ptrace_stop: fix the race with ptrace detach+attach
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66
67 /*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95 }
96
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113 }
114
115 /*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123 }
124
125 void recalc_sigpending(void)
126 {
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130 }
131
132 /* Given the mask, find the first available signal that should be serviced. */
133
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165 }
166
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169 {
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192 }
193
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201 }
202
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213 }
214
215 /*
216 * Flush all pending signals for a task.
217 */
218 void flush_signals(struct task_struct *t)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228
229 void ignore_signals(struct task_struct *t)
230 {
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237 }
238
239 /*
240 * Flush all handlers for a task.
241 */
242
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255 }
256
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266
267
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287
288 /* Notify the system that blocking has ended. */
289
290 void
291 unblock_all_signals(void)
292 {
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343 }
344
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347 {
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365 }
366
367 /*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439 }
440
441 /*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470 }
471
472 /*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498 }
499 /*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521 }
522
523 /*
524 * Bad permissions for sending the signal
525 */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528 {
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547 }
548
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552 /*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658 }
659
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
662 {
663 struct sigqueue * q = NULL;
664 int ret = 0;
665
666 /*
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
669 */
670 signalfd_notify(t, sig);
671
672 /*
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
675 */
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
678
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
686
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
710 }
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 /*
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
716 */
717 return -EAGAIN;
718 }
719
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
723 }
724
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727
728 int print_fatal_signals;
729
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
734
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
737 {
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
741
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
744 }
745 }
746 #endif
747 printk("\n");
748 show_regs(regs);
749 }
750
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 get_option (&str, &print_fatal_signals);
754
755 return 1;
756 }
757
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 int ret = 0;
764
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
767
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
771
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
777
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
783 }
784
785 /*
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
788 *
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
792 *
793 * We don't want to have recursive SIGSEGV's etc, for example.
794 */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
801
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
811 }
812 }
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
815
816 return ret;
817 }
818
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824
825 /*
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
832 */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
844 }
845
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 struct task_struct *t;
850
851 /*
852 * Now find a thread we can wake up to take the signal off the queue.
853 *
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
856 */
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
860 /*
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
863 */
864 return;
865 else {
866 /*
867 * Otherwise try to find a suitable thread.
868 */
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
873
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
877 /*
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
881 */
882 return;
883 }
884 p->signal->curr_target = t;
885 }
886
887 /*
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
890 */
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 /*
895 * This signal will be fatal to the whole group.
896 */
897 if (!sig_kernel_coredump(sig)) {
898 /*
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
903 */
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
913 }
914 }
915
916 /*
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
919 */
920 signal_wake_up(t, sig == SIGKILL);
921 return;
922 }
923
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 int ret = 0;
928
929 assert_spin_locked(&p->sighand->siglock);
930 handle_stop_signal(sig, p);
931
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p, sig))
934 return ret;
935
936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 /* This is a non-RT signal and we already have one queued. */
938 return ret;
939
940 /*
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
944 */
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 if (unlikely(ret))
947 return ret;
948
949 __group_complete_signal(sig, p);
950 return 0;
951 }
952
953 /*
954 * Nuke all other threads in the group.
955 */
956 void zap_other_threads(struct task_struct *p)
957 {
958 struct task_struct *t;
959
960 p->signal->group_stop_count = 0;
961
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
963 /*
964 * Don't bother with already dead threads
965 */
966 if (t->exit_state)
967 continue;
968
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
972 }
973 }
974
975 int fastcall __fatal_signal_pending(struct task_struct *tsk)
976 {
977 return sigismember(&tsk->pending.signal, SIGKILL);
978 }
979 EXPORT_SYMBOL(__fatal_signal_pending);
980
981 /*
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
983 */
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
985 {
986 struct sighand_struct *sighand;
987
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
992
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
997 }
998
999 return sighand;
1000 }
1001
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1003 {
1004 unsigned long flags;
1005 int ret;
1006
1007 ret = check_kill_permission(sig, info, p);
1008
1009 if (!ret && sig) {
1010 ret = -ESRCH;
1011 if (lock_task_sighand(p, &flags)) {
1012 ret = __group_send_sig_info(sig, info, p);
1013 unlock_task_sighand(p, &flags);
1014 }
1015 }
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1023 */
1024
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1026 {
1027 struct task_struct *p = NULL;
1028 int retval, success;
1029
1030 success = 0;
1031 retval = -ESRCH;
1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 int err = group_send_sig_info(sig, info, p);
1034 success |= !err;
1035 retval = err;
1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 return success ? 0 : retval;
1038 }
1039
1040 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1041 {
1042 int retval;
1043
1044 read_lock(&tasklist_lock);
1045 retval = __kill_pgrp_info(sig, info, pgrp);
1046 read_unlock(&tasklist_lock);
1047
1048 return retval;
1049 }
1050
1051 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1052 {
1053 int error;
1054 struct task_struct *p;
1055
1056 rcu_read_lock();
1057 if (unlikely(sig_needs_tasklist(sig)))
1058 read_lock(&tasklist_lock);
1059
1060 p = pid_task(pid, PIDTYPE_PID);
1061 error = -ESRCH;
1062 if (p)
1063 error = group_send_sig_info(sig, info, p);
1064
1065 if (unlikely(sig_needs_tasklist(sig)))
1066 read_unlock(&tasklist_lock);
1067 rcu_read_unlock();
1068 return error;
1069 }
1070
1071 int
1072 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1073 {
1074 int error;
1075 rcu_read_lock();
1076 error = kill_pid_info(sig, info, find_vpid(pid));
1077 rcu_read_unlock();
1078 return error;
1079 }
1080
1081 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1082 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1083 uid_t uid, uid_t euid, u32 secid)
1084 {
1085 int ret = -EINVAL;
1086 struct task_struct *p;
1087
1088 if (!valid_signal(sig))
1089 return ret;
1090
1091 read_lock(&tasklist_lock);
1092 p = pid_task(pid, PIDTYPE_PID);
1093 if (!p) {
1094 ret = -ESRCH;
1095 goto out_unlock;
1096 }
1097 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1098 && (euid != p->suid) && (euid != p->uid)
1099 && (uid != p->suid) && (uid != p->uid)) {
1100 ret = -EPERM;
1101 goto out_unlock;
1102 }
1103 ret = security_task_kill(p, info, sig, secid);
1104 if (ret)
1105 goto out_unlock;
1106 if (sig && p->sighand) {
1107 unsigned long flags;
1108 spin_lock_irqsave(&p->sighand->siglock, flags);
1109 ret = __group_send_sig_info(sig, info, p);
1110 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1111 }
1112 out_unlock:
1113 read_unlock(&tasklist_lock);
1114 return ret;
1115 }
1116 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1117
1118 /*
1119 * kill_something_info() interprets pid in interesting ways just like kill(2).
1120 *
1121 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1122 * is probably wrong. Should make it like BSD or SYSV.
1123 */
1124
1125 static int kill_something_info(int sig, struct siginfo *info, int pid)
1126 {
1127 int ret;
1128 rcu_read_lock();
1129 if (!pid) {
1130 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1131 } else if (pid == -1) {
1132 int retval = 0, count = 0;
1133 struct task_struct * p;
1134
1135 read_lock(&tasklist_lock);
1136 for_each_process(p) {
1137 if (p->pid > 1 && !same_thread_group(p, current)) {
1138 int err = group_send_sig_info(sig, info, p);
1139 ++count;
1140 if (err != -EPERM)
1141 retval = err;
1142 }
1143 }
1144 read_unlock(&tasklist_lock);
1145 ret = count ? retval : -ESRCH;
1146 } else if (pid < 0) {
1147 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1148 } else {
1149 ret = kill_pid_info(sig, info, find_vpid(pid));
1150 }
1151 rcu_read_unlock();
1152 return ret;
1153 }
1154
1155 /*
1156 * These are for backward compatibility with the rest of the kernel source.
1157 */
1158
1159 /*
1160 * These two are the most common entry points. They send a signal
1161 * just to the specific thread.
1162 */
1163 int
1164 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1165 {
1166 int ret;
1167 unsigned long flags;
1168
1169 /*
1170 * Make sure legacy kernel users don't send in bad values
1171 * (normal paths check this in check_kill_permission).
1172 */
1173 if (!valid_signal(sig))
1174 return -EINVAL;
1175
1176 /*
1177 * We need the tasklist lock even for the specific
1178 * thread case (when we don't need to follow the group
1179 * lists) in order to avoid races with "p->sighand"
1180 * going away or changing from under us.
1181 */
1182 read_lock(&tasklist_lock);
1183 spin_lock_irqsave(&p->sighand->siglock, flags);
1184 ret = specific_send_sig_info(sig, info, p);
1185 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1186 read_unlock(&tasklist_lock);
1187 return ret;
1188 }
1189
1190 #define __si_special(priv) \
1191 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1192
1193 int
1194 send_sig(int sig, struct task_struct *p, int priv)
1195 {
1196 return send_sig_info(sig, __si_special(priv), p);
1197 }
1198
1199 /*
1200 * This is the entry point for "process-wide" signals.
1201 * They will go to an appropriate thread in the thread group.
1202 */
1203 int
1204 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1205 {
1206 int ret;
1207 read_lock(&tasklist_lock);
1208 ret = group_send_sig_info(sig, info, p);
1209 read_unlock(&tasklist_lock);
1210 return ret;
1211 }
1212
1213 void
1214 force_sig(int sig, struct task_struct *p)
1215 {
1216 force_sig_info(sig, SEND_SIG_PRIV, p);
1217 }
1218
1219 /*
1220 * When things go south during signal handling, we
1221 * will force a SIGSEGV. And if the signal that caused
1222 * the problem was already a SIGSEGV, we'll want to
1223 * make sure we don't even try to deliver the signal..
1224 */
1225 int
1226 force_sigsegv(int sig, struct task_struct *p)
1227 {
1228 if (sig == SIGSEGV) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&p->sighand->siglock, flags);
1231 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1232 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1233 }
1234 force_sig(SIGSEGV, p);
1235 return 0;
1236 }
1237
1238 int kill_pgrp(struct pid *pid, int sig, int priv)
1239 {
1240 return kill_pgrp_info(sig, __si_special(priv), pid);
1241 }
1242 EXPORT_SYMBOL(kill_pgrp);
1243
1244 int kill_pid(struct pid *pid, int sig, int priv)
1245 {
1246 return kill_pid_info(sig, __si_special(priv), pid);
1247 }
1248 EXPORT_SYMBOL(kill_pid);
1249
1250 int
1251 kill_proc(pid_t pid, int sig, int priv)
1252 {
1253 int ret;
1254
1255 rcu_read_lock();
1256 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1257 rcu_read_unlock();
1258 return ret;
1259 }
1260
1261 /*
1262 * These functions support sending signals using preallocated sigqueue
1263 * structures. This is needed "because realtime applications cannot
1264 * afford to lose notifications of asynchronous events, like timer
1265 * expirations or I/O completions". In the case of Posix Timers
1266 * we allocate the sigqueue structure from the timer_create. If this
1267 * allocation fails we are able to report the failure to the application
1268 * with an EAGAIN error.
1269 */
1270
1271 struct sigqueue *sigqueue_alloc(void)
1272 {
1273 struct sigqueue *q;
1274
1275 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1276 q->flags |= SIGQUEUE_PREALLOC;
1277 return(q);
1278 }
1279
1280 void sigqueue_free(struct sigqueue *q)
1281 {
1282 unsigned long flags;
1283 spinlock_t *lock = &current->sighand->siglock;
1284
1285 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1286 /*
1287 * If the signal is still pending remove it from the
1288 * pending queue. We must hold ->siglock while testing
1289 * q->list to serialize with collect_signal().
1290 */
1291 spin_lock_irqsave(lock, flags);
1292 if (!list_empty(&q->list))
1293 list_del_init(&q->list);
1294 spin_unlock_irqrestore(lock, flags);
1295
1296 q->flags &= ~SIGQUEUE_PREALLOC;
1297 __sigqueue_free(q);
1298 }
1299
1300 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1301 {
1302 unsigned long flags;
1303 int ret = 0;
1304
1305 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1306
1307 /*
1308 * The rcu based delayed sighand destroy makes it possible to
1309 * run this without tasklist lock held. The task struct itself
1310 * cannot go away as create_timer did get_task_struct().
1311 *
1312 * We return -1, when the task is marked exiting, so
1313 * posix_timer_event can redirect it to the group leader
1314 */
1315 rcu_read_lock();
1316
1317 if (!likely(lock_task_sighand(p, &flags))) {
1318 ret = -1;
1319 goto out_err;
1320 }
1321
1322 if (unlikely(!list_empty(&q->list))) {
1323 /*
1324 * If an SI_TIMER entry is already queue just increment
1325 * the overrun count.
1326 */
1327 BUG_ON(q->info.si_code != SI_TIMER);
1328 q->info.si_overrun++;
1329 goto out;
1330 }
1331 /* Short-circuit ignored signals. */
1332 if (sig_ignored(p, sig)) {
1333 ret = 1;
1334 goto out;
1335 }
1336 /*
1337 * Deliver the signal to listening signalfds. This must be called
1338 * with the sighand lock held.
1339 */
1340 signalfd_notify(p, sig);
1341
1342 list_add_tail(&q->list, &p->pending.list);
1343 sigaddset(&p->pending.signal, sig);
1344 if (!sigismember(&p->blocked, sig))
1345 signal_wake_up(p, sig == SIGKILL);
1346
1347 out:
1348 unlock_task_sighand(p, &flags);
1349 out_err:
1350 rcu_read_unlock();
1351
1352 return ret;
1353 }
1354
1355 int
1356 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1357 {
1358 unsigned long flags;
1359 int ret = 0;
1360
1361 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1362
1363 read_lock(&tasklist_lock);
1364 /* Since it_lock is held, p->sighand cannot be NULL. */
1365 spin_lock_irqsave(&p->sighand->siglock, flags);
1366 handle_stop_signal(sig, p);
1367
1368 /* Short-circuit ignored signals. */
1369 if (sig_ignored(p, sig)) {
1370 ret = 1;
1371 goto out;
1372 }
1373
1374 if (unlikely(!list_empty(&q->list))) {
1375 /*
1376 * If an SI_TIMER entry is already queue just increment
1377 * the overrun count. Other uses should not try to
1378 * send the signal multiple times.
1379 */
1380 BUG_ON(q->info.si_code != SI_TIMER);
1381 q->info.si_overrun++;
1382 goto out;
1383 }
1384 /*
1385 * Deliver the signal to listening signalfds. This must be called
1386 * with the sighand lock held.
1387 */
1388 signalfd_notify(p, sig);
1389
1390 /*
1391 * Put this signal on the shared-pending queue.
1392 * We always use the shared queue for process-wide signals,
1393 * to avoid several races.
1394 */
1395 list_add_tail(&q->list, &p->signal->shared_pending.list);
1396 sigaddset(&p->signal->shared_pending.signal, sig);
1397
1398 __group_complete_signal(sig, p);
1399 out:
1400 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 read_unlock(&tasklist_lock);
1402 return ret;
1403 }
1404
1405 /*
1406 * Wake up any threads in the parent blocked in wait* syscalls.
1407 */
1408 static inline void __wake_up_parent(struct task_struct *p,
1409 struct task_struct *parent)
1410 {
1411 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1412 }
1413
1414 /*
1415 * Let a parent know about the death of a child.
1416 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1417 */
1418
1419 void do_notify_parent(struct task_struct *tsk, int sig)
1420 {
1421 struct siginfo info;
1422 unsigned long flags;
1423 struct sighand_struct *psig;
1424
1425 BUG_ON(sig == -1);
1426
1427 /* do_notify_parent_cldstop should have been called instead. */
1428 BUG_ON(task_is_stopped_or_traced(tsk));
1429
1430 BUG_ON(!tsk->ptrace &&
1431 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1432
1433 info.si_signo = sig;
1434 info.si_errno = 0;
1435 /*
1436 * we are under tasklist_lock here so our parent is tied to
1437 * us and cannot exit and release its namespace.
1438 *
1439 * the only it can is to switch its nsproxy with sys_unshare,
1440 * bu uncharing pid namespaces is not allowed, so we'll always
1441 * see relevant namespace
1442 *
1443 * write_lock() currently calls preempt_disable() which is the
1444 * same as rcu_read_lock(), but according to Oleg, this is not
1445 * correct to rely on this
1446 */
1447 rcu_read_lock();
1448 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1449 rcu_read_unlock();
1450
1451 info.si_uid = tsk->uid;
1452
1453 /* FIXME: find out whether or not this is supposed to be c*time. */
1454 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1455 tsk->signal->utime));
1456 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1457 tsk->signal->stime));
1458
1459 info.si_status = tsk->exit_code & 0x7f;
1460 if (tsk->exit_code & 0x80)
1461 info.si_code = CLD_DUMPED;
1462 else if (tsk->exit_code & 0x7f)
1463 info.si_code = CLD_KILLED;
1464 else {
1465 info.si_code = CLD_EXITED;
1466 info.si_status = tsk->exit_code >> 8;
1467 }
1468
1469 psig = tsk->parent->sighand;
1470 spin_lock_irqsave(&psig->siglock, flags);
1471 if (!tsk->ptrace && sig == SIGCHLD &&
1472 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1473 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1474 /*
1475 * We are exiting and our parent doesn't care. POSIX.1
1476 * defines special semantics for setting SIGCHLD to SIG_IGN
1477 * or setting the SA_NOCLDWAIT flag: we should be reaped
1478 * automatically and not left for our parent's wait4 call.
1479 * Rather than having the parent do it as a magic kind of
1480 * signal handler, we just set this to tell do_exit that we
1481 * can be cleaned up without becoming a zombie. Note that
1482 * we still call __wake_up_parent in this case, because a
1483 * blocked sys_wait4 might now return -ECHILD.
1484 *
1485 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1486 * is implementation-defined: we do (if you don't want
1487 * it, just use SIG_IGN instead).
1488 */
1489 tsk->exit_signal = -1;
1490 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1491 sig = 0;
1492 }
1493 if (valid_signal(sig) && sig > 0)
1494 __group_send_sig_info(sig, &info, tsk->parent);
1495 __wake_up_parent(tsk, tsk->parent);
1496 spin_unlock_irqrestore(&psig->siglock, flags);
1497 }
1498
1499 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1500 {
1501 struct siginfo info;
1502 unsigned long flags;
1503 struct task_struct *parent;
1504 struct sighand_struct *sighand;
1505
1506 if (tsk->ptrace & PT_PTRACED)
1507 parent = tsk->parent;
1508 else {
1509 tsk = tsk->group_leader;
1510 parent = tsk->real_parent;
1511 }
1512
1513 info.si_signo = SIGCHLD;
1514 info.si_errno = 0;
1515 /*
1516 * see comment in do_notify_parent() abot the following 3 lines
1517 */
1518 rcu_read_lock();
1519 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1520 rcu_read_unlock();
1521
1522 info.si_uid = tsk->uid;
1523
1524 /* FIXME: find out whether or not this is supposed to be c*time. */
1525 info.si_utime = cputime_to_jiffies(tsk->utime);
1526 info.si_stime = cputime_to_jiffies(tsk->stime);
1527
1528 info.si_code = why;
1529 switch (why) {
1530 case CLD_CONTINUED:
1531 info.si_status = SIGCONT;
1532 break;
1533 case CLD_STOPPED:
1534 info.si_status = tsk->signal->group_exit_code & 0x7f;
1535 break;
1536 case CLD_TRAPPED:
1537 info.si_status = tsk->exit_code & 0x7f;
1538 break;
1539 default:
1540 BUG();
1541 }
1542
1543 sighand = parent->sighand;
1544 spin_lock_irqsave(&sighand->siglock, flags);
1545 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1546 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1547 __group_send_sig_info(SIGCHLD, &info, parent);
1548 /*
1549 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1550 */
1551 __wake_up_parent(tsk, parent);
1552 spin_unlock_irqrestore(&sighand->siglock, flags);
1553 }
1554
1555 static inline int may_ptrace_stop(void)
1556 {
1557 if (!likely(current->ptrace & PT_PTRACED))
1558 return 0;
1559 /*
1560 * Are we in the middle of do_coredump?
1561 * If so and our tracer is also part of the coredump stopping
1562 * is a deadlock situation, and pointless because our tracer
1563 * is dead so don't allow us to stop.
1564 * If SIGKILL was already sent before the caller unlocked
1565 * ->siglock we must see ->core_waiters != 0. Otherwise it
1566 * is safe to enter schedule().
1567 */
1568 if (unlikely(current->mm->core_waiters) &&
1569 unlikely(current->mm == current->parent->mm))
1570 return 0;
1571
1572 return 1;
1573 }
1574
1575 /*
1576 * Return nonzero if there is a SIGKILL that should be waking us up.
1577 * Called with the siglock held.
1578 */
1579 static int sigkill_pending(struct task_struct *tsk)
1580 {
1581 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1582 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1583 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1584 }
1585
1586 /*
1587 * This must be called with current->sighand->siglock held.
1588 *
1589 * This should be the path for all ptrace stops.
1590 * We always set current->last_siginfo while stopped here.
1591 * That makes it a way to test a stopped process for
1592 * being ptrace-stopped vs being job-control-stopped.
1593 *
1594 * If we actually decide not to stop at all because the tracer is gone,
1595 * we leave nostop_code in current->exit_code.
1596 */
1597 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1598 {
1599 int killed = 0;
1600
1601 if (arch_ptrace_stop_needed(exit_code, info)) {
1602 /*
1603 * The arch code has something special to do before a
1604 * ptrace stop. This is allowed to block, e.g. for faults
1605 * on user stack pages. We can't keep the siglock while
1606 * calling arch_ptrace_stop, so we must release it now.
1607 * To preserve proper semantics, we must do this before
1608 * any signal bookkeeping like checking group_stop_count.
1609 * Meanwhile, a SIGKILL could come in before we retake the
1610 * siglock. That must prevent us from sleeping in TASK_TRACED.
1611 * So after regaining the lock, we must check for SIGKILL.
1612 */
1613 spin_unlock_irq(&current->sighand->siglock);
1614 arch_ptrace_stop(exit_code, info);
1615 spin_lock_irq(&current->sighand->siglock);
1616 killed = sigkill_pending(current);
1617 }
1618
1619 /*
1620 * If there is a group stop in progress,
1621 * we must participate in the bookkeeping.
1622 */
1623 if (current->signal->group_stop_count > 0)
1624 --current->signal->group_stop_count;
1625
1626 current->last_siginfo = info;
1627 current->exit_code = exit_code;
1628
1629 /* Let the debugger run. */
1630 __set_current_state(TASK_TRACED);
1631 spin_unlock_irq(&current->sighand->siglock);
1632 try_to_freeze();
1633 read_lock(&tasklist_lock);
1634 if (!unlikely(killed) && may_ptrace_stop()) {
1635 do_notify_parent_cldstop(current, CLD_TRAPPED);
1636 read_unlock(&tasklist_lock);
1637 schedule();
1638 } else {
1639 /*
1640 * By the time we got the lock, our tracer went away.
1641 * Don't drop the lock yet, another tracer may come.
1642 */
1643 __set_current_state(TASK_RUNNING);
1644 current->exit_code = nostop_code;
1645 read_unlock(&tasklist_lock);
1646 }
1647
1648 /*
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1652 */
1653 spin_lock_irq(&current->sighand->siglock);
1654 current->last_siginfo = NULL;
1655
1656 /*
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1659 * This sets TIF_SIGPENDING, but never clears it.
1660 */
1661 recalc_sigpending_tsk(current);
1662 }
1663
1664 void ptrace_notify(int exit_code)
1665 {
1666 siginfo_t info;
1667
1668 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1669
1670 memset(&info, 0, sizeof info);
1671 info.si_signo = SIGTRAP;
1672 info.si_code = exit_code;
1673 info.si_pid = task_pid_vnr(current);
1674 info.si_uid = current->uid;
1675
1676 /* Let the debugger run. */
1677 spin_lock_irq(&current->sighand->siglock);
1678 ptrace_stop(exit_code, 0, &info);
1679 spin_unlock_irq(&current->sighand->siglock);
1680 }
1681
1682 static void
1683 finish_stop(int stop_count)
1684 {
1685 /*
1686 * If there are no other threads in the group, or if there is
1687 * a group stop in progress and we are the last to stop,
1688 * report to the parent. When ptraced, every thread reports itself.
1689 */
1690 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1691 read_lock(&tasklist_lock);
1692 do_notify_parent_cldstop(current, CLD_STOPPED);
1693 read_unlock(&tasklist_lock);
1694 }
1695
1696 do {
1697 schedule();
1698 } while (try_to_freeze());
1699 /*
1700 * Now we don't run again until continued.
1701 */
1702 current->exit_code = 0;
1703 }
1704
1705 /*
1706 * This performs the stopping for SIGSTOP and other stop signals.
1707 * We have to stop all threads in the thread group.
1708 * Returns nonzero if we've actually stopped and released the siglock.
1709 * Returns zero if we didn't stop and still hold the siglock.
1710 */
1711 static int do_signal_stop(int signr)
1712 {
1713 struct signal_struct *sig = current->signal;
1714 int stop_count;
1715
1716 if (sig->group_stop_count > 0) {
1717 /*
1718 * There is a group stop in progress. We don't need to
1719 * start another one.
1720 */
1721 stop_count = --sig->group_stop_count;
1722 } else {
1723 struct task_struct *t;
1724
1725 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1726 unlikely(sig->group_exit_task))
1727 return 0;
1728 /*
1729 * There is no group stop already in progress.
1730 * We must initiate one now.
1731 */
1732 sig->group_exit_code = signr;
1733
1734 stop_count = 0;
1735 for (t = next_thread(current); t != current; t = next_thread(t))
1736 /*
1737 * Setting state to TASK_STOPPED for a group
1738 * stop is always done with the siglock held,
1739 * so this check has no races.
1740 */
1741 if (!t->exit_state &&
1742 !task_is_stopped_or_traced(t)) {
1743 stop_count++;
1744 signal_wake_up(t, 0);
1745 }
1746 sig->group_stop_count = stop_count;
1747 }
1748
1749 if (stop_count == 0)
1750 sig->flags = SIGNAL_STOP_STOPPED;
1751 current->exit_code = sig->group_exit_code;
1752 __set_current_state(TASK_STOPPED);
1753
1754 spin_unlock_irq(&current->sighand->siglock);
1755 finish_stop(stop_count);
1756 return 1;
1757 }
1758
1759 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1760 struct pt_regs *regs, void *cookie)
1761 {
1762 sigset_t *mask = &current->blocked;
1763 int signr = 0;
1764
1765 try_to_freeze();
1766
1767 relock:
1768 spin_lock_irq(&current->sighand->siglock);
1769 for (;;) {
1770 struct k_sigaction *ka;
1771
1772 if (unlikely(current->signal->group_stop_count > 0) &&
1773 do_signal_stop(0))
1774 goto relock;
1775
1776 signr = dequeue_signal(current, mask, info);
1777
1778 if (!signr)
1779 break; /* will return 0 */
1780
1781 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1782 ptrace_signal_deliver(regs, cookie);
1783
1784 /* Let the debugger run. */
1785 ptrace_stop(signr, signr, info);
1786
1787 /* We're back. Did the debugger cancel the sig? */
1788 signr = current->exit_code;
1789 if (signr == 0)
1790 continue;
1791
1792 current->exit_code = 0;
1793
1794 /* Update the siginfo structure if the signal has
1795 changed. If the debugger wanted something
1796 specific in the siginfo structure then it should
1797 have updated *info via PTRACE_SETSIGINFO. */
1798 if (signr != info->si_signo) {
1799 info->si_signo = signr;
1800 info->si_errno = 0;
1801 info->si_code = SI_USER;
1802 info->si_pid = task_pid_vnr(current->parent);
1803 info->si_uid = current->parent->uid;
1804 }
1805
1806 /* If the (new) signal is now blocked, requeue it. */
1807 if (sigismember(&current->blocked, signr)) {
1808 specific_send_sig_info(signr, info, current);
1809 continue;
1810 }
1811 }
1812
1813 ka = &current->sighand->action[signr-1];
1814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1815 continue;
1816 if (ka->sa.sa_handler != SIG_DFL) {
1817 /* Run the handler. */
1818 *return_ka = *ka;
1819
1820 if (ka->sa.sa_flags & SA_ONESHOT)
1821 ka->sa.sa_handler = SIG_DFL;
1822
1823 break; /* will return non-zero "signr" value */
1824 }
1825
1826 /*
1827 * Now we are doing the default action for this signal.
1828 */
1829 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1830 continue;
1831
1832 /*
1833 * Global init gets no signals it doesn't want.
1834 */
1835 if (is_global_init(current))
1836 continue;
1837
1838 if (sig_kernel_stop(signr)) {
1839 /*
1840 * The default action is to stop all threads in
1841 * the thread group. The job control signals
1842 * do nothing in an orphaned pgrp, but SIGSTOP
1843 * always works. Note that siglock needs to be
1844 * dropped during the call to is_orphaned_pgrp()
1845 * because of lock ordering with tasklist_lock.
1846 * This allows an intervening SIGCONT to be posted.
1847 * We need to check for that and bail out if necessary.
1848 */
1849 if (signr != SIGSTOP) {
1850 spin_unlock_irq(&current->sighand->siglock);
1851
1852 /* signals can be posted during this window */
1853
1854 if (is_current_pgrp_orphaned())
1855 goto relock;
1856
1857 spin_lock_irq(&current->sighand->siglock);
1858 }
1859
1860 if (likely(do_signal_stop(signr))) {
1861 /* It released the siglock. */
1862 goto relock;
1863 }
1864
1865 /*
1866 * We didn't actually stop, due to a race
1867 * with SIGCONT or something like that.
1868 */
1869 continue;
1870 }
1871
1872 spin_unlock_irq(&current->sighand->siglock);
1873
1874 /*
1875 * Anything else is fatal, maybe with a core dump.
1876 */
1877 current->flags |= PF_SIGNALED;
1878 if ((signr != SIGKILL) && print_fatal_signals)
1879 print_fatal_signal(regs, signr);
1880 if (sig_kernel_coredump(signr)) {
1881 /*
1882 * If it was able to dump core, this kills all
1883 * other threads in the group and synchronizes with
1884 * their demise. If we lost the race with another
1885 * thread getting here, it set group_exit_code
1886 * first and our do_group_exit call below will use
1887 * that value and ignore the one we pass it.
1888 */
1889 do_coredump((long)signr, signr, regs);
1890 }
1891
1892 /*
1893 * Death signals, no core dump.
1894 */
1895 do_group_exit(signr);
1896 /* NOTREACHED */
1897 }
1898 spin_unlock_irq(&current->sighand->siglock);
1899 return signr;
1900 }
1901
1902 EXPORT_SYMBOL(recalc_sigpending);
1903 EXPORT_SYMBOL_GPL(dequeue_signal);
1904 EXPORT_SYMBOL(flush_signals);
1905 EXPORT_SYMBOL(force_sig);
1906 EXPORT_SYMBOL(kill_proc);
1907 EXPORT_SYMBOL(ptrace_notify);
1908 EXPORT_SYMBOL(send_sig);
1909 EXPORT_SYMBOL(send_sig_info);
1910 EXPORT_SYMBOL(sigprocmask);
1911 EXPORT_SYMBOL(block_all_signals);
1912 EXPORT_SYMBOL(unblock_all_signals);
1913
1914
1915 /*
1916 * System call entry points.
1917 */
1918
1919 asmlinkage long sys_restart_syscall(void)
1920 {
1921 struct restart_block *restart = &current_thread_info()->restart_block;
1922 return restart->fn(restart);
1923 }
1924
1925 long do_no_restart_syscall(struct restart_block *param)
1926 {
1927 return -EINTR;
1928 }
1929
1930 /*
1931 * We don't need to get the kernel lock - this is all local to this
1932 * particular thread.. (and that's good, because this is _heavily_
1933 * used by various programs)
1934 */
1935
1936 /*
1937 * This is also useful for kernel threads that want to temporarily
1938 * (or permanently) block certain signals.
1939 *
1940 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1941 * interface happily blocks "unblockable" signals like SIGKILL
1942 * and friends.
1943 */
1944 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1945 {
1946 int error;
1947
1948 spin_lock_irq(&current->sighand->siglock);
1949 if (oldset)
1950 *oldset = current->blocked;
1951
1952 error = 0;
1953 switch (how) {
1954 case SIG_BLOCK:
1955 sigorsets(&current->blocked, &current->blocked, set);
1956 break;
1957 case SIG_UNBLOCK:
1958 signandsets(&current->blocked, &current->blocked, set);
1959 break;
1960 case SIG_SETMASK:
1961 current->blocked = *set;
1962 break;
1963 default:
1964 error = -EINVAL;
1965 }
1966 recalc_sigpending();
1967 spin_unlock_irq(&current->sighand->siglock);
1968
1969 return error;
1970 }
1971
1972 asmlinkage long
1973 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1974 {
1975 int error = -EINVAL;
1976 sigset_t old_set, new_set;
1977
1978 /* XXX: Don't preclude handling different sized sigset_t's. */
1979 if (sigsetsize != sizeof(sigset_t))
1980 goto out;
1981
1982 if (set) {
1983 error = -EFAULT;
1984 if (copy_from_user(&new_set, set, sizeof(*set)))
1985 goto out;
1986 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1987
1988 error = sigprocmask(how, &new_set, &old_set);
1989 if (error)
1990 goto out;
1991 if (oset)
1992 goto set_old;
1993 } else if (oset) {
1994 spin_lock_irq(&current->sighand->siglock);
1995 old_set = current->blocked;
1996 spin_unlock_irq(&current->sighand->siglock);
1997
1998 set_old:
1999 error = -EFAULT;
2000 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2001 goto out;
2002 }
2003 error = 0;
2004 out:
2005 return error;
2006 }
2007
2008 long do_sigpending(void __user *set, unsigned long sigsetsize)
2009 {
2010 long error = -EINVAL;
2011 sigset_t pending;
2012
2013 if (sigsetsize > sizeof(sigset_t))
2014 goto out;
2015
2016 spin_lock_irq(&current->sighand->siglock);
2017 sigorsets(&pending, &current->pending.signal,
2018 &current->signal->shared_pending.signal);
2019 spin_unlock_irq(&current->sighand->siglock);
2020
2021 /* Outside the lock because only this thread touches it. */
2022 sigandsets(&pending, &current->blocked, &pending);
2023
2024 error = -EFAULT;
2025 if (!copy_to_user(set, &pending, sigsetsize))
2026 error = 0;
2027
2028 out:
2029 return error;
2030 }
2031
2032 asmlinkage long
2033 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2034 {
2035 return do_sigpending(set, sigsetsize);
2036 }
2037
2038 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2039
2040 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2041 {
2042 int err;
2043
2044 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2045 return -EFAULT;
2046 if (from->si_code < 0)
2047 return __copy_to_user(to, from, sizeof(siginfo_t))
2048 ? -EFAULT : 0;
2049 /*
2050 * If you change siginfo_t structure, please be sure
2051 * this code is fixed accordingly.
2052 * Please remember to update the signalfd_copyinfo() function
2053 * inside fs/signalfd.c too, in case siginfo_t changes.
2054 * It should never copy any pad contained in the structure
2055 * to avoid security leaks, but must copy the generic
2056 * 3 ints plus the relevant union member.
2057 */
2058 err = __put_user(from->si_signo, &to->si_signo);
2059 err |= __put_user(from->si_errno, &to->si_errno);
2060 err |= __put_user((short)from->si_code, &to->si_code);
2061 switch (from->si_code & __SI_MASK) {
2062 case __SI_KILL:
2063 err |= __put_user(from->si_pid, &to->si_pid);
2064 err |= __put_user(from->si_uid, &to->si_uid);
2065 break;
2066 case __SI_TIMER:
2067 err |= __put_user(from->si_tid, &to->si_tid);
2068 err |= __put_user(from->si_overrun, &to->si_overrun);
2069 err |= __put_user(from->si_ptr, &to->si_ptr);
2070 break;
2071 case __SI_POLL:
2072 err |= __put_user(from->si_band, &to->si_band);
2073 err |= __put_user(from->si_fd, &to->si_fd);
2074 break;
2075 case __SI_FAULT:
2076 err |= __put_user(from->si_addr, &to->si_addr);
2077 #ifdef __ARCH_SI_TRAPNO
2078 err |= __put_user(from->si_trapno, &to->si_trapno);
2079 #endif
2080 break;
2081 case __SI_CHLD:
2082 err |= __put_user(from->si_pid, &to->si_pid);
2083 err |= __put_user(from->si_uid, &to->si_uid);
2084 err |= __put_user(from->si_status, &to->si_status);
2085 err |= __put_user(from->si_utime, &to->si_utime);
2086 err |= __put_user(from->si_stime, &to->si_stime);
2087 break;
2088 case __SI_RT: /* This is not generated by the kernel as of now. */
2089 case __SI_MESGQ: /* But this is */
2090 err |= __put_user(from->si_pid, &to->si_pid);
2091 err |= __put_user(from->si_uid, &to->si_uid);
2092 err |= __put_user(from->si_ptr, &to->si_ptr);
2093 break;
2094 default: /* this is just in case for now ... */
2095 err |= __put_user(from->si_pid, &to->si_pid);
2096 err |= __put_user(from->si_uid, &to->si_uid);
2097 break;
2098 }
2099 return err;
2100 }
2101
2102 #endif
2103
2104 asmlinkage long
2105 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2106 siginfo_t __user *uinfo,
2107 const struct timespec __user *uts,
2108 size_t sigsetsize)
2109 {
2110 int ret, sig;
2111 sigset_t these;
2112 struct timespec ts;
2113 siginfo_t info;
2114 long timeout = 0;
2115
2116 /* XXX: Don't preclude handling different sized sigset_t's. */
2117 if (sigsetsize != sizeof(sigset_t))
2118 return -EINVAL;
2119
2120 if (copy_from_user(&these, uthese, sizeof(these)))
2121 return -EFAULT;
2122
2123 /*
2124 * Invert the set of allowed signals to get those we
2125 * want to block.
2126 */
2127 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2128 signotset(&these);
2129
2130 if (uts) {
2131 if (copy_from_user(&ts, uts, sizeof(ts)))
2132 return -EFAULT;
2133 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2134 || ts.tv_sec < 0)
2135 return -EINVAL;
2136 }
2137
2138 spin_lock_irq(&current->sighand->siglock);
2139 sig = dequeue_signal(current, &these, &info);
2140 if (!sig) {
2141 timeout = MAX_SCHEDULE_TIMEOUT;
2142 if (uts)
2143 timeout = (timespec_to_jiffies(&ts)
2144 + (ts.tv_sec || ts.tv_nsec));
2145
2146 if (timeout) {
2147 /* None ready -- temporarily unblock those we're
2148 * interested while we are sleeping in so that we'll
2149 * be awakened when they arrive. */
2150 current->real_blocked = current->blocked;
2151 sigandsets(&current->blocked, &current->blocked, &these);
2152 recalc_sigpending();
2153 spin_unlock_irq(&current->sighand->siglock);
2154
2155 timeout = schedule_timeout_interruptible(timeout);
2156
2157 spin_lock_irq(&current->sighand->siglock);
2158 sig = dequeue_signal(current, &these, &info);
2159 current->blocked = current->real_blocked;
2160 siginitset(&current->real_blocked, 0);
2161 recalc_sigpending();
2162 }
2163 }
2164 spin_unlock_irq(&current->sighand->siglock);
2165
2166 if (sig) {
2167 ret = sig;
2168 if (uinfo) {
2169 if (copy_siginfo_to_user(uinfo, &info))
2170 ret = -EFAULT;
2171 }
2172 } else {
2173 ret = -EAGAIN;
2174 if (timeout)
2175 ret = -EINTR;
2176 }
2177
2178 return ret;
2179 }
2180
2181 asmlinkage long
2182 sys_kill(int pid, int sig)
2183 {
2184 struct siginfo info;
2185
2186 info.si_signo = sig;
2187 info.si_errno = 0;
2188 info.si_code = SI_USER;
2189 info.si_pid = task_tgid_vnr(current);
2190 info.si_uid = current->uid;
2191
2192 return kill_something_info(sig, &info, pid);
2193 }
2194
2195 static int do_tkill(int tgid, int pid, int sig)
2196 {
2197 int error;
2198 struct siginfo info;
2199 struct task_struct *p;
2200
2201 error = -ESRCH;
2202 info.si_signo = sig;
2203 info.si_errno = 0;
2204 info.si_code = SI_TKILL;
2205 info.si_pid = task_tgid_vnr(current);
2206 info.si_uid = current->uid;
2207
2208 read_lock(&tasklist_lock);
2209 p = find_task_by_vpid(pid);
2210 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2211 error = check_kill_permission(sig, &info, p);
2212 /*
2213 * The null signal is a permissions and process existence
2214 * probe. No signal is actually delivered.
2215 */
2216 if (!error && sig && p->sighand) {
2217 spin_lock_irq(&p->sighand->siglock);
2218 handle_stop_signal(sig, p);
2219 error = specific_send_sig_info(sig, &info, p);
2220 spin_unlock_irq(&p->sighand->siglock);
2221 }
2222 }
2223 read_unlock(&tasklist_lock);
2224
2225 return error;
2226 }
2227
2228 /**
2229 * sys_tgkill - send signal to one specific thread
2230 * @tgid: the thread group ID of the thread
2231 * @pid: the PID of the thread
2232 * @sig: signal to be sent
2233 *
2234 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2235 * exists but it's not belonging to the target process anymore. This
2236 * method solves the problem of threads exiting and PIDs getting reused.
2237 */
2238 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2239 {
2240 /* This is only valid for single tasks */
2241 if (pid <= 0 || tgid <= 0)
2242 return -EINVAL;
2243
2244 return do_tkill(tgid, pid, sig);
2245 }
2246
2247 /*
2248 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2249 */
2250 asmlinkage long
2251 sys_tkill(int pid, int sig)
2252 {
2253 /* This is only valid for single tasks */
2254 if (pid <= 0)
2255 return -EINVAL;
2256
2257 return do_tkill(0, pid, sig);
2258 }
2259
2260 asmlinkage long
2261 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2262 {
2263 siginfo_t info;
2264
2265 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2266 return -EFAULT;
2267
2268 /* Not even root can pretend to send signals from the kernel.
2269 Nor can they impersonate a kill(), which adds source info. */
2270 if (info.si_code >= 0)
2271 return -EPERM;
2272 info.si_signo = sig;
2273
2274 /* POSIX.1b doesn't mention process groups. */
2275 return kill_proc_info(sig, &info, pid);
2276 }
2277
2278 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2279 {
2280 struct k_sigaction *k;
2281 sigset_t mask;
2282
2283 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2284 return -EINVAL;
2285
2286 k = &current->sighand->action[sig-1];
2287
2288 spin_lock_irq(&current->sighand->siglock);
2289 if (oact)
2290 *oact = *k;
2291
2292 if (act) {
2293 sigdelsetmask(&act->sa.sa_mask,
2294 sigmask(SIGKILL) | sigmask(SIGSTOP));
2295 *k = *act;
2296 /*
2297 * POSIX 3.3.1.3:
2298 * "Setting a signal action to SIG_IGN for a signal that is
2299 * pending shall cause the pending signal to be discarded,
2300 * whether or not it is blocked."
2301 *
2302 * "Setting a signal action to SIG_DFL for a signal that is
2303 * pending and whose default action is to ignore the signal
2304 * (for example, SIGCHLD), shall cause the pending signal to
2305 * be discarded, whether or not it is blocked"
2306 */
2307 if (act->sa.sa_handler == SIG_IGN ||
2308 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2309 struct task_struct *t = current;
2310 sigemptyset(&mask);
2311 sigaddset(&mask, sig);
2312 rm_from_queue_full(&mask, &t->signal->shared_pending);
2313 do {
2314 rm_from_queue_full(&mask, &t->pending);
2315 t = next_thread(t);
2316 } while (t != current);
2317 }
2318 }
2319
2320 spin_unlock_irq(&current->sighand->siglock);
2321 return 0;
2322 }
2323
2324 int
2325 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2326 {
2327 stack_t oss;
2328 int error;
2329
2330 if (uoss) {
2331 oss.ss_sp = (void __user *) current->sas_ss_sp;
2332 oss.ss_size = current->sas_ss_size;
2333 oss.ss_flags = sas_ss_flags(sp);
2334 }
2335
2336 if (uss) {
2337 void __user *ss_sp;
2338 size_t ss_size;
2339 int ss_flags;
2340
2341 error = -EFAULT;
2342 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2343 || __get_user(ss_sp, &uss->ss_sp)
2344 || __get_user(ss_flags, &uss->ss_flags)
2345 || __get_user(ss_size, &uss->ss_size))
2346 goto out;
2347
2348 error = -EPERM;
2349 if (on_sig_stack(sp))
2350 goto out;
2351
2352 error = -EINVAL;
2353 /*
2354 *
2355 * Note - this code used to test ss_flags incorrectly
2356 * old code may have been written using ss_flags==0
2357 * to mean ss_flags==SS_ONSTACK (as this was the only
2358 * way that worked) - this fix preserves that older
2359 * mechanism
2360 */
2361 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2362 goto out;
2363
2364 if (ss_flags == SS_DISABLE) {
2365 ss_size = 0;
2366 ss_sp = NULL;
2367 } else {
2368 error = -ENOMEM;
2369 if (ss_size < MINSIGSTKSZ)
2370 goto out;
2371 }
2372
2373 current->sas_ss_sp = (unsigned long) ss_sp;
2374 current->sas_ss_size = ss_size;
2375 }
2376
2377 if (uoss) {
2378 error = -EFAULT;
2379 if (copy_to_user(uoss, &oss, sizeof(oss)))
2380 goto out;
2381 }
2382
2383 error = 0;
2384 out:
2385 return error;
2386 }
2387
2388 #ifdef __ARCH_WANT_SYS_SIGPENDING
2389
2390 asmlinkage long
2391 sys_sigpending(old_sigset_t __user *set)
2392 {
2393 return do_sigpending(set, sizeof(*set));
2394 }
2395
2396 #endif
2397
2398 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2399 /* Some platforms have their own version with special arguments others
2400 support only sys_rt_sigprocmask. */
2401
2402 asmlinkage long
2403 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2404 {
2405 int error;
2406 old_sigset_t old_set, new_set;
2407
2408 if (set) {
2409 error = -EFAULT;
2410 if (copy_from_user(&new_set, set, sizeof(*set)))
2411 goto out;
2412 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2413
2414 spin_lock_irq(&current->sighand->siglock);
2415 old_set = current->blocked.sig[0];
2416
2417 error = 0;
2418 switch (how) {
2419 default:
2420 error = -EINVAL;
2421 break;
2422 case SIG_BLOCK:
2423 sigaddsetmask(&current->blocked, new_set);
2424 break;
2425 case SIG_UNBLOCK:
2426 sigdelsetmask(&current->blocked, new_set);
2427 break;
2428 case SIG_SETMASK:
2429 current->blocked.sig[0] = new_set;
2430 break;
2431 }
2432
2433 recalc_sigpending();
2434 spin_unlock_irq(&current->sighand->siglock);
2435 if (error)
2436 goto out;
2437 if (oset)
2438 goto set_old;
2439 } else if (oset) {
2440 old_set = current->blocked.sig[0];
2441 set_old:
2442 error = -EFAULT;
2443 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2444 goto out;
2445 }
2446 error = 0;
2447 out:
2448 return error;
2449 }
2450 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2451
2452 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2453 asmlinkage long
2454 sys_rt_sigaction(int sig,
2455 const struct sigaction __user *act,
2456 struct sigaction __user *oact,
2457 size_t sigsetsize)
2458 {
2459 struct k_sigaction new_sa, old_sa;
2460 int ret = -EINVAL;
2461
2462 /* XXX: Don't preclude handling different sized sigset_t's. */
2463 if (sigsetsize != sizeof(sigset_t))
2464 goto out;
2465
2466 if (act) {
2467 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2468 return -EFAULT;
2469 }
2470
2471 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2472
2473 if (!ret && oact) {
2474 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2475 return -EFAULT;
2476 }
2477 out:
2478 return ret;
2479 }
2480 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2481
2482 #ifdef __ARCH_WANT_SYS_SGETMASK
2483
2484 /*
2485 * For backwards compatibility. Functionality superseded by sigprocmask.
2486 */
2487 asmlinkage long
2488 sys_sgetmask(void)
2489 {
2490 /* SMP safe */
2491 return current->blocked.sig[0];
2492 }
2493
2494 asmlinkage long
2495 sys_ssetmask(int newmask)
2496 {
2497 int old;
2498
2499 spin_lock_irq(&current->sighand->siglock);
2500 old = current->blocked.sig[0];
2501
2502 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2503 sigmask(SIGSTOP)));
2504 recalc_sigpending();
2505 spin_unlock_irq(&current->sighand->siglock);
2506
2507 return old;
2508 }
2509 #endif /* __ARCH_WANT_SGETMASK */
2510
2511 #ifdef __ARCH_WANT_SYS_SIGNAL
2512 /*
2513 * For backwards compatibility. Functionality superseded by sigaction.
2514 */
2515 asmlinkage unsigned long
2516 sys_signal(int sig, __sighandler_t handler)
2517 {
2518 struct k_sigaction new_sa, old_sa;
2519 int ret;
2520
2521 new_sa.sa.sa_handler = handler;
2522 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2523 sigemptyset(&new_sa.sa.sa_mask);
2524
2525 ret = do_sigaction(sig, &new_sa, &old_sa);
2526
2527 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2528 }
2529 #endif /* __ARCH_WANT_SYS_SIGNAL */
2530
2531 #ifdef __ARCH_WANT_SYS_PAUSE
2532
2533 asmlinkage long
2534 sys_pause(void)
2535 {
2536 current->state = TASK_INTERRUPTIBLE;
2537 schedule();
2538 return -ERESTARTNOHAND;
2539 }
2540
2541 #endif
2542
2543 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2544 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2545 {
2546 sigset_t newset;
2547
2548 /* XXX: Don't preclude handling different sized sigset_t's. */
2549 if (sigsetsize != sizeof(sigset_t))
2550 return -EINVAL;
2551
2552 if (copy_from_user(&newset, unewset, sizeof(newset)))
2553 return -EFAULT;
2554 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2555
2556 spin_lock_irq(&current->sighand->siglock);
2557 current->saved_sigmask = current->blocked;
2558 current->blocked = newset;
2559 recalc_sigpending();
2560 spin_unlock_irq(&current->sighand->siglock);
2561
2562 current->state = TASK_INTERRUPTIBLE;
2563 schedule();
2564 set_thread_flag(TIF_RESTORE_SIGMASK);
2565 return -ERESTARTNOHAND;
2566 }
2567 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2568
2569 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2570 {
2571 return NULL;
2572 }
2573
2574 void __init signals_init(void)
2575 {
2576 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2577 }
This page took 0.082315 seconds and 6 git commands to generate.