
1423 * we are under tasklist_lock here so our parent is tied to
1424 * us and cannot exit and release its namespace.
1425 *
1426 * the only it can is to switch its nsproxy with sys_unshare,
1427 * bu uncharing pid namespaces is not allowed, so we'll always
1428 * see relevant namespace
1429 *
1430 * write_lock() currently calls preempt_disable() which is the
1431 * same as rcu_read_lock(), but according to Oleg, this is not
1432 * correct to rely on this
1433 */
1434 rcu_read_lock();
1435 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1436 rcu_read_unlock();
1437
1438 info.si_uid = tsk->uid;
1439
1440 /* FIXME: find out whether or not this is supposed to be c*time. */
1441 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1442 tsk->signal->utime));
1443 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1444 tsk->signal->stime));
1445
1446 info.si_status = tsk->exit_code & 0x7f;
1447 if (tsk->exit_code & 0x80)
1448 info.si_code = CLD_DUMPED;
1449 else if (tsk->exit_code & 0x7f)
1450 info.si_code = CLD_KILLED;
1451 else {
1452 info.si_code = CLD_EXITED;
1453 info.si_status = tsk->exit_code >> 8;
1454 }
1455
1456 psig = tsk->parent->sighand;
1457 spin_lock_irqsave(&psig->siglock, flags);
1458 if (!tsk->ptrace && sig == SIGCHLD &&
1459 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1460 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1461 /*
1462 * We are exiting and our parent doesn't care. POSIX.1
1463 * defines special semantics for setting SIGCHLD to SIG_IGN
1464 * or setting the SA_NOCLDWAIT flag: we should be reaped
1465 * automatically and not left for our parent's wait4 call.
1466 * Rather than having the parent do it as a magic kind of
1467 * signal handler, we just set this to tell do_exit that we
1468 * can be cleaned up without becoming a zombie. Note that
1469 * we still call __wake_up_parent in this case, because a
1470 * blocked sys_wait4 might now return -ECHILD.
1471 *
1472 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1473 * is implementation-defined: we do (if you don't want
1474 * it, just use SIG_IGN instead).
1475 */
1476 tsk->exit_signal = -1;
1477 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1478 sig = 0;
1479 }
1480 if (valid_signal(sig) && sig > 0)
1481 __group_send_sig_info(sig, &info, tsk->parent);
1482 __wake_up_parent(tsk, tsk->parent);
1483 spin_unlock_irqrestore(&psig->siglock, flags);
1484 }
1485
1486 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1487 {
1488 struct siginfo info;
1489 unsigned long flags;
1490 struct task_struct *parent;
1491 struct sighand_struct *sighand;
1492
1493 if (tsk->ptrace & PT_PTRACED)
1494 parent = tsk->parent;
1495 else {
1496 tsk = tsk->group_leader;
1497 parent = tsk->real_parent;
1498 }
1499
1500 info.si_signo = SIGCHLD;
1501 info.si_errno = 0;
1502 /*
1503 * see comment in do_notify_parent() abot the following 3 lines
1504 */
1505 rcu_read_lock();
1506 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1507 rcu_read_unlock();
1508
1509 info.si_uid = tsk->uid;
1510
1511 /* FIXME: find out whether or not this is supposed to be c*time. */
1512 info.si_utime = cputime_to_jiffies(tsk->utime);
1513 info.si_stime = cputime_to_jiffies(tsk->stime);
1514
1515 info.si_code = why;
1516 switch (why) {
1517 case CLD_CONTINUED:
1518 info.si_status = SIGCONT;
1519 break;
1520 case CLD_STOPPED:
1521 info.si_status = tsk->signal->group_exit_code & 0x7f;
1522 break;
1523 case CLD_TRAPPED:
1524 info.si_status = tsk->exit_code & 0x7f;
1525 break;
1526 default:
1527 BUG();
1528 }
1529
1530 sighand = parent->sighand;
1531 spin_lock_irqsave(&sighand->siglock, flags);
1532 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1533 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1534 __group_send_sig_info(SIGCHLD, &info, parent);
1535 /*
1536 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1537 */
1538 __wake_up_parent(tsk, parent);
1539 spin_unlock_irqrestore(&sighand->siglock, flags);
1540 }
1541
1542 static inline int may_ptrace_stop(void)
1543 {
1544 if (!likely(current->ptrace & PT_PTRACED))
1545 return 0;
1546 /*
1547 * Are we in the middle of do_coredump?
1548 * If so and our tracer is also part of the coredump stopping
1549 * is a deadlock situation, and pointless because our tracer
1550 * is dead so don't allow us to stop.
1551 * If SIGKILL was already sent before the caller unlocked
1552 * ->siglock we must see ->core_waiters != 0. Otherwise it
1553 * is safe to enter schedule().
1554 */
1555 if (unlikely(current->mm->core_waiters) &&
1556 unlikely(current->mm == current->parent->mm))
1557 return 0;
1558
1559 return 1;
1560 }
1561
1562 /*
1563 * Return nonzero if there is a SIGKILL that should be waking us up.
1564 * Called with the siglock held.
1565 */
1566 static int sigkill_pending(struct task_struct *tsk)
1567 {
1568 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1569 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1570 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1571 }
1572
1573 /*
1574 * This must be called with current->sighand->siglock held.
1575 *
1576 * This should be the path for all ptrace stops.
1577 * We always set current->last_siginfo while stopped here.
1578 * That makes it a way to test a stopped process for
1579 * being ptrace-stopped vs being job-control-stopped.
1580 *
1581 * If we actually decide not to stop at all because the tracer
1582 * is gone, we keep current->exit_code unless clear_code.
1583 */
1584 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1585 {
1586 int killed = 0;
1587
1588 if (arch_ptrace_stop_needed(exit_code, info)) {
1589 /*
1590 * The arch code has something special to do before a
1591 * ptrace stop. This is allowed to block, e.g. for faults
1592 * on user stack pages. We can't keep the siglock while
1593 * calling arch_ptrace_stop, so we must release it now.
1594 * To preserve proper semantics, we must do this before
1595 * any signal bookkeeping like checking group_stop_count.
1596 * Meanwhile, a SIGKILL could come in before we retake the
1597 * siglock. That must prevent us from sleeping in TASK_TRACED.
1598 * So after regaining the lock, we must check for SIGKILL.
1599 */
1600 spin_unlock_irq(&current->sighand->siglock);
1601 arch_ptrace_stop(exit_code, info);
1602 spin_lock_irq(&current->sighand->siglock);
1603 killed = sigkill_pending(current);
1604 }
1605
1606 /*
1607 * If there is a group stop in progress,
1608 * we must participate in the bookkeeping.
1609 */
1610 if (current->signal->group_stop_count > 0)
1611 --current->signal->group_stop_count;
1612
1613 current->last_siginfo = info;
1614 current->exit_code = exit_code;
1615
1616 /* Let the debugger run. */
1617 __set_current_state(TASK_TRACED);
1618 spin_unlock_irq(&current->sighand->siglock);
1619 read_lock(&tasklist_lock);
1620 if (!unlikely(killed) && may_ptrace_stop()) {
1621 do_notify_parent_cldstop(current, CLD_TRAPPED);
1622 read_unlock(&tasklist_lock);
1623 schedule();
1624 } else {
1625 /*
1626 * By the time we got the lock, our tracer went away.
1627 * Don't drop the lock yet, another tracer may come.
1628 */
1629 __set_current_state(TASK_RUNNING);
1630 if (clear_code)
1631 current->exit_code = 0;
1632 read_unlock(&tasklist_lock);
1633 }
1634
1635 /*
1636 * While in TASK_TRACED, we were considered "frozen enough".
1637 * Now that we woke up, it's crucial if we're supposed to be
1638 * frozen that we freeze now before running anything substantial.
1639 */
1640 try_to_freeze();
1641
1642 /*
1643 * We are back. Now reacquire the siglock before touching
1644 * last_siginfo, so that we are sure to have synchronized with
1645 * any signal-sending on another CPU that wants to examine it.
1646 */
1647 spin_lock_irq(&current->sighand->siglock);
1648 current->last_siginfo = NULL;
1649
1650 /*
1651 * Queued signals ignored us while we were stopped for tracing.
1652 * So check for any that we should take before resuming user mode.
1653 * This sets TIF_SIGPENDING, but never clears it.
1654 */
1655 recalc_sigpending_tsk(current);
1656 }
1657
1658 void ptrace_notify(int exit_code)
1659 {
1660 siginfo_t info;
1661
1662 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1663
1664 memset(&info, 0, sizeof info);
1665 info.si_signo = SIGTRAP;
1666 info.si_code = exit_code;
1667 info.si_pid = task_pid_vnr(current);
1668 info.si_uid = current->uid;
1669
1670 /* Let the debugger run. */
1671 spin_lock_irq(&current->sighand->siglock);
1672 ptrace_stop(exit_code, 1, &info);
1673 spin_unlock_irq(&current->sighand->siglock);
1674 }
1675
1676 static void
1677 finish_stop(int stop_count)
1678 {
1679 /*
1680 * If there are no other threads in the group, or if there is
1681 * a group stop in progress and we are the last to stop,
1682 * report to the parent. When ptraced, every thread reports itself.
1683 */
1684 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1685 read_lock(&tasklist_lock);
1686 do_notify_parent_cldstop(current, CLD_STOPPED);
1687 read_unlock(&tasklist_lock);
1688 }
1689
1690 do {
1691 schedule();
1692 } while (try_to_freeze());
1693 /*
1694 * Now we don't run again until continued.
1695 */
1696 current->exit_code = 0;
1697 }
1698
1699 /*
1700 * This performs the stopping for SIGSTOP and other stop signals.
1701 * We have to stop all threads in the thread group.
1702 * Returns nonzero if we've actually stopped and released the siglock.
1703 * Returns zero if we didn't stop and still hold the siglock.
1704 */
1705 static int do_signal_stop(int signr)
1706 {
1707 struct signal_struct *sig = current->signal;
1708 int stop_count;
1709
1710 if (sig->group_stop_count > 0) {
1711 /*
1712 * There is a group stop in progress. We don't need to
1713 * start another one.
1714 */
1715 stop_count = --sig->group_stop_count;
1716 } else {
1717 struct task_struct *t;
1718
1719 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1720 unlikely(sig->group_exit_task))
1721 return 0;
1722 /*
1723 * There is no group stop already in progress.
1724 * We must initiate one now.
1725 */
1726 sig->group_exit_code = signr;
1727
1728 stop_count = 0;
1729 for (t = next_thread(current); t != current; t = next_thread(t))
1730 /*
1731 * Setting state to TASK_STOPPED for a group
1732 * stop is always done with the siglock held,
1733 * so this check has no races.
1734 */
1735 if (!(t->flags & PF_EXITING) &&
1736 !task_is_stopped_or_traced(t)) {
1737 stop_count++;
1738 signal_wake_up(t, 0);
1739 }
1740 sig->group_stop_count = stop_count;
1741 }
1742
1743 if (stop_count == 0)
1744 sig->flags = SIGNAL_STOP_STOPPED;
1745 current->exit_code = sig->group_exit_code;
1746 __set_current_state(TASK_STOPPED);
1747
1748 spin_unlock_irq(&current->sighand->siglock);
1749 finish_stop(stop_count);
1750 return 1;
1751 }
1752
1753 static int ptrace_signal(int signr, siginfo_t *info,
1754 struct pt_regs *regs, void *cookie)
1755 {
1756 if (!(current->ptrace & PT_PTRACED))
1757 return signr;
1758
1759 ptrace_signal_deliver(regs, cookie);
1760
1761 /* Let the debugger run. */
1762 ptrace_stop(signr, 0, info);
1763
1764 /* We're back. Did the debugger cancel the sig? */
1765 signr = current->exit_code;
1766 if (signr == 0)
1767 return signr;
1768
1769 current->exit_code = 0;
1770
1771 /* Update the siginfo structure if the signal has
1772 changed. If the debugger wanted something
1773 specific in the siginfo structure then it should
1774 have updated *info via PTRACE_SETSIGINFO. */
1775 if (signr != info->si_signo) {
1776 info->si_signo = signr;
1777 info->si_errno = 0;
1778 info->si_code = SI_USER;
1779 info->si_pid = task_pid_vnr(current->parent);
1780 info->si_uid = current->parent->uid;
1781 }
1782
1783 /* If the (new) signal is now blocked, requeue it. */
1784 if (sigismember(&current->blocked, signr)) {
1785 specific_send_sig_info(signr, info, current);
1786 signr = 0;
1787 }
1788
1789 return signr;
1790 }
1791
1792 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1793 struct pt_regs *regs, void *cookie)
1794 {
1795 sigset_t *mask = &current->blocked;
1796 int signr = 0;
1797
1798 relock:
1799 /*
1800 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1801 * While in TASK_STOPPED, we were considered "frozen enough".
1802 * Now that we woke up, it's crucial if we're supposed to be
1803 * frozen that we freeze now before running anything substantial.
1804 */
1805 try_to_freeze();
1806
1807 spin_lock_irq(&current->sighand->siglock);
1808 for (;;) {
1809 struct k_sigaction *ka;
1810
1811 if (unlikely(current->signal->group_stop_count > 0) &&
1812 do_signal_stop(0))
1813 goto relock;
1814
1815 signr = dequeue_signal(current, mask, info);
1816
1817 if (!signr)
1818 break; /* will return 0 */
1819
1820 if (signr != SIGKILL) {
1821 signr = ptrace_signal(signr, info, regs, cookie);
1822 if (!signr)
1823 continue;
1824 }
1825
1826 ka = &current->sighand->action[signr-1];
1827 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1828 continue;
1829 if (ka->sa.sa_handler != SIG_DFL) {
1830 /* Run the handler. */
1831 *return_ka = *ka;
1832
1833 if (ka->sa.sa_flags & SA_ONESHOT)
1834 ka->sa.sa_handler = SIG_DFL;
1835
1836 break; /* will return non-zero "signr" value */
1837 }
1838
1839 /*
1840 * Now we are doing the default action for this signal.
1841 */
1842 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1843 continue;
1844
1845 /*
1846 * Global init gets no signals it doesn't want.
1847 */
1848 if (is_global_init(current))
1849 continue;
1850
1851 if (sig_kernel_stop(signr)) {
1852 /*
1853 * The default action is to stop all threads in
1854 * the thread group. The job control signals
1855 * do nothing in an orphaned pgrp, but SIGSTOP
1856 * always works. Note that siglock needs to be
1857 * dropped during the call to is_orphaned_pgrp()
1858 * because of lock ordering with tasklist_lock.
1859 * This allows an intervening SIGCONT to be posted.
1860 * We need to check for that and bail out if necessary.
1861 */
1862 if (signr != SIGSTOP) {
1863 spin_unlock_irq(&current->sighand->siglock);
1864
1865 /* signals can be posted during this window */
1866
1867 if (is_current_pgrp_orphaned())
1868 goto relock;
1869
1870 spin_lock_irq(&current->sighand->siglock);
1871 }
1872
1873 if (likely(do_signal_stop(signr))) {
1874 /* It released the siglock. */
1875 goto relock;
1876 }
1877
1878 /*
1879 * We didn't actually stop, due to a race
1880 * with SIGCONT or something like that.
1881 */
1882 continue;
1883 }
1884
1885 spin_unlock_irq(&current->sighand->siglock);
1886
1887 /*
1888 * Anything else is fatal, maybe with a core dump.
1889 */
1890 current->flags |= PF_SIGNALED;
1891 if ((signr != SIGKILL) && print_fatal_signals)
1892 print_fatal_signal(regs, signr);
1893 if (sig_kernel_coredump(signr)) {
1894 /*
1895 * If it was able to dump core, this kills all
1896 * other threads in the group and synchronizes with
1897 * their demise. If we lost the race with another
1898 * thread getting here, it set group_exit_code
1899 * first and our do_group_exit call below will use
1900 * that value and ignore the one we pass it.
1901 */
1902 do_coredump((long)signr, signr, regs);
1903 }
1904
1905 /*
1906 * Death signals, no core dump.
1907 */
1908 do_group_exit(signr);
1909 /* NOTREACHED */
1910 }
1911 spin_unlock_irq(&current->sighand->siglock);
1912 return signr;
1913 }
1914
1915 void exit_signals(struct task_struct *tsk)
1916 {
1917 int group_stop = 0;
1918 struct task_struct *t;
1919
1920 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1921 tsk->flags |= PF_EXITING;
1922 return;
1923 }
1924
1925 spin_lock_irq(&tsk->sighand->siglock);
1926 /*
1927 * From now this task is not visible for group-wide signals,
1928 * see wants_signal(), do_signal_stop().
1929 */
1930 tsk->flags |= PF_EXITING;
1931 if (!signal_pending(tsk))
1932 goto out;
1933
1934 /* It could be that __group_complete_signal() choose us to
1935 * notify about group-wide signal. Another thread should be
1936 * woken now to take the signal since we will not.
1937 */
1938 for (t = tsk; (t = next_thread(t)) != tsk; )
1939 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1940 recalc_sigpending_and_wake(t);
1941
1942 if (unlikely(tsk->signal->group_stop_count) &&
1943 !--tsk->signal->group_stop_count) {
1944 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1945 group_stop = 1;
1946 }
1947 out:
1948 spin_unlock_irq(&tsk->sighand->siglock);
1949
1950 if (unlikely(group_stop)) {
1951 read_lock(&tasklist_lock);
1952 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1953 read_unlock(&tasklist_lock);
1954 }
1955 }
1956
1957 EXPORT_SYMBOL(recalc_sigpending);
1958 EXPORT_SYMBOL_GPL(dequeue_signal);
1959 EXPORT_SYMBOL(flush_signals);
1960 EXPORT_SYMBOL(force_sig);
1961 EXPORT_SYMBOL(kill_proc);
1962 EXPORT_SYMBOL(ptrace_notify);
1963 EXPORT_SYMBOL(send_sig);
1964 EXPORT_SYMBOL(send_sig_info);
1965 EXPORT_SYMBOL(sigprocmask);
1966 EXPORT_SYMBOL(block_all_signals);
1967 EXPORT_SYMBOL(unblock_all_signals);
1968
1969
1970 /*
1971 * System call entry points.
1972 */
1973
1974 asmlinkage long sys_restart_syscall(void)
1975 {
1976 struct restart_block *restart = &current_thread_info()->restart_block;
1977 return restart->fn(restart);
1978 }
1979
1980 long do_no_restart_syscall(struct restart_block *param)
1981 {
1982 return -EINTR;
1983 }
1984
1985 /*
1986 * We don't need to get the kernel lock - this is all local to this
1987 * particular thread.. (and that's good, because this is _heavily_
1988 * used by various programs)
1989 */
1990
1991 /*
1992 * This is also useful for kernel threads that want to temporarily
1993 * (or permanently) block certain signals.
1994 *
1995 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1996 * interface happily blocks "unblockable" signals like SIGKILL
1997 * and friends.
1998 */
1999 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2000 {
2001 int error;
2002
2003 spin_lock_irq(&current->sighand->siglock);
2004 if (oldset)
2005 *oldset = current->blocked;
2006
2007 error = 0;
2008 switch (how) {
2009 case SIG_BLOCK:
2010 sigorsets(&current->blocked, &current->blocked, set);
2011 break;
2012 case SIG_UNBLOCK:
2013 signandsets(&current->blocked, &current->blocked, set);
2014 break;
2015 case SIG_SETMASK:
2016 current->blocked = *set;
2017 break;
2018 default:
2019 error = -EINVAL;
2020 }
2021 recalc_sigpending();
2022 spin_unlock_irq(&current->sighand->siglock);
2023
2024 return error;
2025 }
2026
2027 asmlinkage long
2028 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2029 {
2030 int error = -EINVAL;
2031 sigset_t old_set, new_set;
2032
2033 /* XXX: Don't preclude handling different sized sigset_t's. */
2034 if (sigsetsize != sizeof(sigset_t))
2035 goto out;
2036
2037 if (set) {
2038 error = -EFAULT;
2039 if (copy_from_user(&new_set, set, sizeof(*set)))
2040 goto out;
2041 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2042
2043 error = sigprocmask(how, &new_set, &old_set);
2044 if (error)
2045 goto out;
2046 if (oset)
2047 goto set_old;
2048 } else if (oset) {
2049 spin_lock_irq(&current->sighand->siglock);
2050 old_set = current->blocked;
2051 spin_unlock_irq(&current->sighand->siglock);
2052
2053 set_old:
2054 error = -EFAULT;
2055 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2056 goto out;
2057 }
2058 error = 0;
2059 out:
2060 return error;
2061 }
2062
2063 long do_sigpending(void __user *set, unsigned long sigsetsize)
2064 {
2065 long error = -EINVAL;
2066 sigset_t pending;
2067
2068 if (sigsetsize > sizeof(sigset_t))
2069 goto out;
2070
2071 spin_lock_irq(&current->sighand->siglock);
2072 sigorsets(&pending, &current->pending.signal,
2073 &current->signal->shared_pending.signal);
2074 spin_unlock_irq(&current->sighand->siglock);
2075
2076 /* Outside the lock because only this thread touches it. */
2077 sigandsets(&pending, &current->blocked, &pending);
2078
2079 error = -EFAULT;
2080 if (!copy_to_user(set, &pending, sigsetsize))
2081 error = 0;
2082
2083 out:
2084 return error;
2085 }
2086
2087 asmlinkage long
2088 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2089 {
2090 return do_sigpending(set, sigsetsize);
2091 }
2092
2093 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2094
2095 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2096 {
2097 int err;
2098
2099 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2100 return -EFAULT;
2101 if (from->si_code < 0)
2102 return __copy_to_user(to, from, sizeof(siginfo_t))
2103 ? -EFAULT : 0;
2104 /*
2105 * If you change siginfo_t structure, please be sure
2106 * this code is fixed accordingly.
2107 * Please remember to update the signalfd_copyinfo() function
2108 * inside fs/signalfd.c too, in case siginfo_t changes.
2109 * It should never copy any pad contained in the structure
2110 * to avoid security leaks, but must copy the generic
2111 * 3 ints plus the relevant union member.
2112 */
2113 err = __put_user(from->si_signo, &to->si_signo);
2114 err |= __put_user(from->si_errno, &to->si_errno);
2115 err |= __put_user((short)from->si_code, &to->si_code);
2116 switch (from->si_code & __SI_MASK) {
2117 case __SI_KILL:
2118 err |= __put_user(from->si_pid, &to->si_pid);
2119 err |= __put_user(from->si_uid, &to->si_uid);
2120 break;
2121 case __SI_TIMER:
2122 err |= __put_user(from->si_tid, &to->si_tid);
2123 err |= __put_user(from->si_overrun, &to->si_overrun);
2124 err |= __put_user(from->si_ptr, &to->si_ptr);
2125 break;
2126 case __SI_POLL:
2127 err |= __put_user(from->si_band, &to->si_band);
2128 err |= __put_user(from->si_fd, &to->si_fd);
2129 break;
2130 case __SI_FAULT:
2131 err |= __put_user(from->si_addr, &to->si_addr);
2132 #ifdef __ARCH_SI_TRAPNO
2133 err |= __put_user(from->si_trapno, &to->si_trapno);
2134 #endif
2135 break;
2136 case __SI_CHLD:
2137 err |= __put_user(from->si_pid, &to->si_pid);
2138 err |= __put_user(from->si_uid, &to->si_uid);
2139 err |= __put_user(from->si_status, &to->si_status);
2140 err |= __put_user(from->si_utime, &to->si_utime);
2141 err |= __put_user(from->si_stime, &to->si_stime);
2142 break;
2143 case __SI_RT: /* This is not generated by the kernel as of now. */
2144 case __SI_MESGQ: /* But this is */
2145 err |= __put_user(from->si_pid, &to->si_pid);
2146 err |= __put_user(from->si_uid, &to->si_uid);
2147 err |= __put_user(from->si_ptr, &to->si_ptr);
2148 break;
2149 default: /* this is just in case for now ... */
2150 err |= __put_user(from->si_pid, &to->si_pid);
2151 err |= __put_user(from->si_uid, &to->si_uid);
2152 break;
2153 }
2154 return err;
2155 }
2156
2157 #endif
2158
2159 asmlinkage long
2160 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2161 siginfo_t __user *uinfo,
2162 const struct timespec __user *uts,
2163 size_t sigsetsize)
2164 {
2165 int ret, sig;
2166 sigset_t these;
2167 struct timespec ts;
2168 siginfo_t info;
2169 long timeout = 0;
2170
2171 /* XXX: Don't preclude handling different sized sigset_t's. */
2172 if (sigsetsize != sizeof(sigset_t))
2173 return -EINVAL;
2174
2175 if (copy_from_user(&these, uthese, sizeof(these)))
2176 return -EFAULT;
2177
2178 /*
2179 * Invert the set of allowed signals to get those we
2180 * want to block.
2181 */
2182 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2183 signotset(&these);
2184
2185 if (uts) {
2186 if (copy_from_user(&ts, uts, sizeof(ts)))
2187 return -EFAULT;
2188 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2189 || ts.tv_sec < 0)
2190 return -EINVAL;
2191 }
2192
2193 spin_lock_irq(&current->sighand->siglock);
2194 sig = dequeue_signal(current, &these, &info);
2195 if (!sig) {
2196 timeout = MAX_SCHEDULE_TIMEOUT;
2197 if (uts)
2198 timeout = (timespec_to_jiffies(&ts)
2199 + (ts.tv_sec || ts.tv_nsec));
2200
2201 if (timeout) {
2202 /* None ready -- temporarily unblock those we're
2203 * interested while we are sleeping in so that we'll
2204 * be awakened when they arrive. */
2205 current->real_blocked = current->blocked;
2206 sigandsets(&current->blocked, &current->blocked, &these);
2207 recalc_sigpending();
2208 spin_unlock_irq(&current->sighand->siglock);
2209
2210 timeout = schedule_timeout_interruptible(timeout);
2211
2212 spin_lock_irq(&current->sighand->siglock);
2213 sig = dequeue_signal(current, &these, &info);
2214 current->blocked = current->real_blocked;
2215 siginitset(&current->real_blocked, 0);
2216 recalc_sigpending();
2217 }
2218 }
2219 spin_unlock_irq(&current->sighand->siglock);
2220
2221 if (sig) {
2222 ret = sig;
2223 if (uinfo) {
2224 if (copy_siginfo_to_user(uinfo, &info))
2225 ret = -EFAULT;
2226 }
2227 } else {
2228 ret = -EAGAIN;
2229 if (timeout)
2230 ret = -EINTR;
2231 }
2232
2233 return ret;
2234 }
2235
2236 asmlinkage long
2237 sys_kill(int pid, int sig)
2238 {
2239 struct siginfo info;
2240
2241 info.si_signo = sig;
2242 info.si_errno = 0;
2243 info.si_code = SI_USER;
2244 info.si_pid = task_tgid_vnr(current);
2245 info.si_uid = current->uid;
2246
2247 return kill_something_info(sig, &info, pid);
2248 }
2249
2250 static int do_tkill(int tgid, int pid, int sig)
2251 {
2252 int error;
2253 struct siginfo info;
2254 struct task_struct *p;
2255
2256 error = -ESRCH;
2257 info.si_signo = sig;
2258 info.si_errno = 0;
2259 info.si_code = SI_TKILL;
2260 info.si_pid = task_tgid_vnr(current);
2261 info.si_uid = current->uid;
2262
2263 read_lock(&tasklist_lock);
2264 p = find_task_by_vpid(pid);
2265 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2266 error = check_kill_permission(sig, &info, p);
2267 /*
2268 * The null signal is a permissions and process existence
2269 * probe. No signal is actually delivered.
2270 */
2271 if (!error && sig && p->sighand) {
2272 spin_lock_irq(&p->sighand->siglock);
2273 handle_stop_signal(sig, p);
2274 error = specific_send_sig_info(sig, &info, p);
2275 spin_unlock_irq(&p->sighand->siglock);
2276 }
2277 }
2278 read_unlock(&tasklist_lock);
2279
2280 return error;
2281 }
2282
2283 /**
2284 * sys_tgkill - send signal to one specific thread
2285 * @tgid: the thread group ID of the thread
2286 * @pid: the PID of the thread
2287 * @sig: signal to be sent
2288 *
2289 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2290 * exists but it's not belonging to the target process anymore. This
2291 * method solves the problem of threads exiting and PIDs getting reused.
2292 */
2293 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2294 {
2295 /* This is only valid for single tasks */
2296 if (pid <= 0 || tgid <= 0)
2297 return -EINVAL;
2298
2299 return do_tkill(tgid, pid, sig);
2300 }
2301
2302 /*
2303 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2304 */
2305 asmlinkage long
2306 sys_tkill(int pid, int sig)
2307 {
2308 /* This is only valid for single tasks */
2309 if (pid <= 0)
2310 return -EINVAL;
2311
2312 return do_tkill(0, pid, sig);
2313 }
2314
2315 asmlinkage long
2316 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2317 {
2318 siginfo_t info;
2319
2320 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2321 return -EFAULT;
2322
2323 /* Not even root can pretend to send signals from the kernel.
2324 Nor can they impersonate a kill(), which adds source info. */
2325 if (info.si_code >= 0)
2326 return -EPERM;
2327 info.si_signo = sig;
2328
2329 /* POSIX.1b doesn't mention process groups. */
2330 return kill_proc_info(sig, &info, pid);
2331 }
2332
2333 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2334 {
2335 struct k_sigaction *k;
2336 sigset_t mask;
2337
2338 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2339 return -EINVAL;
2340
2341 k = &current->sighand->action[sig-1];
2342
2343 spin_lock_irq(&current->sighand->siglock);
2344 if (oact)
2345 *oact = *k;
2346
2347 if (act) {
2348 sigdelsetmask(&act->sa.sa_mask,
2349 sigmask(SIGKILL) | sigmask(SIGSTOP));
2350 *k = *act;
2351 /*
2352 * POSIX 3.3.1.3:
2353 * "Setting a signal action to SIG_IGN for a signal that is
2354 * pending shall cause the pending signal to be discarded,
2355 * whether or not it is blocked."
2356 *
2357 * "Setting a signal action to SIG_DFL for a signal that is
2358 * pending and whose default action is to ignore the signal
2359 * (for example, SIGCHLD), shall cause the pending signal to
2360 * be discarded, whether or not it is blocked"
2361 */
2362 if (act->sa.sa_handler == SIG_IGN ||
2363 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2364 struct task_struct *t = current;
2365 sigemptyset(&mask);
2366 sigaddset(&mask, sig);
2367 rm_from_queue_full(&mask, &t->signal->shared_pending);
2368 do {
2369 rm_from_queue_full(&mask, &t->pending);
2370 t = next_thread(t);
2371 } while (t != current);
2372 }
2373 }
2374
2375 spin_unlock_irq(&current->sighand->siglock);
2376 return 0;
2377 }
2378
2379 int
2380 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2381 {
2382 stack_t oss;
2383 int error;
2384
2385 if (uoss) {
2386 oss.ss_sp = (void __user *) current->sas_ss_sp;
2387 oss.ss_size = current->sas_ss_size;
2388 oss.ss_flags = sas_ss_flags(sp);
2389 }
2390
2391 if (uss) {
2392 void __user *ss_sp;
2393 size_t ss_size;
2394 int ss_flags;
2395
2396 error = -EFAULT;
2397 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2398 || __get_user(ss_sp, &uss->ss_sp)
2399 || __get_user(ss_flags, &uss->ss_flags)
2400 || __get_user(ss_size, &uss->ss_size))
2401 goto out;
2402
2403 error = -EPERM;
2404 if (on_sig_stack(sp))
2405 goto out;
2406
2407 error = -EINVAL;
2408 /*
2409 *
2410 * Note - this code used to test ss_flags incorrectly
2411 * old code may have been written using ss_flags==0
2412 * to mean ss_flags==SS_ONSTACK (as this was the only
2413 * way that worked) - this fix preserves that older
2414 * mechanism
2415 */
2416 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2417 goto out;
2418
2419 if (ss_flags == SS_DISABLE) {
2420 ss_size = 0;
2421 ss_sp = NULL;
2422 } else {
2423 error = -ENOMEM;
2424 if (ss_size < MINSIGSTKSZ)
2425 goto out;
2426 }
2427
2428 current->sas_ss_sp = (unsigned long) ss_sp;
2429 current->sas_ss_size = ss_size;
2430 }
2431
2432 if (uoss) {
2433 error = -EFAULT;
2434 if (copy_to_user(uoss, &oss, sizeof(oss)))
2435 goto out;
2436 }
2437
2438 error = 0;
2439 out:
2440 return error;
2441 }
2442
2443 #ifdef __ARCH_WANT_SYS_SIGPENDING
2444
2445 asmlinkage long
2446 sys_sigpending(old_sigset_t __user *set)
2447 {
2448 return do_sigpending(set, sizeof(*set));
2449 }
2450
2451 #endif
2452
2453 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2454 /* Some platforms have their own version with special arguments others
2455 support only sys_rt_sigprocmask. */
2456
2457 asmlinkage long
2458 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2459 {
2460 int error;
2461 old_sigset_t old_set, new_set;
2462
2463 if (set) {
2464 error = -EFAULT;
2465 if (copy_from_user(&new_set, set, sizeof(*set)))
2466 goto out;
2467 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2468
2469 spin_lock_irq(&current->sighand->siglock);
2470 old_set = current->blocked.sig[0];
2471
2472 error = 0;
2473 switch (how) {
2474 default:
2475 error = -EINVAL;
2476 break;
2477 case SIG_BLOCK:
2478 sigaddsetmask(&current->blocked, new_set);
2479 break;
2480 case SIG_UNBLOCK:
2481 sigdelsetmask(&current->blocked, new_set);
2482 break;
2483 case SIG_SETMASK:
2484 current->blocked.sig[0] = new_set;
2485 break;
2486 }
2487
2488 recalc_sigpending();
2489 spin_unlock_irq(&current->sighand->siglock);
2490 if (error)
2491 goto out;
2492 if (oset)
2493 goto set_old;
2494 } else if (oset) {
2495 old_set = current->blocked.sig[0];
2496 set_old:
2497 error = -EFAULT;
2498 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2499 goto out;
2500 }
2501 error = 0;
2502 out:
2503 return error;
2504 }
2505 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2506
2507 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2508 asmlinkage long
2509 sys_rt_sigaction(int sig,
2510 const struct sigaction __user *act,
2511 struct sigaction __user *oact,
2512 size_t sigsetsize)
2513 {
2514 struct k_sigaction new_sa, old_sa;
2515 int ret = -EINVAL;
2516
2517 /* XXX: Don't preclude handling different sized sigset_t's. */
2518 if (sigsetsize != sizeof(sigset_t))
2519 goto out;
2520
2521 if (act) {
2522 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2523 return -EFAULT;
2524 }
2525
2526 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2527
2528 if (!ret && oact) {
2529 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2530 return -EFAULT;
2531 }
2532 out:
2533 return ret;
2534 }
2535 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2536
2537 #ifdef __ARCH_WANT_SYS_SGETMASK
2538
2539 /*
2540 * For backwards compatibility. Functionality superseded by sigprocmask.
2541 */
2542 asmlinkage long
2543 sys_sgetmask(void)
2544 {
2545 /* SMP safe */
2546 return current->blocked.sig[0];
2547 }
2548
2549 asmlinkage long
2550 sys_ssetmask(int newmask)
2551 {
2552 int old;
2553
2554 spin_lock_irq(&current->sighand->siglock);
2555 old = current->blocked.sig[0];
2556
2557 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2558 sigmask(SIGSTOP)));
2559 recalc_sigpending();
2560 spin_unlock_irq(&current->sighand->siglock);
2561
2562 return old;
2563 }
2564 #endif /* __ARCH_WANT_SGETMASK */
2565
2566 #ifdef __ARCH_WANT_SYS_SIGNAL
2567 /*
2568 * For backwards compatibility. Functionality superseded by sigaction.
2569 */
2570 asmlinkage unsigned long
2571 sys_signal(int sig, __sighandler_t handler)
2572 {
2573 struct k_sigaction new_sa, old_sa;
2574 int ret;
2575
2576 new_sa.sa.sa_handler = handler;
2577 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2578 sigemptyset(&new_sa.sa.sa_mask);
2579
2580 ret = do_sigaction(sig, &new_sa, &old_sa);
2581
2582 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2583 }
2584 #endif /* __ARCH_WANT_SYS_SIGNAL */
2585
2586 #ifdef __ARCH_WANT_SYS_PAUSE
2587
2588 asmlinkage long
2589 sys_pause(void)
2590 {
2591 current->state = TASK_INTERRUPTIBLE;
2592 schedule();
2593 return -ERESTARTNOHAND;
2594 }
2595
2596 #endif
2597
2598 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2599 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2600 {
2601 sigset_t newset;
2602
2603 /* XXX: Don't preclude handling different sized sigset_t's. */
2604 if (sigsetsize != sizeof(sigset_t))
2605 return -EINVAL;
2606
2607 if (copy_from_user(&newset, unewset, sizeof(newset)))
2608 return -EFAULT;
2609 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2610
2611 spin_lock_irq(&current->sighand->siglock);
2612 current->saved_sigmask = current->blocked;
2613 current->blocked = newset;
2614 recalc_sigpending();
2615 spin_unlock_irq(&current->sighand->siglock);
2616
2617 current->state = TASK_INTERRUPTIBLE;
2618 schedule();
2619 set_thread_flag(TIF_RESTORE_SIGMASK);
2620 return -ERESTARTNOHAND;
2621 }
2622 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2623
2624 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2625 {
2626 return NULL;
2627 }
2628
2629 void __init signals_init(void)
2630 {
2631 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2632 }
This page took 0.212894 seconds and 6 git commands to generate.