signals: cleanup the usage of print_fatal_signal()
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567 static void handle_stop_signal(int sig, struct task_struct *p)
568 {
569 struct signal_struct *signal = p->signal;
570 struct task_struct *t;
571
572 if (signal->flags & SIGNAL_GROUP_EXIT)
573 /*
574 * The process is in the middle of dying already.
575 */
576 return;
577
578 if (sig_kernel_stop(sig)) {
579 /*
580 * This is a stop signal. Remove SIGCONT from all queues.
581 */
582 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
583 t = p;
584 do {
585 rm_from_queue(sigmask(SIGCONT), &t->pending);
586 } while_each_thread(p, t);
587 } else if (sig == SIGCONT) {
588 unsigned int why;
589 /*
590 * Remove all stop signals from all queues,
591 * and wake all threads.
592 */
593 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
594 t = p;
595 do {
596 unsigned int state;
597 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
598 /*
599 * If there is a handler for SIGCONT, we must make
600 * sure that no thread returns to user mode before
601 * we post the signal, in case it was the only
602 * thread eligible to run the signal handler--then
603 * it must not do anything between resuming and
604 * running the handler. With the TIF_SIGPENDING
605 * flag set, the thread will pause and acquire the
606 * siglock that we hold now and until we've queued
607 * the pending signal.
608 *
609 * Wake up the stopped thread _after_ setting
610 * TIF_SIGPENDING
611 */
612 state = __TASK_STOPPED;
613 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615 state |= TASK_INTERRUPTIBLE;
616 }
617 wake_up_state(t, state);
618 } while_each_thread(p, t);
619
620 /*
621 * Notify the parent with CLD_CONTINUED if we were stopped.
622 *
623 * If we were in the middle of a group stop, we pretend it
624 * was already finished, and then continued. Since SIGCHLD
625 * doesn't queue we report only CLD_STOPPED, as if the next
626 * CLD_CONTINUED was dropped.
627 */
628 why = 0;
629 if (signal->flags & SIGNAL_STOP_STOPPED)
630 why |= SIGNAL_CLD_CONTINUED;
631 else if (signal->group_stop_count)
632 why |= SIGNAL_CLD_STOPPED;
633
634 if (why) {
635 signal->flags = why | SIGNAL_STOP_CONTINUED;
636 signal->group_stop_count = 0;
637 signal->group_exit_code = 0;
638 } else {
639 /*
640 * We are not stopped, but there could be a stop
641 * signal in the middle of being processed after
642 * being removed from the queue. Clear that too.
643 */
644 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
645 }
646 }
647 }
648
649 /*
650 * Test if P wants to take SIG. After we've checked all threads with this,
651 * it's equivalent to finding no threads not blocking SIG. Any threads not
652 * blocking SIG were ruled out because they are not running and already
653 * have pending signals. Such threads will dequeue from the shared queue
654 * as soon as they're available, so putting the signal on the shared queue
655 * will be equivalent to sending it to one such thread.
656 */
657 static inline int wants_signal(int sig, struct task_struct *p)
658 {
659 if (sigismember(&p->blocked, sig))
660 return 0;
661 if (p->flags & PF_EXITING)
662 return 0;
663 if (sig == SIGKILL)
664 return 1;
665 if (task_is_stopped_or_traced(p))
666 return 0;
667 return task_curr(p) || !signal_pending(p);
668 }
669
670 static void complete_signal(int sig, struct task_struct *p, int group)
671 {
672 struct signal_struct *signal = p->signal;
673 struct task_struct *t;
674
675 /*
676 * Now find a thread we can wake up to take the signal off the queue.
677 *
678 * If the main thread wants the signal, it gets first crack.
679 * Probably the least surprising to the average bear.
680 */
681 if (wants_signal(sig, p))
682 t = p;
683 else if (!group || thread_group_empty(p))
684 /*
685 * There is just one thread and it does not need to be woken.
686 * It will dequeue unblocked signals before it runs again.
687 */
688 return;
689 else {
690 /*
691 * Otherwise try to find a suitable thread.
692 */
693 t = signal->curr_target;
694 while (!wants_signal(sig, t)) {
695 t = next_thread(t);
696 if (t == signal->curr_target)
697 /*
698 * No thread needs to be woken.
699 * Any eligible threads will see
700 * the signal in the queue soon.
701 */
702 return;
703 }
704 signal->curr_target = t;
705 }
706
707 /*
708 * Found a killable thread. If the signal will be fatal,
709 * then start taking the whole group down immediately.
710 */
711 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
712 !sigismember(&t->real_blocked, sig) &&
713 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
714 /*
715 * This signal will be fatal to the whole group.
716 */
717 if (!sig_kernel_coredump(sig)) {
718 /*
719 * Start a group exit and wake everybody up.
720 * This way we don't have other threads
721 * running and doing things after a slower
722 * thread has the fatal signal pending.
723 */
724 signal->flags = SIGNAL_GROUP_EXIT;
725 signal->group_exit_code = sig;
726 signal->group_stop_count = 0;
727 t = p;
728 do {
729 sigaddset(&t->pending.signal, SIGKILL);
730 signal_wake_up(t, 1);
731 } while_each_thread(p, t);
732 return;
733 }
734 }
735
736 /*
737 * The signal is already in the shared-pending queue.
738 * Tell the chosen thread to wake up and dequeue it.
739 */
740 signal_wake_up(t, sig == SIGKILL);
741 return;
742 }
743
744 static inline int legacy_queue(struct sigpending *signals, int sig)
745 {
746 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
747 }
748
749 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
750 int group)
751 {
752 struct sigpending *pending;
753 struct sigqueue *q;
754
755 assert_spin_locked(&t->sighand->siglock);
756 handle_stop_signal(sig, t);
757
758 pending = group ? &t->signal->shared_pending : &t->pending;
759 /*
760 * Short-circuit ignored signals and support queuing
761 * exactly one non-rt signal, so that we can get more
762 * detailed information about the cause of the signal.
763 */
764 if (sig_ignored(t, sig) || legacy_queue(pending, sig))
765 return 0;
766
767 /*
768 * Deliver the signal to listening signalfds. This must be called
769 * with the sighand lock held.
770 */
771 signalfd_notify(t, sig);
772
773 /*
774 * fast-pathed signals for kernel-internal things like SIGSTOP
775 * or SIGKILL.
776 */
777 if (info == SEND_SIG_FORCED)
778 goto out_set;
779
780 /* Real-time signals must be queued if sent by sigqueue, or
781 some other real-time mechanism. It is implementation
782 defined whether kill() does so. We attempt to do so, on
783 the principle of least surprise, but since kill is not
784 allowed to fail with EAGAIN when low on memory we just
785 make sure at least one signal gets delivered and don't
786 pass on the info struct. */
787
788 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
789 (is_si_special(info) ||
790 info->si_code >= 0)));
791 if (q) {
792 list_add_tail(&q->list, &pending->list);
793 switch ((unsigned long) info) {
794 case (unsigned long) SEND_SIG_NOINFO:
795 q->info.si_signo = sig;
796 q->info.si_errno = 0;
797 q->info.si_code = SI_USER;
798 q->info.si_pid = task_pid_vnr(current);
799 q->info.si_uid = current->uid;
800 break;
801 case (unsigned long) SEND_SIG_PRIV:
802 q->info.si_signo = sig;
803 q->info.si_errno = 0;
804 q->info.si_code = SI_KERNEL;
805 q->info.si_pid = 0;
806 q->info.si_uid = 0;
807 break;
808 default:
809 copy_siginfo(&q->info, info);
810 break;
811 }
812 } else if (!is_si_special(info)) {
813 if (sig >= SIGRTMIN && info->si_code != SI_USER)
814 /*
815 * Queue overflow, abort. We may abort if the signal was rt
816 * and sent by user using something other than kill().
817 */
818 return -EAGAIN;
819 }
820
821 out_set:
822 sigaddset(&pending->signal, sig);
823 complete_signal(sig, t, group);
824 return 0;
825 }
826
827 int print_fatal_signals;
828
829 static void print_fatal_signal(struct pt_regs *regs, int signr)
830 {
831 printk("%s/%d: potentially unexpected fatal signal %d.\n",
832 current->comm, task_pid_nr(current), signr);
833
834 #if defined(__i386__) && !defined(__arch_um__)
835 printk("code at %08lx: ", regs->ip);
836 {
837 int i;
838 for (i = 0; i < 16; i++) {
839 unsigned char insn;
840
841 __get_user(insn, (unsigned char *)(regs->ip + i));
842 printk("%02x ", insn);
843 }
844 }
845 #endif
846 printk("\n");
847 show_regs(regs);
848 }
849
850 static int __init setup_print_fatal_signals(char *str)
851 {
852 get_option (&str, &print_fatal_signals);
853
854 return 1;
855 }
856
857 __setup("print-fatal-signals=", setup_print_fatal_signals);
858
859 int
860 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
861 {
862 return send_signal(sig, info, p, 1);
863 }
864
865 static int
866 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
867 {
868 return send_signal(sig, info, t, 0);
869 }
870
871 /*
872 * Force a signal that the process can't ignore: if necessary
873 * we unblock the signal and change any SIG_IGN to SIG_DFL.
874 *
875 * Note: If we unblock the signal, we always reset it to SIG_DFL,
876 * since we do not want to have a signal handler that was blocked
877 * be invoked when user space had explicitly blocked it.
878 *
879 * We don't want to have recursive SIGSEGV's etc, for example.
880 */
881 int
882 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
883 {
884 unsigned long int flags;
885 int ret, blocked, ignored;
886 struct k_sigaction *action;
887
888 spin_lock_irqsave(&t->sighand->siglock, flags);
889 action = &t->sighand->action[sig-1];
890 ignored = action->sa.sa_handler == SIG_IGN;
891 blocked = sigismember(&t->blocked, sig);
892 if (blocked || ignored) {
893 action->sa.sa_handler = SIG_DFL;
894 if (blocked) {
895 sigdelset(&t->blocked, sig);
896 recalc_sigpending_and_wake(t);
897 }
898 }
899 ret = specific_send_sig_info(sig, info, t);
900 spin_unlock_irqrestore(&t->sighand->siglock, flags);
901
902 return ret;
903 }
904
905 void
906 force_sig_specific(int sig, struct task_struct *t)
907 {
908 force_sig_info(sig, SEND_SIG_FORCED, t);
909 }
910
911 /*
912 * Nuke all other threads in the group.
913 */
914 void zap_other_threads(struct task_struct *p)
915 {
916 struct task_struct *t;
917
918 p->signal->group_stop_count = 0;
919
920 for (t = next_thread(p); t != p; t = next_thread(t)) {
921 /*
922 * Don't bother with already dead threads
923 */
924 if (t->exit_state)
925 continue;
926
927 /* SIGKILL will be handled before any pending SIGSTOP */
928 sigaddset(&t->pending.signal, SIGKILL);
929 signal_wake_up(t, 1);
930 }
931 }
932
933 int __fatal_signal_pending(struct task_struct *tsk)
934 {
935 return sigismember(&tsk->pending.signal, SIGKILL);
936 }
937 EXPORT_SYMBOL(__fatal_signal_pending);
938
939 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
940 {
941 struct sighand_struct *sighand;
942
943 rcu_read_lock();
944 for (;;) {
945 sighand = rcu_dereference(tsk->sighand);
946 if (unlikely(sighand == NULL))
947 break;
948
949 spin_lock_irqsave(&sighand->siglock, *flags);
950 if (likely(sighand == tsk->sighand))
951 break;
952 spin_unlock_irqrestore(&sighand->siglock, *flags);
953 }
954 rcu_read_unlock();
955
956 return sighand;
957 }
958
959 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
960 {
961 unsigned long flags;
962 int ret;
963
964 ret = check_kill_permission(sig, info, p);
965
966 if (!ret && sig) {
967 ret = -ESRCH;
968 if (lock_task_sighand(p, &flags)) {
969 ret = __group_send_sig_info(sig, info, p);
970 unlock_task_sighand(p, &flags);
971 }
972 }
973
974 return ret;
975 }
976
977 /*
978 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
979 * control characters do (^C, ^Z etc)
980 */
981
982 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
983 {
984 struct task_struct *p = NULL;
985 int retval, success;
986
987 success = 0;
988 retval = -ESRCH;
989 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
990 int err = group_send_sig_info(sig, info, p);
991 success |= !err;
992 retval = err;
993 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
994 return success ? 0 : retval;
995 }
996
997 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
998 {
999 int error = -ESRCH;
1000 struct task_struct *p;
1001
1002 rcu_read_lock();
1003 retry:
1004 p = pid_task(pid, PIDTYPE_PID);
1005 if (p) {
1006 error = group_send_sig_info(sig, info, p);
1007 if (unlikely(error == -ESRCH))
1008 /*
1009 * The task was unhashed in between, try again.
1010 * If it is dead, pid_task() will return NULL,
1011 * if we race with de_thread() it will find the
1012 * new leader.
1013 */
1014 goto retry;
1015 }
1016 rcu_read_unlock();
1017
1018 return error;
1019 }
1020
1021 int
1022 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1023 {
1024 int error;
1025 rcu_read_lock();
1026 error = kill_pid_info(sig, info, find_vpid(pid));
1027 rcu_read_unlock();
1028 return error;
1029 }
1030
1031 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1032 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1033 uid_t uid, uid_t euid, u32 secid)
1034 {
1035 int ret = -EINVAL;
1036 struct task_struct *p;
1037
1038 if (!valid_signal(sig))
1039 return ret;
1040
1041 read_lock(&tasklist_lock);
1042 p = pid_task(pid, PIDTYPE_PID);
1043 if (!p) {
1044 ret = -ESRCH;
1045 goto out_unlock;
1046 }
1047 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1048 && (euid != p->suid) && (euid != p->uid)
1049 && (uid != p->suid) && (uid != p->uid)) {
1050 ret = -EPERM;
1051 goto out_unlock;
1052 }
1053 ret = security_task_kill(p, info, sig, secid);
1054 if (ret)
1055 goto out_unlock;
1056 if (sig && p->sighand) {
1057 unsigned long flags;
1058 spin_lock_irqsave(&p->sighand->siglock, flags);
1059 ret = __group_send_sig_info(sig, info, p);
1060 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1061 }
1062 out_unlock:
1063 read_unlock(&tasklist_lock);
1064 return ret;
1065 }
1066 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1067
1068 /*
1069 * kill_something_info() interprets pid in interesting ways just like kill(2).
1070 *
1071 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1072 * is probably wrong. Should make it like BSD or SYSV.
1073 */
1074
1075 static int kill_something_info(int sig, struct siginfo *info, int pid)
1076 {
1077 int ret;
1078
1079 if (pid > 0) {
1080 rcu_read_lock();
1081 ret = kill_pid_info(sig, info, find_vpid(pid));
1082 rcu_read_unlock();
1083 return ret;
1084 }
1085
1086 read_lock(&tasklist_lock);
1087 if (pid != -1) {
1088 ret = __kill_pgrp_info(sig, info,
1089 pid ? find_vpid(-pid) : task_pgrp(current));
1090 } else {
1091 int retval = 0, count = 0;
1092 struct task_struct * p;
1093
1094 for_each_process(p) {
1095 if (p->pid > 1 && !same_thread_group(p, current)) {
1096 int err = group_send_sig_info(sig, info, p);
1097 ++count;
1098 if (err != -EPERM)
1099 retval = err;
1100 }
1101 }
1102 ret = count ? retval : -ESRCH;
1103 }
1104 read_unlock(&tasklist_lock);
1105
1106 return ret;
1107 }
1108
1109 /*
1110 * These are for backward compatibility with the rest of the kernel source.
1111 */
1112
1113 /*
1114 * The caller must ensure the task can't exit.
1115 */
1116 int
1117 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1118 {
1119 int ret;
1120 unsigned long flags;
1121
1122 /*
1123 * Make sure legacy kernel users don't send in bad values
1124 * (normal paths check this in check_kill_permission).
1125 */
1126 if (!valid_signal(sig))
1127 return -EINVAL;
1128
1129 spin_lock_irqsave(&p->sighand->siglock, flags);
1130 ret = specific_send_sig_info(sig, info, p);
1131 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1132 return ret;
1133 }
1134
1135 #define __si_special(priv) \
1136 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1137
1138 int
1139 send_sig(int sig, struct task_struct *p, int priv)
1140 {
1141 return send_sig_info(sig, __si_special(priv), p);
1142 }
1143
1144 void
1145 force_sig(int sig, struct task_struct *p)
1146 {
1147 force_sig_info(sig, SEND_SIG_PRIV, p);
1148 }
1149
1150 /*
1151 * When things go south during signal handling, we
1152 * will force a SIGSEGV. And if the signal that caused
1153 * the problem was already a SIGSEGV, we'll want to
1154 * make sure we don't even try to deliver the signal..
1155 */
1156 int
1157 force_sigsegv(int sig, struct task_struct *p)
1158 {
1159 if (sig == SIGSEGV) {
1160 unsigned long flags;
1161 spin_lock_irqsave(&p->sighand->siglock, flags);
1162 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1163 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1164 }
1165 force_sig(SIGSEGV, p);
1166 return 0;
1167 }
1168
1169 int kill_pgrp(struct pid *pid, int sig, int priv)
1170 {
1171 int ret;
1172
1173 read_lock(&tasklist_lock);
1174 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1175 read_unlock(&tasklist_lock);
1176
1177 return ret;
1178 }
1179 EXPORT_SYMBOL(kill_pgrp);
1180
1181 int kill_pid(struct pid *pid, int sig, int priv)
1182 {
1183 return kill_pid_info(sig, __si_special(priv), pid);
1184 }
1185 EXPORT_SYMBOL(kill_pid);
1186
1187 int
1188 kill_proc(pid_t pid, int sig, int priv)
1189 {
1190 int ret;
1191
1192 rcu_read_lock();
1193 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1194 rcu_read_unlock();
1195 return ret;
1196 }
1197
1198 /*
1199 * These functions support sending signals using preallocated sigqueue
1200 * structures. This is needed "because realtime applications cannot
1201 * afford to lose notifications of asynchronous events, like timer
1202 * expirations or I/O completions". In the case of Posix Timers
1203 * we allocate the sigqueue structure from the timer_create. If this
1204 * allocation fails we are able to report the failure to the application
1205 * with an EAGAIN error.
1206 */
1207
1208 struct sigqueue *sigqueue_alloc(void)
1209 {
1210 struct sigqueue *q;
1211
1212 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1213 q->flags |= SIGQUEUE_PREALLOC;
1214 return(q);
1215 }
1216
1217 void sigqueue_free(struct sigqueue *q)
1218 {
1219 unsigned long flags;
1220 spinlock_t *lock = &current->sighand->siglock;
1221
1222 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1223 /*
1224 * If the signal is still pending remove it from the
1225 * pending queue. We must hold ->siglock while testing
1226 * q->list to serialize with collect_signal().
1227 */
1228 spin_lock_irqsave(lock, flags);
1229 if (!list_empty(&q->list))
1230 list_del_init(&q->list);
1231 spin_unlock_irqrestore(lock, flags);
1232
1233 q->flags &= ~SIGQUEUE_PREALLOC;
1234 __sigqueue_free(q);
1235 }
1236
1237 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1238 {
1239 int sig = q->info.si_signo;
1240 struct sigpending *pending;
1241 unsigned long flags;
1242 int ret;
1243
1244 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1245
1246 ret = -1;
1247 if (!likely(lock_task_sighand(t, &flags)))
1248 goto ret;
1249
1250 handle_stop_signal(sig, t);
1251
1252 ret = 1;
1253 if (sig_ignored(t, sig))
1254 goto out;
1255
1256 ret = 0;
1257 if (unlikely(!list_empty(&q->list))) {
1258 /*
1259 * If an SI_TIMER entry is already queue just increment
1260 * the overrun count.
1261 */
1262 BUG_ON(q->info.si_code != SI_TIMER);
1263 q->info.si_overrun++;
1264 goto out;
1265 }
1266
1267 signalfd_notify(t, sig);
1268 pending = group ? &t->signal->shared_pending : &t->pending;
1269 list_add_tail(&q->list, &pending->list);
1270 sigaddset(&pending->signal, sig);
1271 complete_signal(sig, t, group);
1272 out:
1273 unlock_task_sighand(t, &flags);
1274 ret:
1275 return ret;
1276 }
1277
1278 /*
1279 * Wake up any threads in the parent blocked in wait* syscalls.
1280 */
1281 static inline void __wake_up_parent(struct task_struct *p,
1282 struct task_struct *parent)
1283 {
1284 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1285 }
1286
1287 /*
1288 * Let a parent know about the death of a child.
1289 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1290 */
1291
1292 void do_notify_parent(struct task_struct *tsk, int sig)
1293 {
1294 struct siginfo info;
1295 unsigned long flags;
1296 struct sighand_struct *psig;
1297
1298 BUG_ON(sig == -1);
1299
1300 /* do_notify_parent_cldstop should have been called instead. */
1301 BUG_ON(task_is_stopped_or_traced(tsk));
1302
1303 BUG_ON(!tsk->ptrace &&
1304 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1305
1306 info.si_signo = sig;
1307 info.si_errno = 0;
1308 /*
1309 * we are under tasklist_lock here so our parent is tied to
1310 * us and cannot exit and release its namespace.
1311 *
1312 * the only it can is to switch its nsproxy with sys_unshare,
1313 * bu uncharing pid namespaces is not allowed, so we'll always
1314 * see relevant namespace
1315 *
1316 * write_lock() currently calls preempt_disable() which is the
1317 * same as rcu_read_lock(), but according to Oleg, this is not
1318 * correct to rely on this
1319 */
1320 rcu_read_lock();
1321 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1322 rcu_read_unlock();
1323
1324 info.si_uid = tsk->uid;
1325
1326 /* FIXME: find out whether or not this is supposed to be c*time. */
1327 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1328 tsk->signal->utime));
1329 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1330 tsk->signal->stime));
1331
1332 info.si_status = tsk->exit_code & 0x7f;
1333 if (tsk->exit_code & 0x80)
1334 info.si_code = CLD_DUMPED;
1335 else if (tsk->exit_code & 0x7f)
1336 info.si_code = CLD_KILLED;
1337 else {
1338 info.si_code = CLD_EXITED;
1339 info.si_status = tsk->exit_code >> 8;
1340 }
1341
1342 psig = tsk->parent->sighand;
1343 spin_lock_irqsave(&psig->siglock, flags);
1344 if (!tsk->ptrace && sig == SIGCHLD &&
1345 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1346 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1347 /*
1348 * We are exiting and our parent doesn't care. POSIX.1
1349 * defines special semantics for setting SIGCHLD to SIG_IGN
1350 * or setting the SA_NOCLDWAIT flag: we should be reaped
1351 * automatically and not left for our parent's wait4 call.
1352 * Rather than having the parent do it as a magic kind of
1353 * signal handler, we just set this to tell do_exit that we
1354 * can be cleaned up without becoming a zombie. Note that
1355 * we still call __wake_up_parent in this case, because a
1356 * blocked sys_wait4 might now return -ECHILD.
1357 *
1358 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1359 * is implementation-defined: we do (if you don't want
1360 * it, just use SIG_IGN instead).
1361 */
1362 tsk->exit_signal = -1;
1363 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1364 sig = 0;
1365 }
1366 if (valid_signal(sig) && sig > 0)
1367 __group_send_sig_info(sig, &info, tsk->parent);
1368 __wake_up_parent(tsk, tsk->parent);
1369 spin_unlock_irqrestore(&psig->siglock, flags);
1370 }
1371
1372 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1373 {
1374 struct siginfo info;
1375 unsigned long flags;
1376 struct task_struct *parent;
1377 struct sighand_struct *sighand;
1378
1379 if (tsk->ptrace & PT_PTRACED)
1380 parent = tsk->parent;
1381 else {
1382 tsk = tsk->group_leader;
1383 parent = tsk->real_parent;
1384 }
1385
1386 info.si_signo = SIGCHLD;
1387 info.si_errno = 0;
1388 /*
1389 * see comment in do_notify_parent() abot the following 3 lines
1390 */
1391 rcu_read_lock();
1392 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1393 rcu_read_unlock();
1394
1395 info.si_uid = tsk->uid;
1396
1397 /* FIXME: find out whether or not this is supposed to be c*time. */
1398 info.si_utime = cputime_to_jiffies(tsk->utime);
1399 info.si_stime = cputime_to_jiffies(tsk->stime);
1400
1401 info.si_code = why;
1402 switch (why) {
1403 case CLD_CONTINUED:
1404 info.si_status = SIGCONT;
1405 break;
1406 case CLD_STOPPED:
1407 info.si_status = tsk->signal->group_exit_code & 0x7f;
1408 break;
1409 case CLD_TRAPPED:
1410 info.si_status = tsk->exit_code & 0x7f;
1411 break;
1412 default:
1413 BUG();
1414 }
1415
1416 sighand = parent->sighand;
1417 spin_lock_irqsave(&sighand->siglock, flags);
1418 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1419 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1420 __group_send_sig_info(SIGCHLD, &info, parent);
1421 /*
1422 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1423 */
1424 __wake_up_parent(tsk, parent);
1425 spin_unlock_irqrestore(&sighand->siglock, flags);
1426 }
1427
1428 static inline int may_ptrace_stop(void)
1429 {
1430 if (!likely(current->ptrace & PT_PTRACED))
1431 return 0;
1432 /*
1433 * Are we in the middle of do_coredump?
1434 * If so and our tracer is also part of the coredump stopping
1435 * is a deadlock situation, and pointless because our tracer
1436 * is dead so don't allow us to stop.
1437 * If SIGKILL was already sent before the caller unlocked
1438 * ->siglock we must see ->core_waiters != 0. Otherwise it
1439 * is safe to enter schedule().
1440 */
1441 if (unlikely(current->mm->core_waiters) &&
1442 unlikely(current->mm == current->parent->mm))
1443 return 0;
1444
1445 return 1;
1446 }
1447
1448 /*
1449 * Return nonzero if there is a SIGKILL that should be waking us up.
1450 * Called with the siglock held.
1451 */
1452 static int sigkill_pending(struct task_struct *tsk)
1453 {
1454 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1455 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1456 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1457 }
1458
1459 /*
1460 * This must be called with current->sighand->siglock held.
1461 *
1462 * This should be the path for all ptrace stops.
1463 * We always set current->last_siginfo while stopped here.
1464 * That makes it a way to test a stopped process for
1465 * being ptrace-stopped vs being job-control-stopped.
1466 *
1467 * If we actually decide not to stop at all because the tracer
1468 * is gone, we keep current->exit_code unless clear_code.
1469 */
1470 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1471 {
1472 int killed = 0;
1473
1474 if (arch_ptrace_stop_needed(exit_code, info)) {
1475 /*
1476 * The arch code has something special to do before a
1477 * ptrace stop. This is allowed to block, e.g. for faults
1478 * on user stack pages. We can't keep the siglock while
1479 * calling arch_ptrace_stop, so we must release it now.
1480 * To preserve proper semantics, we must do this before
1481 * any signal bookkeeping like checking group_stop_count.
1482 * Meanwhile, a SIGKILL could come in before we retake the
1483 * siglock. That must prevent us from sleeping in TASK_TRACED.
1484 * So after regaining the lock, we must check for SIGKILL.
1485 */
1486 spin_unlock_irq(&current->sighand->siglock);
1487 arch_ptrace_stop(exit_code, info);
1488 spin_lock_irq(&current->sighand->siglock);
1489 killed = sigkill_pending(current);
1490 }
1491
1492 /*
1493 * If there is a group stop in progress,
1494 * we must participate in the bookkeeping.
1495 */
1496 if (current->signal->group_stop_count > 0)
1497 --current->signal->group_stop_count;
1498
1499 current->last_siginfo = info;
1500 current->exit_code = exit_code;
1501
1502 /* Let the debugger run. */
1503 __set_current_state(TASK_TRACED);
1504 spin_unlock_irq(&current->sighand->siglock);
1505 read_lock(&tasklist_lock);
1506 if (!unlikely(killed) && may_ptrace_stop()) {
1507 do_notify_parent_cldstop(current, CLD_TRAPPED);
1508 read_unlock(&tasklist_lock);
1509 schedule();
1510 } else {
1511 /*
1512 * By the time we got the lock, our tracer went away.
1513 * Don't drop the lock yet, another tracer may come.
1514 */
1515 __set_current_state(TASK_RUNNING);
1516 if (clear_code)
1517 current->exit_code = 0;
1518 read_unlock(&tasklist_lock);
1519 }
1520
1521 /*
1522 * While in TASK_TRACED, we were considered "frozen enough".
1523 * Now that we woke up, it's crucial if we're supposed to be
1524 * frozen that we freeze now before running anything substantial.
1525 */
1526 try_to_freeze();
1527
1528 /*
1529 * We are back. Now reacquire the siglock before touching
1530 * last_siginfo, so that we are sure to have synchronized with
1531 * any signal-sending on another CPU that wants to examine it.
1532 */
1533 spin_lock_irq(&current->sighand->siglock);
1534 current->last_siginfo = NULL;
1535
1536 /*
1537 * Queued signals ignored us while we were stopped for tracing.
1538 * So check for any that we should take before resuming user mode.
1539 * This sets TIF_SIGPENDING, but never clears it.
1540 */
1541 recalc_sigpending_tsk(current);
1542 }
1543
1544 void ptrace_notify(int exit_code)
1545 {
1546 siginfo_t info;
1547
1548 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1549
1550 memset(&info, 0, sizeof info);
1551 info.si_signo = SIGTRAP;
1552 info.si_code = exit_code;
1553 info.si_pid = task_pid_vnr(current);
1554 info.si_uid = current->uid;
1555
1556 /* Let the debugger run. */
1557 spin_lock_irq(&current->sighand->siglock);
1558 ptrace_stop(exit_code, 1, &info);
1559 spin_unlock_irq(&current->sighand->siglock);
1560 }
1561
1562 static void
1563 finish_stop(int stop_count)
1564 {
1565 /*
1566 * If there are no other threads in the group, or if there is
1567 * a group stop in progress and we are the last to stop,
1568 * report to the parent. When ptraced, every thread reports itself.
1569 */
1570 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1571 read_lock(&tasklist_lock);
1572 do_notify_parent_cldstop(current, CLD_STOPPED);
1573 read_unlock(&tasklist_lock);
1574 }
1575
1576 do {
1577 schedule();
1578 } while (try_to_freeze());
1579 /*
1580 * Now we don't run again until continued.
1581 */
1582 current->exit_code = 0;
1583 }
1584
1585 /*
1586 * This performs the stopping for SIGSTOP and other stop signals.
1587 * We have to stop all threads in the thread group.
1588 * Returns nonzero if we've actually stopped and released the siglock.
1589 * Returns zero if we didn't stop and still hold the siglock.
1590 */
1591 static int do_signal_stop(int signr)
1592 {
1593 struct signal_struct *sig = current->signal;
1594 int stop_count;
1595
1596 if (sig->group_stop_count > 0) {
1597 /*
1598 * There is a group stop in progress. We don't need to
1599 * start another one.
1600 */
1601 stop_count = --sig->group_stop_count;
1602 } else {
1603 struct task_struct *t;
1604
1605 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1606 unlikely(signal_group_exit(sig)))
1607 return 0;
1608 /*
1609 * There is no group stop already in progress.
1610 * We must initiate one now.
1611 */
1612 sig->group_exit_code = signr;
1613
1614 stop_count = 0;
1615 for (t = next_thread(current); t != current; t = next_thread(t))
1616 /*
1617 * Setting state to TASK_STOPPED for a group
1618 * stop is always done with the siglock held,
1619 * so this check has no races.
1620 */
1621 if (!(t->flags & PF_EXITING) &&
1622 !task_is_stopped_or_traced(t)) {
1623 stop_count++;
1624 signal_wake_up(t, 0);
1625 }
1626 sig->group_stop_count = stop_count;
1627 }
1628
1629 if (stop_count == 0)
1630 sig->flags = SIGNAL_STOP_STOPPED;
1631 current->exit_code = sig->group_exit_code;
1632 __set_current_state(TASK_STOPPED);
1633
1634 spin_unlock_irq(&current->sighand->siglock);
1635 finish_stop(stop_count);
1636 return 1;
1637 }
1638
1639 static int ptrace_signal(int signr, siginfo_t *info,
1640 struct pt_regs *regs, void *cookie)
1641 {
1642 if (!(current->ptrace & PT_PTRACED))
1643 return signr;
1644
1645 ptrace_signal_deliver(regs, cookie);
1646
1647 /* Let the debugger run. */
1648 ptrace_stop(signr, 0, info);
1649
1650 /* We're back. Did the debugger cancel the sig? */
1651 signr = current->exit_code;
1652 if (signr == 0)
1653 return signr;
1654
1655 current->exit_code = 0;
1656
1657 /* Update the siginfo structure if the signal has
1658 changed. If the debugger wanted something
1659 specific in the siginfo structure then it should
1660 have updated *info via PTRACE_SETSIGINFO. */
1661 if (signr != info->si_signo) {
1662 info->si_signo = signr;
1663 info->si_errno = 0;
1664 info->si_code = SI_USER;
1665 info->si_pid = task_pid_vnr(current->parent);
1666 info->si_uid = current->parent->uid;
1667 }
1668
1669 /* If the (new) signal is now blocked, requeue it. */
1670 if (sigismember(&current->blocked, signr)) {
1671 specific_send_sig_info(signr, info, current);
1672 signr = 0;
1673 }
1674
1675 return signr;
1676 }
1677
1678 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1679 struct pt_regs *regs, void *cookie)
1680 {
1681 struct sighand_struct *sighand = current->sighand;
1682 struct signal_struct *signal = current->signal;
1683 int signr;
1684
1685 relock:
1686 /*
1687 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1688 * While in TASK_STOPPED, we were considered "frozen enough".
1689 * Now that we woke up, it's crucial if we're supposed to be
1690 * frozen that we freeze now before running anything substantial.
1691 */
1692 try_to_freeze();
1693
1694 spin_lock_irq(&sighand->siglock);
1695
1696 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1697 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1698 ? CLD_CONTINUED : CLD_STOPPED;
1699 signal->flags &= ~SIGNAL_CLD_MASK;
1700 spin_unlock_irq(&sighand->siglock);
1701
1702 read_lock(&tasklist_lock);
1703 do_notify_parent_cldstop(current->group_leader, why);
1704 read_unlock(&tasklist_lock);
1705 goto relock;
1706 }
1707
1708 for (;;) {
1709 struct k_sigaction *ka;
1710
1711 if (unlikely(signal->group_stop_count > 0) &&
1712 do_signal_stop(0))
1713 goto relock;
1714
1715 signr = dequeue_signal(current, &current->blocked, info);
1716 if (!signr)
1717 break; /* will return 0 */
1718
1719 if (signr != SIGKILL) {
1720 signr = ptrace_signal(signr, info, regs, cookie);
1721 if (!signr)
1722 continue;
1723 }
1724
1725 ka = &sighand->action[signr-1];
1726 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1727 continue;
1728 if (ka->sa.sa_handler != SIG_DFL) {
1729 /* Run the handler. */
1730 *return_ka = *ka;
1731
1732 if (ka->sa.sa_flags & SA_ONESHOT)
1733 ka->sa.sa_handler = SIG_DFL;
1734
1735 break; /* will return non-zero "signr" value */
1736 }
1737
1738 /*
1739 * Now we are doing the default action for this signal.
1740 */
1741 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1742 continue;
1743
1744 /*
1745 * Global init gets no signals it doesn't want.
1746 */
1747 if (is_global_init(current))
1748 continue;
1749
1750 if (sig_kernel_stop(signr)) {
1751 /*
1752 * The default action is to stop all threads in
1753 * the thread group. The job control signals
1754 * do nothing in an orphaned pgrp, but SIGSTOP
1755 * always works. Note that siglock needs to be
1756 * dropped during the call to is_orphaned_pgrp()
1757 * because of lock ordering with tasklist_lock.
1758 * This allows an intervening SIGCONT to be posted.
1759 * We need to check for that and bail out if necessary.
1760 */
1761 if (signr != SIGSTOP) {
1762 spin_unlock_irq(&sighand->siglock);
1763
1764 /* signals can be posted during this window */
1765
1766 if (is_current_pgrp_orphaned())
1767 goto relock;
1768
1769 spin_lock_irq(&sighand->siglock);
1770 }
1771
1772 if (likely(do_signal_stop(signr))) {
1773 /* It released the siglock. */
1774 goto relock;
1775 }
1776
1777 /*
1778 * We didn't actually stop, due to a race
1779 * with SIGCONT or something like that.
1780 */
1781 continue;
1782 }
1783
1784 spin_unlock_irq(&sighand->siglock);
1785
1786 /*
1787 * Anything else is fatal, maybe with a core dump.
1788 */
1789 current->flags |= PF_SIGNALED;
1790
1791 if (sig_kernel_coredump(signr)) {
1792 if (print_fatal_signals)
1793 print_fatal_signal(regs, signr);
1794 /*
1795 * If it was able to dump core, this kills all
1796 * other threads in the group and synchronizes with
1797 * their demise. If we lost the race with another
1798 * thread getting here, it set group_exit_code
1799 * first and our do_group_exit call below will use
1800 * that value and ignore the one we pass it.
1801 */
1802 do_coredump((long)signr, signr, regs);
1803 }
1804
1805 /*
1806 * Death signals, no core dump.
1807 */
1808 do_group_exit(signr);
1809 /* NOTREACHED */
1810 }
1811 spin_unlock_irq(&sighand->siglock);
1812 return signr;
1813 }
1814
1815 void exit_signals(struct task_struct *tsk)
1816 {
1817 int group_stop = 0;
1818 struct task_struct *t;
1819
1820 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1821 tsk->flags |= PF_EXITING;
1822 return;
1823 }
1824
1825 spin_lock_irq(&tsk->sighand->siglock);
1826 /*
1827 * From now this task is not visible for group-wide signals,
1828 * see wants_signal(), do_signal_stop().
1829 */
1830 tsk->flags |= PF_EXITING;
1831 if (!signal_pending(tsk))
1832 goto out;
1833
1834 /* It could be that __group_complete_signal() choose us to
1835 * notify about group-wide signal. Another thread should be
1836 * woken now to take the signal since we will not.
1837 */
1838 for (t = tsk; (t = next_thread(t)) != tsk; )
1839 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1840 recalc_sigpending_and_wake(t);
1841
1842 if (unlikely(tsk->signal->group_stop_count) &&
1843 !--tsk->signal->group_stop_count) {
1844 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1845 group_stop = 1;
1846 }
1847 out:
1848 spin_unlock_irq(&tsk->sighand->siglock);
1849
1850 if (unlikely(group_stop)) {
1851 read_lock(&tasklist_lock);
1852 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1853 read_unlock(&tasklist_lock);
1854 }
1855 }
1856
1857 EXPORT_SYMBOL(recalc_sigpending);
1858 EXPORT_SYMBOL_GPL(dequeue_signal);
1859 EXPORT_SYMBOL(flush_signals);
1860 EXPORT_SYMBOL(force_sig);
1861 EXPORT_SYMBOL(kill_proc);
1862 EXPORT_SYMBOL(ptrace_notify);
1863 EXPORT_SYMBOL(send_sig);
1864 EXPORT_SYMBOL(send_sig_info);
1865 EXPORT_SYMBOL(sigprocmask);
1866 EXPORT_SYMBOL(block_all_signals);
1867 EXPORT_SYMBOL(unblock_all_signals);
1868
1869
1870 /*
1871 * System call entry points.
1872 */
1873
1874 asmlinkage long sys_restart_syscall(void)
1875 {
1876 struct restart_block *restart = &current_thread_info()->restart_block;
1877 return restart->fn(restart);
1878 }
1879
1880 long do_no_restart_syscall(struct restart_block *param)
1881 {
1882 return -EINTR;
1883 }
1884
1885 /*
1886 * We don't need to get the kernel lock - this is all local to this
1887 * particular thread.. (and that's good, because this is _heavily_
1888 * used by various programs)
1889 */
1890
1891 /*
1892 * This is also useful for kernel threads that want to temporarily
1893 * (or permanently) block certain signals.
1894 *
1895 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1896 * interface happily blocks "unblockable" signals like SIGKILL
1897 * and friends.
1898 */
1899 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1900 {
1901 int error;
1902
1903 spin_lock_irq(&current->sighand->siglock);
1904 if (oldset)
1905 *oldset = current->blocked;
1906
1907 error = 0;
1908 switch (how) {
1909 case SIG_BLOCK:
1910 sigorsets(&current->blocked, &current->blocked, set);
1911 break;
1912 case SIG_UNBLOCK:
1913 signandsets(&current->blocked, &current->blocked, set);
1914 break;
1915 case SIG_SETMASK:
1916 current->blocked = *set;
1917 break;
1918 default:
1919 error = -EINVAL;
1920 }
1921 recalc_sigpending();
1922 spin_unlock_irq(&current->sighand->siglock);
1923
1924 return error;
1925 }
1926
1927 asmlinkage long
1928 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1929 {
1930 int error = -EINVAL;
1931 sigset_t old_set, new_set;
1932
1933 /* XXX: Don't preclude handling different sized sigset_t's. */
1934 if (sigsetsize != sizeof(sigset_t))
1935 goto out;
1936
1937 if (set) {
1938 error = -EFAULT;
1939 if (copy_from_user(&new_set, set, sizeof(*set)))
1940 goto out;
1941 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1942
1943 error = sigprocmask(how, &new_set, &old_set);
1944 if (error)
1945 goto out;
1946 if (oset)
1947 goto set_old;
1948 } else if (oset) {
1949 spin_lock_irq(&current->sighand->siglock);
1950 old_set = current->blocked;
1951 spin_unlock_irq(&current->sighand->siglock);
1952
1953 set_old:
1954 error = -EFAULT;
1955 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1956 goto out;
1957 }
1958 error = 0;
1959 out:
1960 return error;
1961 }
1962
1963 long do_sigpending(void __user *set, unsigned long sigsetsize)
1964 {
1965 long error = -EINVAL;
1966 sigset_t pending;
1967
1968 if (sigsetsize > sizeof(sigset_t))
1969 goto out;
1970
1971 spin_lock_irq(&current->sighand->siglock);
1972 sigorsets(&pending, &current->pending.signal,
1973 &current->signal->shared_pending.signal);
1974 spin_unlock_irq(&current->sighand->siglock);
1975
1976 /* Outside the lock because only this thread touches it. */
1977 sigandsets(&pending, &current->blocked, &pending);
1978
1979 error = -EFAULT;
1980 if (!copy_to_user(set, &pending, sigsetsize))
1981 error = 0;
1982
1983 out:
1984 return error;
1985 }
1986
1987 asmlinkage long
1988 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1989 {
1990 return do_sigpending(set, sigsetsize);
1991 }
1992
1993 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
1994
1995 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
1996 {
1997 int err;
1998
1999 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2000 return -EFAULT;
2001 if (from->si_code < 0)
2002 return __copy_to_user(to, from, sizeof(siginfo_t))
2003 ? -EFAULT : 0;
2004 /*
2005 * If you change siginfo_t structure, please be sure
2006 * this code is fixed accordingly.
2007 * Please remember to update the signalfd_copyinfo() function
2008 * inside fs/signalfd.c too, in case siginfo_t changes.
2009 * It should never copy any pad contained in the structure
2010 * to avoid security leaks, but must copy the generic
2011 * 3 ints plus the relevant union member.
2012 */
2013 err = __put_user(from->si_signo, &to->si_signo);
2014 err |= __put_user(from->si_errno, &to->si_errno);
2015 err |= __put_user((short)from->si_code, &to->si_code);
2016 switch (from->si_code & __SI_MASK) {
2017 case __SI_KILL:
2018 err |= __put_user(from->si_pid, &to->si_pid);
2019 err |= __put_user(from->si_uid, &to->si_uid);
2020 break;
2021 case __SI_TIMER:
2022 err |= __put_user(from->si_tid, &to->si_tid);
2023 err |= __put_user(from->si_overrun, &to->si_overrun);
2024 err |= __put_user(from->si_ptr, &to->si_ptr);
2025 break;
2026 case __SI_POLL:
2027 err |= __put_user(from->si_band, &to->si_band);
2028 err |= __put_user(from->si_fd, &to->si_fd);
2029 break;
2030 case __SI_FAULT:
2031 err |= __put_user(from->si_addr, &to->si_addr);
2032 #ifdef __ARCH_SI_TRAPNO
2033 err |= __put_user(from->si_trapno, &to->si_trapno);
2034 #endif
2035 break;
2036 case __SI_CHLD:
2037 err |= __put_user(from->si_pid, &to->si_pid);
2038 err |= __put_user(from->si_uid, &to->si_uid);
2039 err |= __put_user(from->si_status, &to->si_status);
2040 err |= __put_user(from->si_utime, &to->si_utime);
2041 err |= __put_user(from->si_stime, &to->si_stime);
2042 break;
2043 case __SI_RT: /* This is not generated by the kernel as of now. */
2044 case __SI_MESGQ: /* But this is */
2045 err |= __put_user(from->si_pid, &to->si_pid);
2046 err |= __put_user(from->si_uid, &to->si_uid);
2047 err |= __put_user(from->si_ptr, &to->si_ptr);
2048 break;
2049 default: /* this is just in case for now ... */
2050 err |= __put_user(from->si_pid, &to->si_pid);
2051 err |= __put_user(from->si_uid, &to->si_uid);
2052 break;
2053 }
2054 return err;
2055 }
2056
2057 #endif
2058
2059 asmlinkage long
2060 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2061 siginfo_t __user *uinfo,
2062 const struct timespec __user *uts,
2063 size_t sigsetsize)
2064 {
2065 int ret, sig;
2066 sigset_t these;
2067 struct timespec ts;
2068 siginfo_t info;
2069 long timeout = 0;
2070
2071 /* XXX: Don't preclude handling different sized sigset_t's. */
2072 if (sigsetsize != sizeof(sigset_t))
2073 return -EINVAL;
2074
2075 if (copy_from_user(&these, uthese, sizeof(these)))
2076 return -EFAULT;
2077
2078 /*
2079 * Invert the set of allowed signals to get those we
2080 * want to block.
2081 */
2082 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2083 signotset(&these);
2084
2085 if (uts) {
2086 if (copy_from_user(&ts, uts, sizeof(ts)))
2087 return -EFAULT;
2088 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2089 || ts.tv_sec < 0)
2090 return -EINVAL;
2091 }
2092
2093 spin_lock_irq(&current->sighand->siglock);
2094 sig = dequeue_signal(current, &these, &info);
2095 if (!sig) {
2096 timeout = MAX_SCHEDULE_TIMEOUT;
2097 if (uts)
2098 timeout = (timespec_to_jiffies(&ts)
2099 + (ts.tv_sec || ts.tv_nsec));
2100
2101 if (timeout) {
2102 /* None ready -- temporarily unblock those we're
2103 * interested while we are sleeping in so that we'll
2104 * be awakened when they arrive. */
2105 current->real_blocked = current->blocked;
2106 sigandsets(&current->blocked, &current->blocked, &these);
2107 recalc_sigpending();
2108 spin_unlock_irq(&current->sighand->siglock);
2109
2110 timeout = schedule_timeout_interruptible(timeout);
2111
2112 spin_lock_irq(&current->sighand->siglock);
2113 sig = dequeue_signal(current, &these, &info);
2114 current->blocked = current->real_blocked;
2115 siginitset(&current->real_blocked, 0);
2116 recalc_sigpending();
2117 }
2118 }
2119 spin_unlock_irq(&current->sighand->siglock);
2120
2121 if (sig) {
2122 ret = sig;
2123 if (uinfo) {
2124 if (copy_siginfo_to_user(uinfo, &info))
2125 ret = -EFAULT;
2126 }
2127 } else {
2128 ret = -EAGAIN;
2129 if (timeout)
2130 ret = -EINTR;
2131 }
2132
2133 return ret;
2134 }
2135
2136 asmlinkage long
2137 sys_kill(int pid, int sig)
2138 {
2139 struct siginfo info;
2140
2141 info.si_signo = sig;
2142 info.si_errno = 0;
2143 info.si_code = SI_USER;
2144 info.si_pid = task_tgid_vnr(current);
2145 info.si_uid = current->uid;
2146
2147 return kill_something_info(sig, &info, pid);
2148 }
2149
2150 static int do_tkill(int tgid, int pid, int sig)
2151 {
2152 int error;
2153 struct siginfo info;
2154 struct task_struct *p;
2155 unsigned long flags;
2156
2157 error = -ESRCH;
2158 info.si_signo = sig;
2159 info.si_errno = 0;
2160 info.si_code = SI_TKILL;
2161 info.si_pid = task_tgid_vnr(current);
2162 info.si_uid = current->uid;
2163
2164 rcu_read_lock();
2165 p = find_task_by_vpid(pid);
2166 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2167 error = check_kill_permission(sig, &info, p);
2168 /*
2169 * The null signal is a permissions and process existence
2170 * probe. No signal is actually delivered.
2171 *
2172 * If lock_task_sighand() fails we pretend the task dies
2173 * after receiving the signal. The window is tiny, and the
2174 * signal is private anyway.
2175 */
2176 if (!error && sig && lock_task_sighand(p, &flags)) {
2177 error = specific_send_sig_info(sig, &info, p);
2178 unlock_task_sighand(p, &flags);
2179 }
2180 }
2181 rcu_read_unlock();
2182
2183 return error;
2184 }
2185
2186 /**
2187 * sys_tgkill - send signal to one specific thread
2188 * @tgid: the thread group ID of the thread
2189 * @pid: the PID of the thread
2190 * @sig: signal to be sent
2191 *
2192 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2193 * exists but it's not belonging to the target process anymore. This
2194 * method solves the problem of threads exiting and PIDs getting reused.
2195 */
2196 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2197 {
2198 /* This is only valid for single tasks */
2199 if (pid <= 0 || tgid <= 0)
2200 return -EINVAL;
2201
2202 return do_tkill(tgid, pid, sig);
2203 }
2204
2205 /*
2206 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2207 */
2208 asmlinkage long
2209 sys_tkill(int pid, int sig)
2210 {
2211 /* This is only valid for single tasks */
2212 if (pid <= 0)
2213 return -EINVAL;
2214
2215 return do_tkill(0, pid, sig);
2216 }
2217
2218 asmlinkage long
2219 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2220 {
2221 siginfo_t info;
2222
2223 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2224 return -EFAULT;
2225
2226 /* Not even root can pretend to send signals from the kernel.
2227 Nor can they impersonate a kill(), which adds source info. */
2228 if (info.si_code >= 0)
2229 return -EPERM;
2230 info.si_signo = sig;
2231
2232 /* POSIX.1b doesn't mention process groups. */
2233 return kill_proc_info(sig, &info, pid);
2234 }
2235
2236 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2237 {
2238 struct task_struct *t = current;
2239 struct k_sigaction *k;
2240 sigset_t mask;
2241
2242 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2243 return -EINVAL;
2244
2245 k = &t->sighand->action[sig-1];
2246
2247 spin_lock_irq(&current->sighand->siglock);
2248 if (oact)
2249 *oact = *k;
2250
2251 if (act) {
2252 sigdelsetmask(&act->sa.sa_mask,
2253 sigmask(SIGKILL) | sigmask(SIGSTOP));
2254 *k = *act;
2255 /*
2256 * POSIX 3.3.1.3:
2257 * "Setting a signal action to SIG_IGN for a signal that is
2258 * pending shall cause the pending signal to be discarded,
2259 * whether or not it is blocked."
2260 *
2261 * "Setting a signal action to SIG_DFL for a signal that is
2262 * pending and whose default action is to ignore the signal
2263 * (for example, SIGCHLD), shall cause the pending signal to
2264 * be discarded, whether or not it is blocked"
2265 */
2266 if (__sig_ignored(t, sig)) {
2267 sigemptyset(&mask);
2268 sigaddset(&mask, sig);
2269 rm_from_queue_full(&mask, &t->signal->shared_pending);
2270 do {
2271 rm_from_queue_full(&mask, &t->pending);
2272 t = next_thread(t);
2273 } while (t != current);
2274 }
2275 }
2276
2277 spin_unlock_irq(&current->sighand->siglock);
2278 return 0;
2279 }
2280
2281 int
2282 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2283 {
2284 stack_t oss;
2285 int error;
2286
2287 if (uoss) {
2288 oss.ss_sp = (void __user *) current->sas_ss_sp;
2289 oss.ss_size = current->sas_ss_size;
2290 oss.ss_flags = sas_ss_flags(sp);
2291 }
2292
2293 if (uss) {
2294 void __user *ss_sp;
2295 size_t ss_size;
2296 int ss_flags;
2297
2298 error = -EFAULT;
2299 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2300 || __get_user(ss_sp, &uss->ss_sp)
2301 || __get_user(ss_flags, &uss->ss_flags)
2302 || __get_user(ss_size, &uss->ss_size))
2303 goto out;
2304
2305 error = -EPERM;
2306 if (on_sig_stack(sp))
2307 goto out;
2308
2309 error = -EINVAL;
2310 /*
2311 *
2312 * Note - this code used to test ss_flags incorrectly
2313 * old code may have been written using ss_flags==0
2314 * to mean ss_flags==SS_ONSTACK (as this was the only
2315 * way that worked) - this fix preserves that older
2316 * mechanism
2317 */
2318 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2319 goto out;
2320
2321 if (ss_flags == SS_DISABLE) {
2322 ss_size = 0;
2323 ss_sp = NULL;
2324 } else {
2325 error = -ENOMEM;
2326 if (ss_size < MINSIGSTKSZ)
2327 goto out;
2328 }
2329
2330 current->sas_ss_sp = (unsigned long) ss_sp;
2331 current->sas_ss_size = ss_size;
2332 }
2333
2334 if (uoss) {
2335 error = -EFAULT;
2336 if (copy_to_user(uoss, &oss, sizeof(oss)))
2337 goto out;
2338 }
2339
2340 error = 0;
2341 out:
2342 return error;
2343 }
2344
2345 #ifdef __ARCH_WANT_SYS_SIGPENDING
2346
2347 asmlinkage long
2348 sys_sigpending(old_sigset_t __user *set)
2349 {
2350 return do_sigpending(set, sizeof(*set));
2351 }
2352
2353 #endif
2354
2355 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2356 /* Some platforms have their own version with special arguments others
2357 support only sys_rt_sigprocmask. */
2358
2359 asmlinkage long
2360 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2361 {
2362 int error;
2363 old_sigset_t old_set, new_set;
2364
2365 if (set) {
2366 error = -EFAULT;
2367 if (copy_from_user(&new_set, set, sizeof(*set)))
2368 goto out;
2369 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2370
2371 spin_lock_irq(&current->sighand->siglock);
2372 old_set = current->blocked.sig[0];
2373
2374 error = 0;
2375 switch (how) {
2376 default:
2377 error = -EINVAL;
2378 break;
2379 case SIG_BLOCK:
2380 sigaddsetmask(&current->blocked, new_set);
2381 break;
2382 case SIG_UNBLOCK:
2383 sigdelsetmask(&current->blocked, new_set);
2384 break;
2385 case SIG_SETMASK:
2386 current->blocked.sig[0] = new_set;
2387 break;
2388 }
2389
2390 recalc_sigpending();
2391 spin_unlock_irq(&current->sighand->siglock);
2392 if (error)
2393 goto out;
2394 if (oset)
2395 goto set_old;
2396 } else if (oset) {
2397 old_set = current->blocked.sig[0];
2398 set_old:
2399 error = -EFAULT;
2400 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2401 goto out;
2402 }
2403 error = 0;
2404 out:
2405 return error;
2406 }
2407 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2408
2409 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2410 asmlinkage long
2411 sys_rt_sigaction(int sig,
2412 const struct sigaction __user *act,
2413 struct sigaction __user *oact,
2414 size_t sigsetsize)
2415 {
2416 struct k_sigaction new_sa, old_sa;
2417 int ret = -EINVAL;
2418
2419 /* XXX: Don't preclude handling different sized sigset_t's. */
2420 if (sigsetsize != sizeof(sigset_t))
2421 goto out;
2422
2423 if (act) {
2424 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2425 return -EFAULT;
2426 }
2427
2428 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2429
2430 if (!ret && oact) {
2431 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2432 return -EFAULT;
2433 }
2434 out:
2435 return ret;
2436 }
2437 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2438
2439 #ifdef __ARCH_WANT_SYS_SGETMASK
2440
2441 /*
2442 * For backwards compatibility. Functionality superseded by sigprocmask.
2443 */
2444 asmlinkage long
2445 sys_sgetmask(void)
2446 {
2447 /* SMP safe */
2448 return current->blocked.sig[0];
2449 }
2450
2451 asmlinkage long
2452 sys_ssetmask(int newmask)
2453 {
2454 int old;
2455
2456 spin_lock_irq(&current->sighand->siglock);
2457 old = current->blocked.sig[0];
2458
2459 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2460 sigmask(SIGSTOP)));
2461 recalc_sigpending();
2462 spin_unlock_irq(&current->sighand->siglock);
2463
2464 return old;
2465 }
2466 #endif /* __ARCH_WANT_SGETMASK */
2467
2468 #ifdef __ARCH_WANT_SYS_SIGNAL
2469 /*
2470 * For backwards compatibility. Functionality superseded by sigaction.
2471 */
2472 asmlinkage unsigned long
2473 sys_signal(int sig, __sighandler_t handler)
2474 {
2475 struct k_sigaction new_sa, old_sa;
2476 int ret;
2477
2478 new_sa.sa.sa_handler = handler;
2479 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2480 sigemptyset(&new_sa.sa.sa_mask);
2481
2482 ret = do_sigaction(sig, &new_sa, &old_sa);
2483
2484 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2485 }
2486 #endif /* __ARCH_WANT_SYS_SIGNAL */
2487
2488 #ifdef __ARCH_WANT_SYS_PAUSE
2489
2490 asmlinkage long
2491 sys_pause(void)
2492 {
2493 current->state = TASK_INTERRUPTIBLE;
2494 schedule();
2495 return -ERESTARTNOHAND;
2496 }
2497
2498 #endif
2499
2500 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2501 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2502 {
2503 sigset_t newset;
2504
2505 /* XXX: Don't preclude handling different sized sigset_t's. */
2506 if (sigsetsize != sizeof(sigset_t))
2507 return -EINVAL;
2508
2509 if (copy_from_user(&newset, unewset, sizeof(newset)))
2510 return -EFAULT;
2511 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512
2513 spin_lock_irq(&current->sighand->siglock);
2514 current->saved_sigmask = current->blocked;
2515 current->blocked = newset;
2516 recalc_sigpending();
2517 spin_unlock_irq(&current->sighand->siglock);
2518
2519 current->state = TASK_INTERRUPTIBLE;
2520 schedule();
2521 set_thread_flag(TIF_RESTORE_SIGMASK);
2522 return -ERESTARTNOHAND;
2523 }
2524 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2525
2526 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2527 {
2528 return NULL;
2529 }
2530
2531 void __init signals_init(void)
2532 {
2533 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2534 }
This page took 0.079456 seconds and 6 git commands to generate.