signals: do_tkill: don't use tasklist_lock
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567 static void handle_stop_signal(int sig, struct task_struct *p)
568 {
569 struct signal_struct *signal = p->signal;
570 struct task_struct *t;
571
572 if (signal->flags & SIGNAL_GROUP_EXIT)
573 /*
574 * The process is in the middle of dying already.
575 */
576 return;
577
578 if (sig_kernel_stop(sig)) {
579 /*
580 * This is a stop signal. Remove SIGCONT from all queues.
581 */
582 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
583 t = p;
584 do {
585 rm_from_queue(sigmask(SIGCONT), &t->pending);
586 } while_each_thread(p, t);
587 } else if (sig == SIGCONT) {
588 unsigned int why;
589 /*
590 * Remove all stop signals from all queues,
591 * and wake all threads.
592 */
593 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
594 t = p;
595 do {
596 unsigned int state;
597 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
598 /*
599 * If there is a handler for SIGCONT, we must make
600 * sure that no thread returns to user mode before
601 * we post the signal, in case it was the only
602 * thread eligible to run the signal handler--then
603 * it must not do anything between resuming and
604 * running the handler. With the TIF_SIGPENDING
605 * flag set, the thread will pause and acquire the
606 * siglock that we hold now and until we've queued
607 * the pending signal.
608 *
609 * Wake up the stopped thread _after_ setting
610 * TIF_SIGPENDING
611 */
612 state = __TASK_STOPPED;
613 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615 state |= TASK_INTERRUPTIBLE;
616 }
617 wake_up_state(t, state);
618 } while_each_thread(p, t);
619
620 /*
621 * Notify the parent with CLD_CONTINUED if we were stopped.
622 *
623 * If we were in the middle of a group stop, we pretend it
624 * was already finished, and then continued. Since SIGCHLD
625 * doesn't queue we report only CLD_STOPPED, as if the next
626 * CLD_CONTINUED was dropped.
627 */
628 why = 0;
629 if (signal->flags & SIGNAL_STOP_STOPPED)
630 why |= SIGNAL_CLD_CONTINUED;
631 else if (signal->group_stop_count)
632 why |= SIGNAL_CLD_STOPPED;
633
634 if (why) {
635 signal->flags = why | SIGNAL_STOP_CONTINUED;
636 signal->group_stop_count = 0;
637 signal->group_exit_code = 0;
638 } else {
639 /*
640 * We are not stopped, but there could be a stop
641 * signal in the middle of being processed after
642 * being removed from the queue. Clear that too.
643 */
644 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
645 }
646 } else if (sig == SIGKILL) {
647 /*
648 * Make sure that any pending stop signal already dequeued
649 * is undone by the wakeup for SIGKILL.
650 */
651 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
652 }
653 }
654
655 static inline int legacy_queue(struct sigpending *signals, int sig)
656 {
657 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
658 }
659
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
662 {
663 struct sigqueue *q;
664
665 assert_spin_locked(&t->sighand->siglock);
666 handle_stop_signal(sig, t);
667 /*
668 * Short-circuit ignored signals and support queuing
669 * exactly one non-rt signal, so that we can get more
670 * detailed information about the cause of the signal.
671 */
672 if (sig_ignored(t, sig) || legacy_queue(signals, sig))
673 return 0;
674
675 /*
676 * Deliver the signal to listening signalfds. This must be called
677 * with the sighand lock held.
678 */
679 signalfd_notify(t, sig);
680
681 /*
682 * fast-pathed signals for kernel-internal things like SIGSTOP
683 * or SIGKILL.
684 */
685 if (info == SEND_SIG_FORCED)
686 goto out_set;
687
688 /* Real-time signals must be queued if sent by sigqueue, or
689 some other real-time mechanism. It is implementation
690 defined whether kill() does so. We attempt to do so, on
691 the principle of least surprise, but since kill is not
692 allowed to fail with EAGAIN when low on memory we just
693 make sure at least one signal gets delivered and don't
694 pass on the info struct. */
695
696 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
697 (is_si_special(info) ||
698 info->si_code >= 0)));
699 if (q) {
700 list_add_tail(&q->list, &signals->list);
701 switch ((unsigned long) info) {
702 case (unsigned long) SEND_SIG_NOINFO:
703 q->info.si_signo = sig;
704 q->info.si_errno = 0;
705 q->info.si_code = SI_USER;
706 q->info.si_pid = task_pid_vnr(current);
707 q->info.si_uid = current->uid;
708 break;
709 case (unsigned long) SEND_SIG_PRIV:
710 q->info.si_signo = sig;
711 q->info.si_errno = 0;
712 q->info.si_code = SI_KERNEL;
713 q->info.si_pid = 0;
714 q->info.si_uid = 0;
715 break;
716 default:
717 copy_siginfo(&q->info, info);
718 break;
719 }
720 } else if (!is_si_special(info)) {
721 if (sig >= SIGRTMIN && info->si_code != SI_USER)
722 /*
723 * Queue overflow, abort. We may abort if the signal was rt
724 * and sent by user using something other than kill().
725 */
726 return -EAGAIN;
727 }
728
729 out_set:
730 sigaddset(&signals->signal, sig);
731 return 1;
732 }
733
734 int print_fatal_signals;
735
736 static void print_fatal_signal(struct pt_regs *regs, int signr)
737 {
738 printk("%s/%d: potentially unexpected fatal signal %d.\n",
739 current->comm, task_pid_nr(current), signr);
740
741 #if defined(__i386__) && !defined(__arch_um__)
742 printk("code at %08lx: ", regs->ip);
743 {
744 int i;
745 for (i = 0; i < 16; i++) {
746 unsigned char insn;
747
748 __get_user(insn, (unsigned char *)(regs->ip + i));
749 printk("%02x ", insn);
750 }
751 }
752 #endif
753 printk("\n");
754 show_regs(regs);
755 }
756
757 static int __init setup_print_fatal_signals(char *str)
758 {
759 get_option (&str, &print_fatal_signals);
760
761 return 1;
762 }
763
764 __setup("print-fatal-signals=", setup_print_fatal_signals);
765
766 static int
767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
768 {
769 int ret;
770
771 ret = send_signal(sig, info, t, &t->pending);
772 if (ret <= 0)
773 return ret;
774
775 if (!sigismember(&t->blocked, sig))
776 signal_wake_up(t, sig == SIGKILL);
777 return 0;
778 }
779
780 /*
781 * Force a signal that the process can't ignore: if necessary
782 * we unblock the signal and change any SIG_IGN to SIG_DFL.
783 *
784 * Note: If we unblock the signal, we always reset it to SIG_DFL,
785 * since we do not want to have a signal handler that was blocked
786 * be invoked when user space had explicitly blocked it.
787 *
788 * We don't want to have recursive SIGSEGV's etc, for example.
789 */
790 int
791 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
792 {
793 unsigned long int flags;
794 int ret, blocked, ignored;
795 struct k_sigaction *action;
796
797 spin_lock_irqsave(&t->sighand->siglock, flags);
798 action = &t->sighand->action[sig-1];
799 ignored = action->sa.sa_handler == SIG_IGN;
800 blocked = sigismember(&t->blocked, sig);
801 if (blocked || ignored) {
802 action->sa.sa_handler = SIG_DFL;
803 if (blocked) {
804 sigdelset(&t->blocked, sig);
805 recalc_sigpending_and_wake(t);
806 }
807 }
808 ret = specific_send_sig_info(sig, info, t);
809 spin_unlock_irqrestore(&t->sighand->siglock, flags);
810
811 return ret;
812 }
813
814 void
815 force_sig_specific(int sig, struct task_struct *t)
816 {
817 force_sig_info(sig, SEND_SIG_FORCED, t);
818 }
819
820 /*
821 * Test if P wants to take SIG. After we've checked all threads with this,
822 * it's equivalent to finding no threads not blocking SIG. Any threads not
823 * blocking SIG were ruled out because they are not running and already
824 * have pending signals. Such threads will dequeue from the shared queue
825 * as soon as they're available, so putting the signal on the shared queue
826 * will be equivalent to sending it to one such thread.
827 */
828 static inline int wants_signal(int sig, struct task_struct *p)
829 {
830 if (sigismember(&p->blocked, sig))
831 return 0;
832 if (p->flags & PF_EXITING)
833 return 0;
834 if (sig == SIGKILL)
835 return 1;
836 if (task_is_stopped_or_traced(p))
837 return 0;
838 return task_curr(p) || !signal_pending(p);
839 }
840
841 static void
842 __group_complete_signal(int sig, struct task_struct *p)
843 {
844 struct signal_struct *signal = p->signal;
845 struct task_struct *t;
846
847 /*
848 * Now find a thread we can wake up to take the signal off the queue.
849 *
850 * If the main thread wants the signal, it gets first crack.
851 * Probably the least surprising to the average bear.
852 */
853 if (wants_signal(sig, p))
854 t = p;
855 else if (thread_group_empty(p))
856 /*
857 * There is just one thread and it does not need to be woken.
858 * It will dequeue unblocked signals before it runs again.
859 */
860 return;
861 else {
862 /*
863 * Otherwise try to find a suitable thread.
864 */
865 t = signal->curr_target;
866 if (t == NULL)
867 /* restart balancing at this thread */
868 t = signal->curr_target = p;
869
870 while (!wants_signal(sig, t)) {
871 t = next_thread(t);
872 if (t == signal->curr_target)
873 /*
874 * No thread needs to be woken.
875 * Any eligible threads will see
876 * the signal in the queue soon.
877 */
878 return;
879 }
880 signal->curr_target = t;
881 }
882
883 /*
884 * Found a killable thread. If the signal will be fatal,
885 * then start taking the whole group down immediately.
886 */
887 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
888 !sigismember(&t->real_blocked, sig) &&
889 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
890 /*
891 * This signal will be fatal to the whole group.
892 */
893 if (!sig_kernel_coredump(sig)) {
894 /*
895 * Start a group exit and wake everybody up.
896 * This way we don't have other threads
897 * running and doing things after a slower
898 * thread has the fatal signal pending.
899 */
900 signal->flags = SIGNAL_GROUP_EXIT;
901 signal->group_exit_code = sig;
902 signal->group_stop_count = 0;
903 t = p;
904 do {
905 sigaddset(&t->pending.signal, SIGKILL);
906 signal_wake_up(t, 1);
907 } while_each_thread(p, t);
908 return;
909 }
910 }
911
912 /*
913 * The signal is already in the shared-pending queue.
914 * Tell the chosen thread to wake up and dequeue it.
915 */
916 signal_wake_up(t, sig == SIGKILL);
917 return;
918 }
919
920 int
921 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
922 {
923 int ret;
924
925 /*
926 * Put this signal on the shared-pending queue, or fail with EAGAIN.
927 * We always use the shared queue for process-wide signals,
928 * to avoid several races.
929 */
930 ret = send_signal(sig, info, p, &p->signal->shared_pending);
931 if (ret <= 0)
932 return ret;
933
934 __group_complete_signal(sig, p);
935 return 0;
936 }
937
938 /*
939 * Nuke all other threads in the group.
940 */
941 void zap_other_threads(struct task_struct *p)
942 {
943 struct task_struct *t;
944
945 p->signal->group_stop_count = 0;
946
947 for (t = next_thread(p); t != p; t = next_thread(t)) {
948 /*
949 * Don't bother with already dead threads
950 */
951 if (t->exit_state)
952 continue;
953
954 /* SIGKILL will be handled before any pending SIGSTOP */
955 sigaddset(&t->pending.signal, SIGKILL);
956 signal_wake_up(t, 1);
957 }
958 }
959
960 int __fatal_signal_pending(struct task_struct *tsk)
961 {
962 return sigismember(&tsk->pending.signal, SIGKILL);
963 }
964 EXPORT_SYMBOL(__fatal_signal_pending);
965
966 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
967 {
968 struct sighand_struct *sighand;
969
970 rcu_read_lock();
971 for (;;) {
972 sighand = rcu_dereference(tsk->sighand);
973 if (unlikely(sighand == NULL))
974 break;
975
976 spin_lock_irqsave(&sighand->siglock, *flags);
977 if (likely(sighand == tsk->sighand))
978 break;
979 spin_unlock_irqrestore(&sighand->siglock, *flags);
980 }
981 rcu_read_unlock();
982
983 return sighand;
984 }
985
986 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
987 {
988 unsigned long flags;
989 int ret;
990
991 ret = check_kill_permission(sig, info, p);
992
993 if (!ret && sig) {
994 ret = -ESRCH;
995 if (lock_task_sighand(p, &flags)) {
996 ret = __group_send_sig_info(sig, info, p);
997 unlock_task_sighand(p, &flags);
998 }
999 }
1000
1001 return ret;
1002 }
1003
1004 /*
1005 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1006 * control characters do (^C, ^Z etc)
1007 */
1008
1009 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1010 {
1011 struct task_struct *p = NULL;
1012 int retval, success;
1013
1014 success = 0;
1015 retval = -ESRCH;
1016 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1017 int err = group_send_sig_info(sig, info, p);
1018 success |= !err;
1019 retval = err;
1020 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1021 return success ? 0 : retval;
1022 }
1023
1024 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1025 {
1026 int error = -ESRCH;
1027 struct task_struct *p;
1028
1029 rcu_read_lock();
1030 retry:
1031 p = pid_task(pid, PIDTYPE_PID);
1032 if (p) {
1033 error = group_send_sig_info(sig, info, p);
1034 if (unlikely(error == -ESRCH))
1035 /*
1036 * The task was unhashed in between, try again.
1037 * If it is dead, pid_task() will return NULL,
1038 * if we race with de_thread() it will find the
1039 * new leader.
1040 */
1041 goto retry;
1042 }
1043 rcu_read_unlock();
1044
1045 return error;
1046 }
1047
1048 int
1049 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1050 {
1051 int error;
1052 rcu_read_lock();
1053 error = kill_pid_info(sig, info, find_vpid(pid));
1054 rcu_read_unlock();
1055 return error;
1056 }
1057
1058 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1059 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1060 uid_t uid, uid_t euid, u32 secid)
1061 {
1062 int ret = -EINVAL;
1063 struct task_struct *p;
1064
1065 if (!valid_signal(sig))
1066 return ret;
1067
1068 read_lock(&tasklist_lock);
1069 p = pid_task(pid, PIDTYPE_PID);
1070 if (!p) {
1071 ret = -ESRCH;
1072 goto out_unlock;
1073 }
1074 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1075 && (euid != p->suid) && (euid != p->uid)
1076 && (uid != p->suid) && (uid != p->uid)) {
1077 ret = -EPERM;
1078 goto out_unlock;
1079 }
1080 ret = security_task_kill(p, info, sig, secid);
1081 if (ret)
1082 goto out_unlock;
1083 if (sig && p->sighand) {
1084 unsigned long flags;
1085 spin_lock_irqsave(&p->sighand->siglock, flags);
1086 ret = __group_send_sig_info(sig, info, p);
1087 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1088 }
1089 out_unlock:
1090 read_unlock(&tasklist_lock);
1091 return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1094
1095 /*
1096 * kill_something_info() interprets pid in interesting ways just like kill(2).
1097 *
1098 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1099 * is probably wrong. Should make it like BSD or SYSV.
1100 */
1101
1102 static int kill_something_info(int sig, struct siginfo *info, int pid)
1103 {
1104 int ret;
1105
1106 if (pid > 0) {
1107 rcu_read_lock();
1108 ret = kill_pid_info(sig, info, find_vpid(pid));
1109 rcu_read_unlock();
1110 return ret;
1111 }
1112
1113 read_lock(&tasklist_lock);
1114 if (pid != -1) {
1115 ret = __kill_pgrp_info(sig, info,
1116 pid ? find_vpid(-pid) : task_pgrp(current));
1117 } else {
1118 int retval = 0, count = 0;
1119 struct task_struct * p;
1120
1121 for_each_process(p) {
1122 if (p->pid > 1 && !same_thread_group(p, current)) {
1123 int err = group_send_sig_info(sig, info, p);
1124 ++count;
1125 if (err != -EPERM)
1126 retval = err;
1127 }
1128 }
1129 ret = count ? retval : -ESRCH;
1130 }
1131 read_unlock(&tasklist_lock);
1132
1133 return ret;
1134 }
1135
1136 /*
1137 * These are for backward compatibility with the rest of the kernel source.
1138 */
1139
1140 /*
1141 * These two are the most common entry points. They send a signal
1142 * just to the specific thread.
1143 */
1144 int
1145 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1146 {
1147 int ret;
1148 unsigned long flags;
1149
1150 /*
1151 * Make sure legacy kernel users don't send in bad values
1152 * (normal paths check this in check_kill_permission).
1153 */
1154 if (!valid_signal(sig))
1155 return -EINVAL;
1156
1157 /*
1158 * We need the tasklist lock even for the specific
1159 * thread case (when we don't need to follow the group
1160 * lists) in order to avoid races with "p->sighand"
1161 * going away or changing from under us.
1162 */
1163 read_lock(&tasklist_lock);
1164 spin_lock_irqsave(&p->sighand->siglock, flags);
1165 ret = specific_send_sig_info(sig, info, p);
1166 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1167 read_unlock(&tasklist_lock);
1168 return ret;
1169 }
1170
1171 #define __si_special(priv) \
1172 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1173
1174 int
1175 send_sig(int sig, struct task_struct *p, int priv)
1176 {
1177 return send_sig_info(sig, __si_special(priv), p);
1178 }
1179
1180 void
1181 force_sig(int sig, struct task_struct *p)
1182 {
1183 force_sig_info(sig, SEND_SIG_PRIV, p);
1184 }
1185
1186 /*
1187 * When things go south during signal handling, we
1188 * will force a SIGSEGV. And if the signal that caused
1189 * the problem was already a SIGSEGV, we'll want to
1190 * make sure we don't even try to deliver the signal..
1191 */
1192 int
1193 force_sigsegv(int sig, struct task_struct *p)
1194 {
1195 if (sig == SIGSEGV) {
1196 unsigned long flags;
1197 spin_lock_irqsave(&p->sighand->siglock, flags);
1198 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1199 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1200 }
1201 force_sig(SIGSEGV, p);
1202 return 0;
1203 }
1204
1205 int kill_pgrp(struct pid *pid, int sig, int priv)
1206 {
1207 int ret;
1208
1209 read_lock(&tasklist_lock);
1210 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1211 read_unlock(&tasklist_lock);
1212
1213 return ret;
1214 }
1215 EXPORT_SYMBOL(kill_pgrp);
1216
1217 int kill_pid(struct pid *pid, int sig, int priv)
1218 {
1219 return kill_pid_info(sig, __si_special(priv), pid);
1220 }
1221 EXPORT_SYMBOL(kill_pid);
1222
1223 int
1224 kill_proc(pid_t pid, int sig, int priv)
1225 {
1226 int ret;
1227
1228 rcu_read_lock();
1229 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1230 rcu_read_unlock();
1231 return ret;
1232 }
1233
1234 /*
1235 * These functions support sending signals using preallocated sigqueue
1236 * structures. This is needed "because realtime applications cannot
1237 * afford to lose notifications of asynchronous events, like timer
1238 * expirations or I/O completions". In the case of Posix Timers
1239 * we allocate the sigqueue structure from the timer_create. If this
1240 * allocation fails we are able to report the failure to the application
1241 * with an EAGAIN error.
1242 */
1243
1244 struct sigqueue *sigqueue_alloc(void)
1245 {
1246 struct sigqueue *q;
1247
1248 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1249 q->flags |= SIGQUEUE_PREALLOC;
1250 return(q);
1251 }
1252
1253 void sigqueue_free(struct sigqueue *q)
1254 {
1255 unsigned long flags;
1256 spinlock_t *lock = &current->sighand->siglock;
1257
1258 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1259 /*
1260 * If the signal is still pending remove it from the
1261 * pending queue. We must hold ->siglock while testing
1262 * q->list to serialize with collect_signal().
1263 */
1264 spin_lock_irqsave(lock, flags);
1265 if (!list_empty(&q->list))
1266 list_del_init(&q->list);
1267 spin_unlock_irqrestore(lock, flags);
1268
1269 q->flags &= ~SIGQUEUE_PREALLOC;
1270 __sigqueue_free(q);
1271 }
1272
1273 static int do_send_sigqueue(int sig, struct sigqueue *q, struct task_struct *t,
1274 struct sigpending *pending)
1275 {
1276 handle_stop_signal(sig, t);
1277
1278 if (unlikely(!list_empty(&q->list))) {
1279 /*
1280 * If an SI_TIMER entry is already queue just increment
1281 * the overrun count.
1282 */
1283
1284 BUG_ON(q->info.si_code != SI_TIMER);
1285 q->info.si_overrun++;
1286 return 0;
1287 }
1288
1289 if (sig_ignored(t, sig))
1290 return 1;
1291
1292 signalfd_notify(t, sig);
1293 list_add_tail(&q->list, &pending->list);
1294 sigaddset(&pending->signal, sig);
1295 return 0;
1296 }
1297
1298 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1299 {
1300 unsigned long flags;
1301 int ret = -1;
1302
1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1304
1305 /*
1306 * The rcu based delayed sighand destroy makes it possible to
1307 * run this without tasklist lock held. The task struct itself
1308 * cannot go away as create_timer did get_task_struct().
1309 *
1310 * We return -1, when the task is marked exiting, so
1311 * posix_timer_event can redirect it to the group leader
1312 */
1313 if (!likely(lock_task_sighand(p, &flags)))
1314 goto out_err;
1315
1316 ret = do_send_sigqueue(sig, q, p, &p->pending);
1317
1318 if (!sigismember(&p->blocked, sig))
1319 signal_wake_up(p, sig == SIGKILL);
1320
1321 unlock_task_sighand(p, &flags);
1322 out_err:
1323 return ret;
1324 }
1325
1326 int
1327 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1328 {
1329 unsigned long flags;
1330 int ret;
1331
1332 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1333
1334 /* Since it_lock is held, p->sighand cannot be NULL. */
1335 spin_lock_irqsave(&p->sighand->siglock, flags);
1336
1337 ret = do_send_sigqueue(sig, q, p, &p->signal->shared_pending);
1338
1339 __group_complete_signal(sig, p);
1340
1341 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1342
1343 return ret;
1344 }
1345
1346 /*
1347 * Wake up any threads in the parent blocked in wait* syscalls.
1348 */
1349 static inline void __wake_up_parent(struct task_struct *p,
1350 struct task_struct *parent)
1351 {
1352 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1353 }
1354
1355 /*
1356 * Let a parent know about the death of a child.
1357 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1358 */
1359
1360 void do_notify_parent(struct task_struct *tsk, int sig)
1361 {
1362 struct siginfo info;
1363 unsigned long flags;
1364 struct sighand_struct *psig;
1365
1366 BUG_ON(sig == -1);
1367
1368 /* do_notify_parent_cldstop should have been called instead. */
1369 BUG_ON(task_is_stopped_or_traced(tsk));
1370
1371 BUG_ON(!tsk->ptrace &&
1372 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1373
1374 info.si_signo = sig;
1375 info.si_errno = 0;
1376 /*
1377 * we are under tasklist_lock here so our parent is tied to
1378 * us and cannot exit and release its namespace.
1379 *
1380 * the only it can is to switch its nsproxy with sys_unshare,
1381 * bu uncharing pid namespaces is not allowed, so we'll always
1382 * see relevant namespace
1383 *
1384 * write_lock() currently calls preempt_disable() which is the
1385 * same as rcu_read_lock(), but according to Oleg, this is not
1386 * correct to rely on this
1387 */
1388 rcu_read_lock();
1389 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1390 rcu_read_unlock();
1391
1392 info.si_uid = tsk->uid;
1393
1394 /* FIXME: find out whether or not this is supposed to be c*time. */
1395 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1396 tsk->signal->utime));
1397 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1398 tsk->signal->stime));
1399
1400 info.si_status = tsk->exit_code & 0x7f;
1401 if (tsk->exit_code & 0x80)
1402 info.si_code = CLD_DUMPED;
1403 else if (tsk->exit_code & 0x7f)
1404 info.si_code = CLD_KILLED;
1405 else {
1406 info.si_code = CLD_EXITED;
1407 info.si_status = tsk->exit_code >> 8;
1408 }
1409
1410 psig = tsk->parent->sighand;
1411 spin_lock_irqsave(&psig->siglock, flags);
1412 if (!tsk->ptrace && sig == SIGCHLD &&
1413 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1414 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1415 /*
1416 * We are exiting and our parent doesn't care. POSIX.1
1417 * defines special semantics for setting SIGCHLD to SIG_IGN
1418 * or setting the SA_NOCLDWAIT flag: we should be reaped
1419 * automatically and not left for our parent's wait4 call.
1420 * Rather than having the parent do it as a magic kind of
1421 * signal handler, we just set this to tell do_exit that we
1422 * can be cleaned up without becoming a zombie. Note that
1423 * we still call __wake_up_parent in this case, because a
1424 * blocked sys_wait4 might now return -ECHILD.
1425 *
1426 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1427 * is implementation-defined: we do (if you don't want
1428 * it, just use SIG_IGN instead).
1429 */
1430 tsk->exit_signal = -1;
1431 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1432 sig = 0;
1433 }
1434 if (valid_signal(sig) && sig > 0)
1435 __group_send_sig_info(sig, &info, tsk->parent);
1436 __wake_up_parent(tsk, tsk->parent);
1437 spin_unlock_irqrestore(&psig->siglock, flags);
1438 }
1439
1440 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1441 {
1442 struct siginfo info;
1443 unsigned long flags;
1444 struct task_struct *parent;
1445 struct sighand_struct *sighand;
1446
1447 if (tsk->ptrace & PT_PTRACED)
1448 parent = tsk->parent;
1449 else {
1450 tsk = tsk->group_leader;
1451 parent = tsk->real_parent;
1452 }
1453
1454 info.si_signo = SIGCHLD;
1455 info.si_errno = 0;
1456 /*
1457 * see comment in do_notify_parent() abot the following 3 lines
1458 */
1459 rcu_read_lock();
1460 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1461 rcu_read_unlock();
1462
1463 info.si_uid = tsk->uid;
1464
1465 /* FIXME: find out whether or not this is supposed to be c*time. */
1466 info.si_utime = cputime_to_jiffies(tsk->utime);
1467 info.si_stime = cputime_to_jiffies(tsk->stime);
1468
1469 info.si_code = why;
1470 switch (why) {
1471 case CLD_CONTINUED:
1472 info.si_status = SIGCONT;
1473 break;
1474 case CLD_STOPPED:
1475 info.si_status = tsk->signal->group_exit_code & 0x7f;
1476 break;
1477 case CLD_TRAPPED:
1478 info.si_status = tsk->exit_code & 0x7f;
1479 break;
1480 default:
1481 BUG();
1482 }
1483
1484 sighand = parent->sighand;
1485 spin_lock_irqsave(&sighand->siglock, flags);
1486 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1487 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1488 __group_send_sig_info(SIGCHLD, &info, parent);
1489 /*
1490 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1491 */
1492 __wake_up_parent(tsk, parent);
1493 spin_unlock_irqrestore(&sighand->siglock, flags);
1494 }
1495
1496 static inline int may_ptrace_stop(void)
1497 {
1498 if (!likely(current->ptrace & PT_PTRACED))
1499 return 0;
1500 /*
1501 * Are we in the middle of do_coredump?
1502 * If so and our tracer is also part of the coredump stopping
1503 * is a deadlock situation, and pointless because our tracer
1504 * is dead so don't allow us to stop.
1505 * If SIGKILL was already sent before the caller unlocked
1506 * ->siglock we must see ->core_waiters != 0. Otherwise it
1507 * is safe to enter schedule().
1508 */
1509 if (unlikely(current->mm->core_waiters) &&
1510 unlikely(current->mm == current->parent->mm))
1511 return 0;
1512
1513 return 1;
1514 }
1515
1516 /*
1517 * Return nonzero if there is a SIGKILL that should be waking us up.
1518 * Called with the siglock held.
1519 */
1520 static int sigkill_pending(struct task_struct *tsk)
1521 {
1522 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1523 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1524 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1525 }
1526
1527 /*
1528 * This must be called with current->sighand->siglock held.
1529 *
1530 * This should be the path for all ptrace stops.
1531 * We always set current->last_siginfo while stopped here.
1532 * That makes it a way to test a stopped process for
1533 * being ptrace-stopped vs being job-control-stopped.
1534 *
1535 * If we actually decide not to stop at all because the tracer
1536 * is gone, we keep current->exit_code unless clear_code.
1537 */
1538 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1539 {
1540 int killed = 0;
1541
1542 if (arch_ptrace_stop_needed(exit_code, info)) {
1543 /*
1544 * The arch code has something special to do before a
1545 * ptrace stop. This is allowed to block, e.g. for faults
1546 * on user stack pages. We can't keep the siglock while
1547 * calling arch_ptrace_stop, so we must release it now.
1548 * To preserve proper semantics, we must do this before
1549 * any signal bookkeeping like checking group_stop_count.
1550 * Meanwhile, a SIGKILL could come in before we retake the
1551 * siglock. That must prevent us from sleeping in TASK_TRACED.
1552 * So after regaining the lock, we must check for SIGKILL.
1553 */
1554 spin_unlock_irq(&current->sighand->siglock);
1555 arch_ptrace_stop(exit_code, info);
1556 spin_lock_irq(&current->sighand->siglock);
1557 killed = sigkill_pending(current);
1558 }
1559
1560 /*
1561 * If there is a group stop in progress,
1562 * we must participate in the bookkeeping.
1563 */
1564 if (current->signal->group_stop_count > 0)
1565 --current->signal->group_stop_count;
1566
1567 current->last_siginfo = info;
1568 current->exit_code = exit_code;
1569
1570 /* Let the debugger run. */
1571 __set_current_state(TASK_TRACED);
1572 spin_unlock_irq(&current->sighand->siglock);
1573 read_lock(&tasklist_lock);
1574 if (!unlikely(killed) && may_ptrace_stop()) {
1575 do_notify_parent_cldstop(current, CLD_TRAPPED);
1576 read_unlock(&tasklist_lock);
1577 schedule();
1578 } else {
1579 /*
1580 * By the time we got the lock, our tracer went away.
1581 * Don't drop the lock yet, another tracer may come.
1582 */
1583 __set_current_state(TASK_RUNNING);
1584 if (clear_code)
1585 current->exit_code = 0;
1586 read_unlock(&tasklist_lock);
1587 }
1588
1589 /*
1590 * While in TASK_TRACED, we were considered "frozen enough".
1591 * Now that we woke up, it's crucial if we're supposed to be
1592 * frozen that we freeze now before running anything substantial.
1593 */
1594 try_to_freeze();
1595
1596 /*
1597 * We are back. Now reacquire the siglock before touching
1598 * last_siginfo, so that we are sure to have synchronized with
1599 * any signal-sending on another CPU that wants to examine it.
1600 */
1601 spin_lock_irq(&current->sighand->siglock);
1602 current->last_siginfo = NULL;
1603
1604 /*
1605 * Queued signals ignored us while we were stopped for tracing.
1606 * So check for any that we should take before resuming user mode.
1607 * This sets TIF_SIGPENDING, but never clears it.
1608 */
1609 recalc_sigpending_tsk(current);
1610 }
1611
1612 void ptrace_notify(int exit_code)
1613 {
1614 siginfo_t info;
1615
1616 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1617
1618 memset(&info, 0, sizeof info);
1619 info.si_signo = SIGTRAP;
1620 info.si_code = exit_code;
1621 info.si_pid = task_pid_vnr(current);
1622 info.si_uid = current->uid;
1623
1624 /* Let the debugger run. */
1625 spin_lock_irq(&current->sighand->siglock);
1626 ptrace_stop(exit_code, 1, &info);
1627 spin_unlock_irq(&current->sighand->siglock);
1628 }
1629
1630 static void
1631 finish_stop(int stop_count)
1632 {
1633 /*
1634 * If there are no other threads in the group, or if there is
1635 * a group stop in progress and we are the last to stop,
1636 * report to the parent. When ptraced, every thread reports itself.
1637 */
1638 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1639 read_lock(&tasklist_lock);
1640 do_notify_parent_cldstop(current, CLD_STOPPED);
1641 read_unlock(&tasklist_lock);
1642 }
1643
1644 do {
1645 schedule();
1646 } while (try_to_freeze());
1647 /*
1648 * Now we don't run again until continued.
1649 */
1650 current->exit_code = 0;
1651 }
1652
1653 /*
1654 * This performs the stopping for SIGSTOP and other stop signals.
1655 * We have to stop all threads in the thread group.
1656 * Returns nonzero if we've actually stopped and released the siglock.
1657 * Returns zero if we didn't stop and still hold the siglock.
1658 */
1659 static int do_signal_stop(int signr)
1660 {
1661 struct signal_struct *sig = current->signal;
1662 int stop_count;
1663
1664 if (sig->group_stop_count > 0) {
1665 /*
1666 * There is a group stop in progress. We don't need to
1667 * start another one.
1668 */
1669 stop_count = --sig->group_stop_count;
1670 } else {
1671 struct task_struct *t;
1672
1673 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1674 unlikely(signal_group_exit(sig)))
1675 return 0;
1676 /*
1677 * There is no group stop already in progress.
1678 * We must initiate one now.
1679 */
1680 sig->group_exit_code = signr;
1681
1682 stop_count = 0;
1683 for (t = next_thread(current); t != current; t = next_thread(t))
1684 /*
1685 * Setting state to TASK_STOPPED for a group
1686 * stop is always done with the siglock held,
1687 * so this check has no races.
1688 */
1689 if (!(t->flags & PF_EXITING) &&
1690 !task_is_stopped_or_traced(t)) {
1691 stop_count++;
1692 signal_wake_up(t, 0);
1693 }
1694 sig->group_stop_count = stop_count;
1695 }
1696
1697 if (stop_count == 0)
1698 sig->flags = SIGNAL_STOP_STOPPED;
1699 current->exit_code = sig->group_exit_code;
1700 __set_current_state(TASK_STOPPED);
1701
1702 spin_unlock_irq(&current->sighand->siglock);
1703 finish_stop(stop_count);
1704 return 1;
1705 }
1706
1707 static int ptrace_signal(int signr, siginfo_t *info,
1708 struct pt_regs *regs, void *cookie)
1709 {
1710 if (!(current->ptrace & PT_PTRACED))
1711 return signr;
1712
1713 ptrace_signal_deliver(regs, cookie);
1714
1715 /* Let the debugger run. */
1716 ptrace_stop(signr, 0, info);
1717
1718 /* We're back. Did the debugger cancel the sig? */
1719 signr = current->exit_code;
1720 if (signr == 0)
1721 return signr;
1722
1723 current->exit_code = 0;
1724
1725 /* Update the siginfo structure if the signal has
1726 changed. If the debugger wanted something
1727 specific in the siginfo structure then it should
1728 have updated *info via PTRACE_SETSIGINFO. */
1729 if (signr != info->si_signo) {
1730 info->si_signo = signr;
1731 info->si_errno = 0;
1732 info->si_code = SI_USER;
1733 info->si_pid = task_pid_vnr(current->parent);
1734 info->si_uid = current->parent->uid;
1735 }
1736
1737 /* If the (new) signal is now blocked, requeue it. */
1738 if (sigismember(&current->blocked, signr)) {
1739 specific_send_sig_info(signr, info, current);
1740 signr = 0;
1741 }
1742
1743 return signr;
1744 }
1745
1746 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1747 struct pt_regs *regs, void *cookie)
1748 {
1749 struct sighand_struct *sighand = current->sighand;
1750 struct signal_struct *signal = current->signal;
1751 int signr;
1752
1753 relock:
1754 /*
1755 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1756 * While in TASK_STOPPED, we were considered "frozen enough".
1757 * Now that we woke up, it's crucial if we're supposed to be
1758 * frozen that we freeze now before running anything substantial.
1759 */
1760 try_to_freeze();
1761
1762 spin_lock_irq(&sighand->siglock);
1763
1764 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1765 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1766 ? CLD_CONTINUED : CLD_STOPPED;
1767 signal->flags &= ~SIGNAL_CLD_MASK;
1768 spin_unlock_irq(&sighand->siglock);
1769
1770 read_lock(&tasklist_lock);
1771 do_notify_parent_cldstop(current->group_leader, why);
1772 read_unlock(&tasklist_lock);
1773 goto relock;
1774 }
1775
1776 for (;;) {
1777 struct k_sigaction *ka;
1778
1779 if (unlikely(signal->group_stop_count > 0) &&
1780 do_signal_stop(0))
1781 goto relock;
1782
1783 signr = dequeue_signal(current, &current->blocked, info);
1784 if (!signr)
1785 break; /* will return 0 */
1786
1787 if (signr != SIGKILL) {
1788 signr = ptrace_signal(signr, info, regs, cookie);
1789 if (!signr)
1790 continue;
1791 }
1792
1793 ka = &sighand->action[signr-1];
1794 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1795 continue;
1796 if (ka->sa.sa_handler != SIG_DFL) {
1797 /* Run the handler. */
1798 *return_ka = *ka;
1799
1800 if (ka->sa.sa_flags & SA_ONESHOT)
1801 ka->sa.sa_handler = SIG_DFL;
1802
1803 break; /* will return non-zero "signr" value */
1804 }
1805
1806 /*
1807 * Now we are doing the default action for this signal.
1808 */
1809 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1810 continue;
1811
1812 /*
1813 * Global init gets no signals it doesn't want.
1814 */
1815 if (is_global_init(current))
1816 continue;
1817
1818 if (sig_kernel_stop(signr)) {
1819 /*
1820 * The default action is to stop all threads in
1821 * the thread group. The job control signals
1822 * do nothing in an orphaned pgrp, but SIGSTOP
1823 * always works. Note that siglock needs to be
1824 * dropped during the call to is_orphaned_pgrp()
1825 * because of lock ordering with tasklist_lock.
1826 * This allows an intervening SIGCONT to be posted.
1827 * We need to check for that and bail out if necessary.
1828 */
1829 if (signr != SIGSTOP) {
1830 spin_unlock_irq(&sighand->siglock);
1831
1832 /* signals can be posted during this window */
1833
1834 if (is_current_pgrp_orphaned())
1835 goto relock;
1836
1837 spin_lock_irq(&sighand->siglock);
1838 }
1839
1840 if (likely(do_signal_stop(signr))) {
1841 /* It released the siglock. */
1842 goto relock;
1843 }
1844
1845 /*
1846 * We didn't actually stop, due to a race
1847 * with SIGCONT or something like that.
1848 */
1849 continue;
1850 }
1851
1852 spin_unlock_irq(&sighand->siglock);
1853
1854 /*
1855 * Anything else is fatal, maybe with a core dump.
1856 */
1857 current->flags |= PF_SIGNALED;
1858 if ((signr != SIGKILL) && print_fatal_signals)
1859 print_fatal_signal(regs, signr);
1860 if (sig_kernel_coredump(signr)) {
1861 /*
1862 * If it was able to dump core, this kills all
1863 * other threads in the group and synchronizes with
1864 * their demise. If we lost the race with another
1865 * thread getting here, it set group_exit_code
1866 * first and our do_group_exit call below will use
1867 * that value and ignore the one we pass it.
1868 */
1869 do_coredump((long)signr, signr, regs);
1870 }
1871
1872 /*
1873 * Death signals, no core dump.
1874 */
1875 do_group_exit(signr);
1876 /* NOTREACHED */
1877 }
1878 spin_unlock_irq(&sighand->siglock);
1879 return signr;
1880 }
1881
1882 void exit_signals(struct task_struct *tsk)
1883 {
1884 int group_stop = 0;
1885 struct task_struct *t;
1886
1887 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1888 tsk->flags |= PF_EXITING;
1889 return;
1890 }
1891
1892 spin_lock_irq(&tsk->sighand->siglock);
1893 /*
1894 * From now this task is not visible for group-wide signals,
1895 * see wants_signal(), do_signal_stop().
1896 */
1897 tsk->flags |= PF_EXITING;
1898 if (!signal_pending(tsk))
1899 goto out;
1900
1901 /* It could be that __group_complete_signal() choose us to
1902 * notify about group-wide signal. Another thread should be
1903 * woken now to take the signal since we will not.
1904 */
1905 for (t = tsk; (t = next_thread(t)) != tsk; )
1906 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1907 recalc_sigpending_and_wake(t);
1908
1909 if (unlikely(tsk->signal->group_stop_count) &&
1910 !--tsk->signal->group_stop_count) {
1911 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1912 group_stop = 1;
1913 }
1914 out:
1915 spin_unlock_irq(&tsk->sighand->siglock);
1916
1917 if (unlikely(group_stop)) {
1918 read_lock(&tasklist_lock);
1919 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1920 read_unlock(&tasklist_lock);
1921 }
1922 }
1923
1924 EXPORT_SYMBOL(recalc_sigpending);
1925 EXPORT_SYMBOL_GPL(dequeue_signal);
1926 EXPORT_SYMBOL(flush_signals);
1927 EXPORT_SYMBOL(force_sig);
1928 EXPORT_SYMBOL(kill_proc);
1929 EXPORT_SYMBOL(ptrace_notify);
1930 EXPORT_SYMBOL(send_sig);
1931 EXPORT_SYMBOL(send_sig_info);
1932 EXPORT_SYMBOL(sigprocmask);
1933 EXPORT_SYMBOL(block_all_signals);
1934 EXPORT_SYMBOL(unblock_all_signals);
1935
1936
1937 /*
1938 * System call entry points.
1939 */
1940
1941 asmlinkage long sys_restart_syscall(void)
1942 {
1943 struct restart_block *restart = &current_thread_info()->restart_block;
1944 return restart->fn(restart);
1945 }
1946
1947 long do_no_restart_syscall(struct restart_block *param)
1948 {
1949 return -EINTR;
1950 }
1951
1952 /*
1953 * We don't need to get the kernel lock - this is all local to this
1954 * particular thread.. (and that's good, because this is _heavily_
1955 * used by various programs)
1956 */
1957
1958 /*
1959 * This is also useful for kernel threads that want to temporarily
1960 * (or permanently) block certain signals.
1961 *
1962 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1963 * interface happily blocks "unblockable" signals like SIGKILL
1964 * and friends.
1965 */
1966 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1967 {
1968 int error;
1969
1970 spin_lock_irq(&current->sighand->siglock);
1971 if (oldset)
1972 *oldset = current->blocked;
1973
1974 error = 0;
1975 switch (how) {
1976 case SIG_BLOCK:
1977 sigorsets(&current->blocked, &current->blocked, set);
1978 break;
1979 case SIG_UNBLOCK:
1980 signandsets(&current->blocked, &current->blocked, set);
1981 break;
1982 case SIG_SETMASK:
1983 current->blocked = *set;
1984 break;
1985 default:
1986 error = -EINVAL;
1987 }
1988 recalc_sigpending();
1989 spin_unlock_irq(&current->sighand->siglock);
1990
1991 return error;
1992 }
1993
1994 asmlinkage long
1995 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1996 {
1997 int error = -EINVAL;
1998 sigset_t old_set, new_set;
1999
2000 /* XXX: Don't preclude handling different sized sigset_t's. */
2001 if (sigsetsize != sizeof(sigset_t))
2002 goto out;
2003
2004 if (set) {
2005 error = -EFAULT;
2006 if (copy_from_user(&new_set, set, sizeof(*set)))
2007 goto out;
2008 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2009
2010 error = sigprocmask(how, &new_set, &old_set);
2011 if (error)
2012 goto out;
2013 if (oset)
2014 goto set_old;
2015 } else if (oset) {
2016 spin_lock_irq(&current->sighand->siglock);
2017 old_set = current->blocked;
2018 spin_unlock_irq(&current->sighand->siglock);
2019
2020 set_old:
2021 error = -EFAULT;
2022 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2023 goto out;
2024 }
2025 error = 0;
2026 out:
2027 return error;
2028 }
2029
2030 long do_sigpending(void __user *set, unsigned long sigsetsize)
2031 {
2032 long error = -EINVAL;
2033 sigset_t pending;
2034
2035 if (sigsetsize > sizeof(sigset_t))
2036 goto out;
2037
2038 spin_lock_irq(&current->sighand->siglock);
2039 sigorsets(&pending, &current->pending.signal,
2040 &current->signal->shared_pending.signal);
2041 spin_unlock_irq(&current->sighand->siglock);
2042
2043 /* Outside the lock because only this thread touches it. */
2044 sigandsets(&pending, &current->blocked, &pending);
2045
2046 error = -EFAULT;
2047 if (!copy_to_user(set, &pending, sigsetsize))
2048 error = 0;
2049
2050 out:
2051 return error;
2052 }
2053
2054 asmlinkage long
2055 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2056 {
2057 return do_sigpending(set, sigsetsize);
2058 }
2059
2060 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2061
2062 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2063 {
2064 int err;
2065
2066 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2067 return -EFAULT;
2068 if (from->si_code < 0)
2069 return __copy_to_user(to, from, sizeof(siginfo_t))
2070 ? -EFAULT : 0;
2071 /*
2072 * If you change siginfo_t structure, please be sure
2073 * this code is fixed accordingly.
2074 * Please remember to update the signalfd_copyinfo() function
2075 * inside fs/signalfd.c too, in case siginfo_t changes.
2076 * It should never copy any pad contained in the structure
2077 * to avoid security leaks, but must copy the generic
2078 * 3 ints plus the relevant union member.
2079 */
2080 err = __put_user(from->si_signo, &to->si_signo);
2081 err |= __put_user(from->si_errno, &to->si_errno);
2082 err |= __put_user((short)from->si_code, &to->si_code);
2083 switch (from->si_code & __SI_MASK) {
2084 case __SI_KILL:
2085 err |= __put_user(from->si_pid, &to->si_pid);
2086 err |= __put_user(from->si_uid, &to->si_uid);
2087 break;
2088 case __SI_TIMER:
2089 err |= __put_user(from->si_tid, &to->si_tid);
2090 err |= __put_user(from->si_overrun, &to->si_overrun);
2091 err |= __put_user(from->si_ptr, &to->si_ptr);
2092 break;
2093 case __SI_POLL:
2094 err |= __put_user(from->si_band, &to->si_band);
2095 err |= __put_user(from->si_fd, &to->si_fd);
2096 break;
2097 case __SI_FAULT:
2098 err |= __put_user(from->si_addr, &to->si_addr);
2099 #ifdef __ARCH_SI_TRAPNO
2100 err |= __put_user(from->si_trapno, &to->si_trapno);
2101 #endif
2102 break;
2103 case __SI_CHLD:
2104 err |= __put_user(from->si_pid, &to->si_pid);
2105 err |= __put_user(from->si_uid, &to->si_uid);
2106 err |= __put_user(from->si_status, &to->si_status);
2107 err |= __put_user(from->si_utime, &to->si_utime);
2108 err |= __put_user(from->si_stime, &to->si_stime);
2109 break;
2110 case __SI_RT: /* This is not generated by the kernel as of now. */
2111 case __SI_MESGQ: /* But this is */
2112 err |= __put_user(from->si_pid, &to->si_pid);
2113 err |= __put_user(from->si_uid, &to->si_uid);
2114 err |= __put_user(from->si_ptr, &to->si_ptr);
2115 break;
2116 default: /* this is just in case for now ... */
2117 err |= __put_user(from->si_pid, &to->si_pid);
2118 err |= __put_user(from->si_uid, &to->si_uid);
2119 break;
2120 }
2121 return err;
2122 }
2123
2124 #endif
2125
2126 asmlinkage long
2127 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2128 siginfo_t __user *uinfo,
2129 const struct timespec __user *uts,
2130 size_t sigsetsize)
2131 {
2132 int ret, sig;
2133 sigset_t these;
2134 struct timespec ts;
2135 siginfo_t info;
2136 long timeout = 0;
2137
2138 /* XXX: Don't preclude handling different sized sigset_t's. */
2139 if (sigsetsize != sizeof(sigset_t))
2140 return -EINVAL;
2141
2142 if (copy_from_user(&these, uthese, sizeof(these)))
2143 return -EFAULT;
2144
2145 /*
2146 * Invert the set of allowed signals to get those we
2147 * want to block.
2148 */
2149 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2150 signotset(&these);
2151
2152 if (uts) {
2153 if (copy_from_user(&ts, uts, sizeof(ts)))
2154 return -EFAULT;
2155 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2156 || ts.tv_sec < 0)
2157 return -EINVAL;
2158 }
2159
2160 spin_lock_irq(&current->sighand->siglock);
2161 sig = dequeue_signal(current, &these, &info);
2162 if (!sig) {
2163 timeout = MAX_SCHEDULE_TIMEOUT;
2164 if (uts)
2165 timeout = (timespec_to_jiffies(&ts)
2166 + (ts.tv_sec || ts.tv_nsec));
2167
2168 if (timeout) {
2169 /* None ready -- temporarily unblock those we're
2170 * interested while we are sleeping in so that we'll
2171 * be awakened when they arrive. */
2172 current->real_blocked = current->blocked;
2173 sigandsets(&current->blocked, &current->blocked, &these);
2174 recalc_sigpending();
2175 spin_unlock_irq(&current->sighand->siglock);
2176
2177 timeout = schedule_timeout_interruptible(timeout);
2178
2179 spin_lock_irq(&current->sighand->siglock);
2180 sig = dequeue_signal(current, &these, &info);
2181 current->blocked = current->real_blocked;
2182 siginitset(&current->real_blocked, 0);
2183 recalc_sigpending();
2184 }
2185 }
2186 spin_unlock_irq(&current->sighand->siglock);
2187
2188 if (sig) {
2189 ret = sig;
2190 if (uinfo) {
2191 if (copy_siginfo_to_user(uinfo, &info))
2192 ret = -EFAULT;
2193 }
2194 } else {
2195 ret = -EAGAIN;
2196 if (timeout)
2197 ret = -EINTR;
2198 }
2199
2200 return ret;
2201 }
2202
2203 asmlinkage long
2204 sys_kill(int pid, int sig)
2205 {
2206 struct siginfo info;
2207
2208 info.si_signo = sig;
2209 info.si_errno = 0;
2210 info.si_code = SI_USER;
2211 info.si_pid = task_tgid_vnr(current);
2212 info.si_uid = current->uid;
2213
2214 return kill_something_info(sig, &info, pid);
2215 }
2216
2217 static int do_tkill(int tgid, int pid, int sig)
2218 {
2219 int error;
2220 struct siginfo info;
2221 struct task_struct *p;
2222 unsigned long flags;
2223
2224 error = -ESRCH;
2225 info.si_signo = sig;
2226 info.si_errno = 0;
2227 info.si_code = SI_TKILL;
2228 info.si_pid = task_tgid_vnr(current);
2229 info.si_uid = current->uid;
2230
2231 rcu_read_lock();
2232 p = find_task_by_vpid(pid);
2233 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2234 error = check_kill_permission(sig, &info, p);
2235 /*
2236 * The null signal is a permissions and process existence
2237 * probe. No signal is actually delivered.
2238 *
2239 * If lock_task_sighand() fails we pretend the task dies
2240 * after receiving the signal. The window is tiny, and the
2241 * signal is private anyway.
2242 */
2243 if (!error && sig && lock_task_sighand(p, &flags)) {
2244 error = specific_send_sig_info(sig, &info, p);
2245 unlock_task_sighand(p, &flags);
2246 }
2247 }
2248 rcu_read_unlock();
2249
2250 return error;
2251 }
2252
2253 /**
2254 * sys_tgkill - send signal to one specific thread
2255 * @tgid: the thread group ID of the thread
2256 * @pid: the PID of the thread
2257 * @sig: signal to be sent
2258 *
2259 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2260 * exists but it's not belonging to the target process anymore. This
2261 * method solves the problem of threads exiting and PIDs getting reused.
2262 */
2263 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2264 {
2265 /* This is only valid for single tasks */
2266 if (pid <= 0 || tgid <= 0)
2267 return -EINVAL;
2268
2269 return do_tkill(tgid, pid, sig);
2270 }
2271
2272 /*
2273 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2274 */
2275 asmlinkage long
2276 sys_tkill(int pid, int sig)
2277 {
2278 /* This is only valid for single tasks */
2279 if (pid <= 0)
2280 return -EINVAL;
2281
2282 return do_tkill(0, pid, sig);
2283 }
2284
2285 asmlinkage long
2286 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2287 {
2288 siginfo_t info;
2289
2290 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2291 return -EFAULT;
2292
2293 /* Not even root can pretend to send signals from the kernel.
2294 Nor can they impersonate a kill(), which adds source info. */
2295 if (info.si_code >= 0)
2296 return -EPERM;
2297 info.si_signo = sig;
2298
2299 /* POSIX.1b doesn't mention process groups. */
2300 return kill_proc_info(sig, &info, pid);
2301 }
2302
2303 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2304 {
2305 struct task_struct *t = current;
2306 struct k_sigaction *k;
2307 sigset_t mask;
2308
2309 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2310 return -EINVAL;
2311
2312 k = &t->sighand->action[sig-1];
2313
2314 spin_lock_irq(&current->sighand->siglock);
2315 if (oact)
2316 *oact = *k;
2317
2318 if (act) {
2319 sigdelsetmask(&act->sa.sa_mask,
2320 sigmask(SIGKILL) | sigmask(SIGSTOP));
2321 *k = *act;
2322 /*
2323 * POSIX 3.3.1.3:
2324 * "Setting a signal action to SIG_IGN for a signal that is
2325 * pending shall cause the pending signal to be discarded,
2326 * whether or not it is blocked."
2327 *
2328 * "Setting a signal action to SIG_DFL for a signal that is
2329 * pending and whose default action is to ignore the signal
2330 * (for example, SIGCHLD), shall cause the pending signal to
2331 * be discarded, whether or not it is blocked"
2332 */
2333 if (__sig_ignored(t, sig)) {
2334 sigemptyset(&mask);
2335 sigaddset(&mask, sig);
2336 rm_from_queue_full(&mask, &t->signal->shared_pending);
2337 do {
2338 rm_from_queue_full(&mask, &t->pending);
2339 t = next_thread(t);
2340 } while (t != current);
2341 }
2342 }
2343
2344 spin_unlock_irq(&current->sighand->siglock);
2345 return 0;
2346 }
2347
2348 int
2349 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2350 {
2351 stack_t oss;
2352 int error;
2353
2354 if (uoss) {
2355 oss.ss_sp = (void __user *) current->sas_ss_sp;
2356 oss.ss_size = current->sas_ss_size;
2357 oss.ss_flags = sas_ss_flags(sp);
2358 }
2359
2360 if (uss) {
2361 void __user *ss_sp;
2362 size_t ss_size;
2363 int ss_flags;
2364
2365 error = -EFAULT;
2366 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2367 || __get_user(ss_sp, &uss->ss_sp)
2368 || __get_user(ss_flags, &uss->ss_flags)
2369 || __get_user(ss_size, &uss->ss_size))
2370 goto out;
2371
2372 error = -EPERM;
2373 if (on_sig_stack(sp))
2374 goto out;
2375
2376 error = -EINVAL;
2377 /*
2378 *
2379 * Note - this code used to test ss_flags incorrectly
2380 * old code may have been written using ss_flags==0
2381 * to mean ss_flags==SS_ONSTACK (as this was the only
2382 * way that worked) - this fix preserves that older
2383 * mechanism
2384 */
2385 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2386 goto out;
2387
2388 if (ss_flags == SS_DISABLE) {
2389 ss_size = 0;
2390 ss_sp = NULL;
2391 } else {
2392 error = -ENOMEM;
2393 if (ss_size < MINSIGSTKSZ)
2394 goto out;
2395 }
2396
2397 current->sas_ss_sp = (unsigned long) ss_sp;
2398 current->sas_ss_size = ss_size;
2399 }
2400
2401 if (uoss) {
2402 error = -EFAULT;
2403 if (copy_to_user(uoss, &oss, sizeof(oss)))
2404 goto out;
2405 }
2406
2407 error = 0;
2408 out:
2409 return error;
2410 }
2411
2412 #ifdef __ARCH_WANT_SYS_SIGPENDING
2413
2414 asmlinkage long
2415 sys_sigpending(old_sigset_t __user *set)
2416 {
2417 return do_sigpending(set, sizeof(*set));
2418 }
2419
2420 #endif
2421
2422 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2423 /* Some platforms have their own version with special arguments others
2424 support only sys_rt_sigprocmask. */
2425
2426 asmlinkage long
2427 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2428 {
2429 int error;
2430 old_sigset_t old_set, new_set;
2431
2432 if (set) {
2433 error = -EFAULT;
2434 if (copy_from_user(&new_set, set, sizeof(*set)))
2435 goto out;
2436 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2437
2438 spin_lock_irq(&current->sighand->siglock);
2439 old_set = current->blocked.sig[0];
2440
2441 error = 0;
2442 switch (how) {
2443 default:
2444 error = -EINVAL;
2445 break;
2446 case SIG_BLOCK:
2447 sigaddsetmask(&current->blocked, new_set);
2448 break;
2449 case SIG_UNBLOCK:
2450 sigdelsetmask(&current->blocked, new_set);
2451 break;
2452 case SIG_SETMASK:
2453 current->blocked.sig[0] = new_set;
2454 break;
2455 }
2456
2457 recalc_sigpending();
2458 spin_unlock_irq(&current->sighand->siglock);
2459 if (error)
2460 goto out;
2461 if (oset)
2462 goto set_old;
2463 } else if (oset) {
2464 old_set = current->blocked.sig[0];
2465 set_old:
2466 error = -EFAULT;
2467 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2468 goto out;
2469 }
2470 error = 0;
2471 out:
2472 return error;
2473 }
2474 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2475
2476 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2477 asmlinkage long
2478 sys_rt_sigaction(int sig,
2479 const struct sigaction __user *act,
2480 struct sigaction __user *oact,
2481 size_t sigsetsize)
2482 {
2483 struct k_sigaction new_sa, old_sa;
2484 int ret = -EINVAL;
2485
2486 /* XXX: Don't preclude handling different sized sigset_t's. */
2487 if (sigsetsize != sizeof(sigset_t))
2488 goto out;
2489
2490 if (act) {
2491 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2492 return -EFAULT;
2493 }
2494
2495 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2496
2497 if (!ret && oact) {
2498 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2499 return -EFAULT;
2500 }
2501 out:
2502 return ret;
2503 }
2504 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2505
2506 #ifdef __ARCH_WANT_SYS_SGETMASK
2507
2508 /*
2509 * For backwards compatibility. Functionality superseded by sigprocmask.
2510 */
2511 asmlinkage long
2512 sys_sgetmask(void)
2513 {
2514 /* SMP safe */
2515 return current->blocked.sig[0];
2516 }
2517
2518 asmlinkage long
2519 sys_ssetmask(int newmask)
2520 {
2521 int old;
2522
2523 spin_lock_irq(&current->sighand->siglock);
2524 old = current->blocked.sig[0];
2525
2526 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2527 sigmask(SIGSTOP)));
2528 recalc_sigpending();
2529 spin_unlock_irq(&current->sighand->siglock);
2530
2531 return old;
2532 }
2533 #endif /* __ARCH_WANT_SGETMASK */
2534
2535 #ifdef __ARCH_WANT_SYS_SIGNAL
2536 /*
2537 * For backwards compatibility. Functionality superseded by sigaction.
2538 */
2539 asmlinkage unsigned long
2540 sys_signal(int sig, __sighandler_t handler)
2541 {
2542 struct k_sigaction new_sa, old_sa;
2543 int ret;
2544
2545 new_sa.sa.sa_handler = handler;
2546 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2547 sigemptyset(&new_sa.sa.sa_mask);
2548
2549 ret = do_sigaction(sig, &new_sa, &old_sa);
2550
2551 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2552 }
2553 #endif /* __ARCH_WANT_SYS_SIGNAL */
2554
2555 #ifdef __ARCH_WANT_SYS_PAUSE
2556
2557 asmlinkage long
2558 sys_pause(void)
2559 {
2560 current->state = TASK_INTERRUPTIBLE;
2561 schedule();
2562 return -ERESTARTNOHAND;
2563 }
2564
2565 #endif
2566
2567 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2568 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2569 {
2570 sigset_t newset;
2571
2572 /* XXX: Don't preclude handling different sized sigset_t's. */
2573 if (sigsetsize != sizeof(sigset_t))
2574 return -EINVAL;
2575
2576 if (copy_from_user(&newset, unewset, sizeof(newset)))
2577 return -EFAULT;
2578 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2579
2580 spin_lock_irq(&current->sighand->siglock);
2581 current->saved_sigmask = current->blocked;
2582 current->blocked = newset;
2583 recalc_sigpending();
2584 spin_unlock_irq(&current->sighand->siglock);
2585
2586 current->state = TASK_INTERRUPTIBLE;
2587 schedule();
2588 set_thread_flag(TIF_RESTORE_SIGMASK);
2589 return -ERESTARTNOHAND;
2590 }
2591 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2592
2593 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2594 {
2595 return NULL;
2596 }
2597
2598 void __init signals_init(void)
2599 {
2600 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2601 }
This page took 0.08715 seconds and 6 git commands to generate.