[PATCH] cleanup __exit_signal->cleanup_sighand path
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/audit.h>
27 #include <linux/capability.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150
151 #define sig_user_defined(t, signr) \
152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154
155 #define sig_fatal(t, signr) \
156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158
159 static int sig_ignored(struct task_struct *t, int sig)
160 {
161 void __user * handler;
162
163 /*
164 * Tracers always want to know about signals..
165 */
166 if (t->ptrace & PT_PTRACED)
167 return 0;
168
169 /*
170 * Blocked signals are never ignored, since the
171 * signal handler may change by the time it is
172 * unblocked.
173 */
174 if (sigismember(&t->blocked, sig))
175 return 0;
176
177 /* Is it explicitly or implicitly ignored? */
178 handler = t->sighand->action[sig-1].sa.sa_handler;
179 return handler == SIG_IGN ||
180 (handler == SIG_DFL && sig_kernel_ignore(sig));
181 }
182
183 /*
184 * Re-calculate pending state from the set of locally pending
185 * signals, globally pending signals, and blocked signals.
186 */
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 {
189 unsigned long ready;
190 long i;
191
192 switch (_NSIG_WORDS) {
193 default:
194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 ready |= signal->sig[i] &~ blocked->sig[i];
196 break;
197
198 case 4: ready = signal->sig[3] &~ blocked->sig[3];
199 ready |= signal->sig[2] &~ blocked->sig[2];
200 ready |= signal->sig[1] &~ blocked->sig[1];
201 ready |= signal->sig[0] &~ blocked->sig[0];
202 break;
203
204 case 2: ready = signal->sig[1] &~ blocked->sig[1];
205 ready |= signal->sig[0] &~ blocked->sig[0];
206 break;
207
208 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 }
210 return ready != 0;
211 }
212
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 {
217 if (t->signal->group_stop_count > 0 ||
218 (freezing(t)) ||
219 PENDING(&t->pending, &t->blocked) ||
220 PENDING(&t->signal->shared_pending, &t->blocked))
221 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 else
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 }
225
226 void recalc_sigpending(void)
227 {
228 recalc_sigpending_tsk(current);
229 }
230
231 /* Given the mask, find the first available signal that should be serviced. */
232
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
235 {
236 unsigned long i, *s, *m, x;
237 int sig = 0;
238
239 s = pending->signal.sig;
240 m = mask->sig;
241 switch (_NSIG_WORDS) {
242 default:
243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 if ((x = *s &~ *m) != 0) {
245 sig = ffz(~x) + i*_NSIG_BPW + 1;
246 break;
247 }
248 break;
249
250 case 2: if ((x = s[0] &~ m[0]) != 0)
251 sig = 1;
252 else if ((x = s[1] &~ m[1]) != 0)
253 sig = _NSIG_BPW + 1;
254 else
255 break;
256 sig += ffz(~x);
257 break;
258
259 case 1: if ((x = *s &~ *m) != 0)
260 sig = ffz(~x) + 1;
261 break;
262 }
263
264 return sig;
265 }
266
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 int override_rlimit)
269 {
270 struct sigqueue *q = NULL;
271
272 atomic_inc(&t->user->sigpending);
273 if (override_rlimit ||
274 atomic_read(&t->user->sigpending) <=
275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 q = kmem_cache_alloc(sigqueue_cachep, flags);
277 if (unlikely(q == NULL)) {
278 atomic_dec(&t->user->sigpending);
279 } else {
280 INIT_LIST_HEAD(&q->list);
281 q->flags = 0;
282 q->user = get_uid(t->user);
283 }
284 return(q);
285 }
286
287 static void __sigqueue_free(struct sigqueue *q)
288 {
289 if (q->flags & SIGQUEUE_PREALLOC)
290 return;
291 atomic_dec(&q->user->sigpending);
292 free_uid(q->user);
293 kmem_cache_free(sigqueue_cachep, q);
294 }
295
296 void flush_sigqueue(struct sigpending *queue)
297 {
298 struct sigqueue *q;
299
300 sigemptyset(&queue->signal);
301 while (!list_empty(&queue->list)) {
302 q = list_entry(queue->list.next, struct sigqueue , list);
303 list_del_init(&q->list);
304 __sigqueue_free(q);
305 }
306 }
307
308 /*
309 * Flush all pending signals for a task.
310 */
311 void flush_signals(struct task_struct *t)
312 {
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321
322 /*
323 * Flush all handlers for a task.
324 */
325
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
328 {
329 int i;
330 struct k_sigaction *ka = &t->sighand->action[0];
331 for (i = _NSIG ; i != 0 ; i--) {
332 if (force_default || ka->sa.sa_handler != SIG_IGN)
333 ka->sa.sa_handler = SIG_DFL;
334 ka->sa.sa_flags = 0;
335 sigemptyset(&ka->sa.sa_mask);
336 ka++;
337 }
338 }
339
340
341 /* Notify the system that a driver wants to block all signals for this
342 * process, and wants to be notified if any signals at all were to be
343 * sent/acted upon. If the notifier routine returns non-zero, then the
344 * signal will be acted upon after all. If the notifier routine returns 0,
345 * then then signal will be blocked. Only one block per process is
346 * allowed. priv is a pointer to private data that the notifier routine
347 * can use to determine if the signal should be blocked or not. */
348
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(&current->sighand->siglock, flags);
355 current->notifier_mask = mask;
356 current->notifier_data = priv;
357 current->notifier = notifier;
358 spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 }
360
361 /* Notify the system that blocking has ended. */
362
363 void
364 unblock_all_signals(void)
365 {
366 unsigned long flags;
367
368 spin_lock_irqsave(&current->sighand->siglock, flags);
369 current->notifier = NULL;
370 current->notifier_data = NULL;
371 recalc_sigpending();
372 spin_unlock_irqrestore(&current->sighand->siglock, flags);
373 }
374
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 {
377 struct sigqueue *q, *first = NULL;
378 int still_pending = 0;
379
380 if (unlikely(!sigismember(&list->signal, sig)))
381 return 0;
382
383 /*
384 * Collect the siginfo appropriate to this signal. Check if
385 * there is another siginfo for the same signal.
386 */
387 list_for_each_entry(q, &list->list, list) {
388 if (q->info.si_signo == sig) {
389 if (first) {
390 still_pending = 1;
391 break;
392 }
393 first = q;
394 }
395 }
396 if (first) {
397 list_del_init(&first->list);
398 copy_siginfo(info, &first->info);
399 __sigqueue_free(first);
400 if (!still_pending)
401 sigdelset(&list->signal, sig);
402 } else {
403
404 /* Ok, it wasn't in the queue. This must be
405 a fast-pathed signal or we must have been
406 out of queue space. So zero out the info.
407 */
408 sigdelset(&list->signal, sig);
409 info->si_signo = sig;
410 info->si_errno = 0;
411 info->si_code = 0;
412 info->si_pid = 0;
413 info->si_uid = 0;
414 }
415 return 1;
416 }
417
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 siginfo_t *info)
420 {
421 int sig = 0;
422
423 sig = next_signal(pending, mask);
424 if (sig) {
425 if (current->notifier) {
426 if (sigismember(current->notifier_mask, sig)) {
427 if (!(current->notifier)(current->notifier_data)) {
428 clear_thread_flag(TIF_SIGPENDING);
429 return 0;
430 }
431 }
432 }
433
434 if (!collect_signal(sig, pending, info))
435 sig = 0;
436
437 }
438 recalc_sigpending();
439
440 return sig;
441 }
442
443 /*
444 * Dequeue a signal and return the element to the caller, which is
445 * expected to free it.
446 *
447 * All callers have to hold the siglock.
448 */
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 {
451 int signr = __dequeue_signal(&tsk->pending, mask, info);
452 if (!signr)
453 signr = __dequeue_signal(&tsk->signal->shared_pending,
454 mask, info);
455 if (signr && unlikely(sig_kernel_stop(signr))) {
456 /*
457 * Set a marker that we have dequeued a stop signal. Our
458 * caller might release the siglock and then the pending
459 * stop signal it is about to process is no longer in the
460 * pending bitmasks, but must still be cleared by a SIGCONT
461 * (and overruled by a SIGKILL). So those cases clear this
462 * shared flag after we've set it. Note that this flag may
463 * remain set after the signal we return is ignored or
464 * handled. That doesn't matter because its only purpose
465 * is to alert stop-signal processing code when another
466 * processor has come along and cleared the flag.
467 */
468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470 }
471 if ( signr &&
472 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 info->si_sys_private){
474 /*
475 * Release the siglock to ensure proper locking order
476 * of timer locks outside of siglocks. Note, we leave
477 * irqs disabled here, since the posix-timers code is
478 * about to disable them again anyway.
479 */
480 spin_unlock(&tsk->sighand->siglock);
481 do_schedule_next_timer(info);
482 spin_lock(&tsk->sighand->siglock);
483 }
484 return signr;
485 }
486
487 /*
488 * Tell a process that it has a new active signal..
489 *
490 * NOTE! we rely on the previous spin_lock to
491 * lock interrupts for us! We can only be called with
492 * "siglock" held, and the local interrupt must
493 * have been disabled when that got acquired!
494 *
495 * No need to set need_resched since signal event passing
496 * goes through ->blocked
497 */
498 void signal_wake_up(struct task_struct *t, int resume)
499 {
500 unsigned int mask;
501
502 set_tsk_thread_flag(t, TIF_SIGPENDING);
503
504 /*
505 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 * We don't check t->state here because there is a race with it
507 * executing another processor and just now entering stopped state.
508 * By using wake_up_state, we ensure the process will wake up and
509 * handle its death signal.
510 */
511 mask = TASK_INTERRUPTIBLE;
512 if (resume)
513 mask |= TASK_STOPPED | TASK_TRACED;
514 if (!wake_up_state(t, mask))
515 kick_process(t);
516 }
517
518 /*
519 * Remove signals in mask from the pending set and queue.
520 * Returns 1 if any signals were found.
521 *
522 * All callers must be holding the siglock.
523 *
524 * This version takes a sigset mask and looks at all signals,
525 * not just those in the first mask word.
526 */
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 {
529 struct sigqueue *q, *n;
530 sigset_t m;
531
532 sigandsets(&m, mask, &s->signal);
533 if (sigisemptyset(&m))
534 return 0;
535
536 signandsets(&s->signal, &s->signal, mask);
537 list_for_each_entry_safe(q, n, &s->list, list) {
538 if (sigismember(mask, q->info.si_signo)) {
539 list_del_init(&q->list);
540 __sigqueue_free(q);
541 }
542 }
543 return 1;
544 }
545 /*
546 * Remove signals in mask from the pending set and queue.
547 * Returns 1 if any signals were found.
548 *
549 * All callers must be holding the siglock.
550 */
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 {
553 struct sigqueue *q, *n;
554
555 if (!sigtestsetmask(&s->signal, mask))
556 return 0;
557
558 sigdelsetmask(&s->signal, mask);
559 list_for_each_entry_safe(q, n, &s->list, list) {
560 if (q->info.si_signo < SIGRTMIN &&
561 (mask & sigmask(q->info.si_signo))) {
562 list_del_init(&q->list);
563 __sigqueue_free(q);
564 }
565 }
566 return 1;
567 }
568
569 /*
570 * Bad permissions for sending the signal
571 */
572 static int check_kill_permission(int sig, struct siginfo *info,
573 struct task_struct *t)
574 {
575 int error = -EINVAL;
576 if (!valid_signal(sig))
577 return error;
578 error = -EPERM;
579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 && ((sig != SIGCONT) ||
581 (current->signal->session != t->signal->session))
582 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 && !capable(CAP_KILL))
585 return error;
586
587 error = security_task_kill(t, info, sig);
588 if (!error)
589 audit_signal_info(sig, t); /* Let audit system see the signal */
590 return error;
591 }
592
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk,
595 int to_self,
596 int why);
597
598 /*
599 * Handle magic process-wide effects of stop/continue signals.
600 * Unlike the signal actions, these happen immediately at signal-generation
601 * time regardless of blocking, ignoring, or handling. This does the
602 * actual continuing for SIGCONT, but not the actual stopping for stop
603 * signals. The process stop is done as a signal action for SIG_DFL.
604 */
605 static void handle_stop_signal(int sig, struct task_struct *p)
606 {
607 struct task_struct *t;
608
609 if (p->signal->flags & SIGNAL_GROUP_EXIT)
610 /*
611 * The process is in the middle of dying already.
612 */
613 return;
614
615 if (sig_kernel_stop(sig)) {
616 /*
617 * This is a stop signal. Remove SIGCONT from all queues.
618 */
619 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
620 t = p;
621 do {
622 rm_from_queue(sigmask(SIGCONT), &t->pending);
623 t = next_thread(t);
624 } while (t != p);
625 } else if (sig == SIGCONT) {
626 /*
627 * Remove all stop signals from all queues,
628 * and wake all threads.
629 */
630 if (unlikely(p->signal->group_stop_count > 0)) {
631 /*
632 * There was a group stop in progress. We'll
633 * pretend it finished before we got here. We are
634 * obliged to report it to the parent: if the
635 * SIGSTOP happened "after" this SIGCONT, then it
636 * would have cleared this pending SIGCONT. If it
637 * happened "before" this SIGCONT, then the parent
638 * got the SIGCHLD about the stop finishing before
639 * the continue happened. We do the notification
640 * now, and it's as if the stop had finished and
641 * the SIGCHLD was pending on entry to this kill.
642 */
643 p->signal->group_stop_count = 0;
644 p->signal->flags = SIGNAL_STOP_CONTINUED;
645 spin_unlock(&p->sighand->siglock);
646 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
647 spin_lock(&p->sighand->siglock);
648 }
649 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
650 t = p;
651 do {
652 unsigned int state;
653 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
654
655 /*
656 * If there is a handler for SIGCONT, we must make
657 * sure that no thread returns to user mode before
658 * we post the signal, in case it was the only
659 * thread eligible to run the signal handler--then
660 * it must not do anything between resuming and
661 * running the handler. With the TIF_SIGPENDING
662 * flag set, the thread will pause and acquire the
663 * siglock that we hold now and until we've queued
664 * the pending signal.
665 *
666 * Wake up the stopped thread _after_ setting
667 * TIF_SIGPENDING
668 */
669 state = TASK_STOPPED;
670 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
671 set_tsk_thread_flag(t, TIF_SIGPENDING);
672 state |= TASK_INTERRUPTIBLE;
673 }
674 wake_up_state(t, state);
675
676 t = next_thread(t);
677 } while (t != p);
678
679 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
680 /*
681 * We were in fact stopped, and are now continued.
682 * Notify the parent with CLD_CONTINUED.
683 */
684 p->signal->flags = SIGNAL_STOP_CONTINUED;
685 p->signal->group_exit_code = 0;
686 spin_unlock(&p->sighand->siglock);
687 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
688 spin_lock(&p->sighand->siglock);
689 } else {
690 /*
691 * We are not stopped, but there could be a stop
692 * signal in the middle of being processed after
693 * being removed from the queue. Clear that too.
694 */
695 p->signal->flags = 0;
696 }
697 } else if (sig == SIGKILL) {
698 /*
699 * Make sure that any pending stop signal already dequeued
700 * is undone by the wakeup for SIGKILL.
701 */
702 p->signal->flags = 0;
703 }
704 }
705
706 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
707 struct sigpending *signals)
708 {
709 struct sigqueue * q = NULL;
710 int ret = 0;
711
712 /*
713 * fast-pathed signals for kernel-internal things like SIGSTOP
714 * or SIGKILL.
715 */
716 if (info == SEND_SIG_FORCED)
717 goto out_set;
718
719 /* Real-time signals must be queued if sent by sigqueue, or
720 some other real-time mechanism. It is implementation
721 defined whether kill() does so. We attempt to do so, on
722 the principle of least surprise, but since kill is not
723 allowed to fail with EAGAIN when low on memory we just
724 make sure at least one signal gets delivered and don't
725 pass on the info struct. */
726
727 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
728 (is_si_special(info) ||
729 info->si_code >= 0)));
730 if (q) {
731 list_add_tail(&q->list, &signals->list);
732 switch ((unsigned long) info) {
733 case (unsigned long) SEND_SIG_NOINFO:
734 q->info.si_signo = sig;
735 q->info.si_errno = 0;
736 q->info.si_code = SI_USER;
737 q->info.si_pid = current->pid;
738 q->info.si_uid = current->uid;
739 break;
740 case (unsigned long) SEND_SIG_PRIV:
741 q->info.si_signo = sig;
742 q->info.si_errno = 0;
743 q->info.si_code = SI_KERNEL;
744 q->info.si_pid = 0;
745 q->info.si_uid = 0;
746 break;
747 default:
748 copy_siginfo(&q->info, info);
749 break;
750 }
751 } else if (!is_si_special(info)) {
752 if (sig >= SIGRTMIN && info->si_code != SI_USER)
753 /*
754 * Queue overflow, abort. We may abort if the signal was rt
755 * and sent by user using something other than kill().
756 */
757 return -EAGAIN;
758 }
759
760 out_set:
761 sigaddset(&signals->signal, sig);
762 return ret;
763 }
764
765 #define LEGACY_QUEUE(sigptr, sig) \
766 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
767
768
769 static int
770 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
771 {
772 int ret = 0;
773
774 if (!irqs_disabled())
775 BUG();
776 assert_spin_locked(&t->sighand->siglock);
777
778 /* Short-circuit ignored signals. */
779 if (sig_ignored(t, sig))
780 goto out;
781
782 /* Support queueing exactly one non-rt signal, so that we
783 can get more detailed information about the cause of
784 the signal. */
785 if (LEGACY_QUEUE(&t->pending, sig))
786 goto out;
787
788 ret = send_signal(sig, info, t, &t->pending);
789 if (!ret && !sigismember(&t->blocked, sig))
790 signal_wake_up(t, sig == SIGKILL);
791 out:
792 return ret;
793 }
794
795 /*
796 * Force a signal that the process can't ignore: if necessary
797 * we unblock the signal and change any SIG_IGN to SIG_DFL.
798 */
799
800 int
801 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
802 {
803 unsigned long int flags;
804 int ret;
805
806 spin_lock_irqsave(&t->sighand->siglock, flags);
807 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
808 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
809 }
810 if (sigismember(&t->blocked, sig)) {
811 sigdelset(&t->blocked, sig);
812 }
813 recalc_sigpending_tsk(t);
814 ret = specific_send_sig_info(sig, info, t);
815 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816
817 return ret;
818 }
819
820 void
821 force_sig_specific(int sig, struct task_struct *t)
822 {
823 force_sig_info(sig, SEND_SIG_FORCED, t);
824 }
825
826 /*
827 * Test if P wants to take SIG. After we've checked all threads with this,
828 * it's equivalent to finding no threads not blocking SIG. Any threads not
829 * blocking SIG were ruled out because they are not running and already
830 * have pending signals. Such threads will dequeue from the shared queue
831 * as soon as they're available, so putting the signal on the shared queue
832 * will be equivalent to sending it to one such thread.
833 */
834 static inline int wants_signal(int sig, struct task_struct *p)
835 {
836 if (sigismember(&p->blocked, sig))
837 return 0;
838 if (p->flags & PF_EXITING)
839 return 0;
840 if (sig == SIGKILL)
841 return 1;
842 if (p->state & (TASK_STOPPED | TASK_TRACED))
843 return 0;
844 return task_curr(p) || !signal_pending(p);
845 }
846
847 static void
848 __group_complete_signal(int sig, struct task_struct *p)
849 {
850 struct task_struct *t;
851
852 /*
853 * Now find a thread we can wake up to take the signal off the queue.
854 *
855 * If the main thread wants the signal, it gets first crack.
856 * Probably the least surprising to the average bear.
857 */
858 if (wants_signal(sig, p))
859 t = p;
860 else if (thread_group_empty(p))
861 /*
862 * There is just one thread and it does not need to be woken.
863 * It will dequeue unblocked signals before it runs again.
864 */
865 return;
866 else {
867 /*
868 * Otherwise try to find a suitable thread.
869 */
870 t = p->signal->curr_target;
871 if (t == NULL)
872 /* restart balancing at this thread */
873 t = p->signal->curr_target = p;
874 BUG_ON(t->tgid != p->tgid);
875
876 while (!wants_signal(sig, t)) {
877 t = next_thread(t);
878 if (t == p->signal->curr_target)
879 /*
880 * No thread needs to be woken.
881 * Any eligible threads will see
882 * the signal in the queue soon.
883 */
884 return;
885 }
886 p->signal->curr_target = t;
887 }
888
889 /*
890 * Found a killable thread. If the signal will be fatal,
891 * then start taking the whole group down immediately.
892 */
893 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
894 !sigismember(&t->real_blocked, sig) &&
895 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
896 /*
897 * This signal will be fatal to the whole group.
898 */
899 if (!sig_kernel_coredump(sig)) {
900 /*
901 * Start a group exit and wake everybody up.
902 * This way we don't have other threads
903 * running and doing things after a slower
904 * thread has the fatal signal pending.
905 */
906 p->signal->flags = SIGNAL_GROUP_EXIT;
907 p->signal->group_exit_code = sig;
908 p->signal->group_stop_count = 0;
909 t = p;
910 do {
911 sigaddset(&t->pending.signal, SIGKILL);
912 signal_wake_up(t, 1);
913 t = next_thread(t);
914 } while (t != p);
915 return;
916 }
917
918 /*
919 * There will be a core dump. We make all threads other
920 * than the chosen one go into a group stop so that nothing
921 * happens until it gets scheduled, takes the signal off
922 * the shared queue, and does the core dump. This is a
923 * little more complicated than strictly necessary, but it
924 * keeps the signal state that winds up in the core dump
925 * unchanged from the death state, e.g. which thread had
926 * the core-dump signal unblocked.
927 */
928 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
929 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
930 p->signal->group_stop_count = 0;
931 p->signal->group_exit_task = t;
932 t = p;
933 do {
934 p->signal->group_stop_count++;
935 signal_wake_up(t, 0);
936 t = next_thread(t);
937 } while (t != p);
938 wake_up_process(p->signal->group_exit_task);
939 return;
940 }
941
942 /*
943 * The signal is already in the shared-pending queue.
944 * Tell the chosen thread to wake up and dequeue it.
945 */
946 signal_wake_up(t, sig == SIGKILL);
947 return;
948 }
949
950 int
951 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
952 {
953 int ret = 0;
954
955 assert_spin_locked(&p->sighand->siglock);
956 handle_stop_signal(sig, p);
957
958 /* Short-circuit ignored signals. */
959 if (sig_ignored(p, sig))
960 return ret;
961
962 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
963 /* This is a non-RT signal and we already have one queued. */
964 return ret;
965
966 /*
967 * Put this signal on the shared-pending queue, or fail with EAGAIN.
968 * We always use the shared queue for process-wide signals,
969 * to avoid several races.
970 */
971 ret = send_signal(sig, info, p, &p->signal->shared_pending);
972 if (unlikely(ret))
973 return ret;
974
975 __group_complete_signal(sig, p);
976 return 0;
977 }
978
979 /*
980 * Nuke all other threads in the group.
981 */
982 void zap_other_threads(struct task_struct *p)
983 {
984 struct task_struct *t;
985
986 p->signal->flags = SIGNAL_GROUP_EXIT;
987 p->signal->group_stop_count = 0;
988
989 if (thread_group_empty(p))
990 return;
991
992 for (t = next_thread(p); t != p; t = next_thread(t)) {
993 /*
994 * Don't bother with already dead threads
995 */
996 if (t->exit_state)
997 continue;
998
999 /*
1000 * We don't want to notify the parent, since we are
1001 * killed as part of a thread group due to another
1002 * thread doing an execve() or similar. So set the
1003 * exit signal to -1 to allow immediate reaping of
1004 * the process. But don't detach the thread group
1005 * leader.
1006 */
1007 if (t != p->group_leader)
1008 t->exit_signal = -1;
1009
1010 /* SIGKILL will be handled before any pending SIGSTOP */
1011 sigaddset(&t->pending.signal, SIGKILL);
1012 signal_wake_up(t, 1);
1013 }
1014 }
1015
1016 /*
1017 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1018 */
1019 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1020 {
1021 struct sighand_struct *sighand;
1022
1023 for (;;) {
1024 sighand = rcu_dereference(tsk->sighand);
1025 if (unlikely(sighand == NULL))
1026 break;
1027
1028 spin_lock_irqsave(&sighand->siglock, *flags);
1029 if (likely(sighand == tsk->sighand))
1030 break;
1031 spin_unlock_irqrestore(&sighand->siglock, *flags);
1032 }
1033
1034 return sighand;
1035 }
1036
1037 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1038 {
1039 unsigned long flags;
1040 int ret;
1041
1042 ret = check_kill_permission(sig, info, p);
1043
1044 if (!ret && sig) {
1045 ret = -ESRCH;
1046 if (lock_task_sighand(p, &flags)) {
1047 ret = __group_send_sig_info(sig, info, p);
1048 unlock_task_sighand(p, &flags);
1049 }
1050 }
1051
1052 return ret;
1053 }
1054
1055 /*
1056 * kill_pg_info() sends a signal to a process group: this is what the tty
1057 * control characters do (^C, ^Z etc)
1058 */
1059
1060 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1061 {
1062 struct task_struct *p = NULL;
1063 int retval, success;
1064
1065 if (pgrp <= 0)
1066 return -EINVAL;
1067
1068 success = 0;
1069 retval = -ESRCH;
1070 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1071 int err = group_send_sig_info(sig, info, p);
1072 success |= !err;
1073 retval = err;
1074 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1075 return success ? 0 : retval;
1076 }
1077
1078 int
1079 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1080 {
1081 int retval;
1082
1083 read_lock(&tasklist_lock);
1084 retval = __kill_pg_info(sig, info, pgrp);
1085 read_unlock(&tasklist_lock);
1086
1087 return retval;
1088 }
1089
1090 int
1091 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1092 {
1093 int error;
1094 int acquired_tasklist_lock = 0;
1095 struct task_struct *p;
1096
1097 rcu_read_lock();
1098 if (unlikely(sig_needs_tasklist(sig))) {
1099 read_lock(&tasklist_lock);
1100 acquired_tasklist_lock = 1;
1101 }
1102 p = find_task_by_pid(pid);
1103 error = -ESRCH;
1104 if (p)
1105 error = group_send_sig_info(sig, info, p);
1106 if (unlikely(acquired_tasklist_lock))
1107 read_unlock(&tasklist_lock);
1108 rcu_read_unlock();
1109 return error;
1110 }
1111
1112 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1113 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1114 uid_t uid, uid_t euid)
1115 {
1116 int ret = -EINVAL;
1117 struct task_struct *p;
1118
1119 if (!valid_signal(sig))
1120 return ret;
1121
1122 read_lock(&tasklist_lock);
1123 p = find_task_by_pid(pid);
1124 if (!p) {
1125 ret = -ESRCH;
1126 goto out_unlock;
1127 }
1128 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1129 && (euid != p->suid) && (euid != p->uid)
1130 && (uid != p->suid) && (uid != p->uid)) {
1131 ret = -EPERM;
1132 goto out_unlock;
1133 }
1134 if (sig && p->sighand) {
1135 unsigned long flags;
1136 spin_lock_irqsave(&p->sighand->siglock, flags);
1137 ret = __group_send_sig_info(sig, info, p);
1138 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1139 }
1140 out_unlock:
1141 read_unlock(&tasklist_lock);
1142 return ret;
1143 }
1144 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1145
1146 /*
1147 * kill_something_info() interprets pid in interesting ways just like kill(2).
1148 *
1149 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1150 * is probably wrong. Should make it like BSD or SYSV.
1151 */
1152
1153 static int kill_something_info(int sig, struct siginfo *info, int pid)
1154 {
1155 if (!pid) {
1156 return kill_pg_info(sig, info, process_group(current));
1157 } else if (pid == -1) {
1158 int retval = 0, count = 0;
1159 struct task_struct * p;
1160
1161 read_lock(&tasklist_lock);
1162 for_each_process(p) {
1163 if (p->pid > 1 && p->tgid != current->tgid) {
1164 int err = group_send_sig_info(sig, info, p);
1165 ++count;
1166 if (err != -EPERM)
1167 retval = err;
1168 }
1169 }
1170 read_unlock(&tasklist_lock);
1171 return count ? retval : -ESRCH;
1172 } else if (pid < 0) {
1173 return kill_pg_info(sig, info, -pid);
1174 } else {
1175 return kill_proc_info(sig, info, pid);
1176 }
1177 }
1178
1179 /*
1180 * These are for backward compatibility with the rest of the kernel source.
1181 */
1182
1183 /*
1184 * These two are the most common entry points. They send a signal
1185 * just to the specific thread.
1186 */
1187 int
1188 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1189 {
1190 int ret;
1191 unsigned long flags;
1192
1193 /*
1194 * Make sure legacy kernel users don't send in bad values
1195 * (normal paths check this in check_kill_permission).
1196 */
1197 if (!valid_signal(sig))
1198 return -EINVAL;
1199
1200 /*
1201 * We need the tasklist lock even for the specific
1202 * thread case (when we don't need to follow the group
1203 * lists) in order to avoid races with "p->sighand"
1204 * going away or changing from under us.
1205 */
1206 read_lock(&tasklist_lock);
1207 spin_lock_irqsave(&p->sighand->siglock, flags);
1208 ret = specific_send_sig_info(sig, info, p);
1209 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1210 read_unlock(&tasklist_lock);
1211 return ret;
1212 }
1213
1214 #define __si_special(priv) \
1215 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1216
1217 int
1218 send_sig(int sig, struct task_struct *p, int priv)
1219 {
1220 return send_sig_info(sig, __si_special(priv), p);
1221 }
1222
1223 /*
1224 * This is the entry point for "process-wide" signals.
1225 * They will go to an appropriate thread in the thread group.
1226 */
1227 int
1228 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1229 {
1230 int ret;
1231 read_lock(&tasklist_lock);
1232 ret = group_send_sig_info(sig, info, p);
1233 read_unlock(&tasklist_lock);
1234 return ret;
1235 }
1236
1237 void
1238 force_sig(int sig, struct task_struct *p)
1239 {
1240 force_sig_info(sig, SEND_SIG_PRIV, p);
1241 }
1242
1243 /*
1244 * When things go south during signal handling, we
1245 * will force a SIGSEGV. And if the signal that caused
1246 * the problem was already a SIGSEGV, we'll want to
1247 * make sure we don't even try to deliver the signal..
1248 */
1249 int
1250 force_sigsegv(int sig, struct task_struct *p)
1251 {
1252 if (sig == SIGSEGV) {
1253 unsigned long flags;
1254 spin_lock_irqsave(&p->sighand->siglock, flags);
1255 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1256 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1257 }
1258 force_sig(SIGSEGV, p);
1259 return 0;
1260 }
1261
1262 int
1263 kill_pg(pid_t pgrp, int sig, int priv)
1264 {
1265 return kill_pg_info(sig, __si_special(priv), pgrp);
1266 }
1267
1268 int
1269 kill_proc(pid_t pid, int sig, int priv)
1270 {
1271 return kill_proc_info(sig, __si_special(priv), pid);
1272 }
1273
1274 /*
1275 * These functions support sending signals using preallocated sigqueue
1276 * structures. This is needed "because realtime applications cannot
1277 * afford to lose notifications of asynchronous events, like timer
1278 * expirations or I/O completions". In the case of Posix Timers
1279 * we allocate the sigqueue structure from the timer_create. If this
1280 * allocation fails we are able to report the failure to the application
1281 * with an EAGAIN error.
1282 */
1283
1284 struct sigqueue *sigqueue_alloc(void)
1285 {
1286 struct sigqueue *q;
1287
1288 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1289 q->flags |= SIGQUEUE_PREALLOC;
1290 return(q);
1291 }
1292
1293 void sigqueue_free(struct sigqueue *q)
1294 {
1295 unsigned long flags;
1296 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1297 /*
1298 * If the signal is still pending remove it from the
1299 * pending queue.
1300 */
1301 if (unlikely(!list_empty(&q->list))) {
1302 spinlock_t *lock = &current->sighand->siglock;
1303 read_lock(&tasklist_lock);
1304 spin_lock_irqsave(lock, flags);
1305 if (!list_empty(&q->list))
1306 list_del_init(&q->list);
1307 spin_unlock_irqrestore(lock, flags);
1308 read_unlock(&tasklist_lock);
1309 }
1310 q->flags &= ~SIGQUEUE_PREALLOC;
1311 __sigqueue_free(q);
1312 }
1313
1314 int
1315 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1316 {
1317 unsigned long flags;
1318 int ret = 0;
1319 struct sighand_struct *sh;
1320
1321 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1322
1323 /*
1324 * The rcu based delayed sighand destroy makes it possible to
1325 * run this without tasklist lock held. The task struct itself
1326 * cannot go away as create_timer did get_task_struct().
1327 *
1328 * We return -1, when the task is marked exiting, so
1329 * posix_timer_event can redirect it to the group leader
1330 */
1331 rcu_read_lock();
1332
1333 if (unlikely(p->flags & PF_EXITING)) {
1334 ret = -1;
1335 goto out_err;
1336 }
1337
1338 retry:
1339 sh = rcu_dereference(p->sighand);
1340
1341 spin_lock_irqsave(&sh->siglock, flags);
1342 if (p->sighand != sh) {
1343 /* We raced with exec() in a multithreaded process... */
1344 spin_unlock_irqrestore(&sh->siglock, flags);
1345 goto retry;
1346 }
1347
1348 /*
1349 * We do the check here again to handle the following scenario:
1350 *
1351 * CPU 0 CPU 1
1352 * send_sigqueue
1353 * check PF_EXITING
1354 * interrupt exit code running
1355 * __exit_signal
1356 * lock sighand->siglock
1357 * unlock sighand->siglock
1358 * lock sh->siglock
1359 * add(tsk->pending) flush_sigqueue(tsk->pending)
1360 *
1361 */
1362
1363 if (unlikely(p->flags & PF_EXITING)) {
1364 ret = -1;
1365 goto out;
1366 }
1367
1368 if (unlikely(!list_empty(&q->list))) {
1369 /*
1370 * If an SI_TIMER entry is already queue just increment
1371 * the overrun count.
1372 */
1373 if (q->info.si_code != SI_TIMER)
1374 BUG();
1375 q->info.si_overrun++;
1376 goto out;
1377 }
1378 /* Short-circuit ignored signals. */
1379 if (sig_ignored(p, sig)) {
1380 ret = 1;
1381 goto out;
1382 }
1383
1384 list_add_tail(&q->list, &p->pending.list);
1385 sigaddset(&p->pending.signal, sig);
1386 if (!sigismember(&p->blocked, sig))
1387 signal_wake_up(p, sig == SIGKILL);
1388
1389 out:
1390 spin_unlock_irqrestore(&sh->siglock, flags);
1391 out_err:
1392 rcu_read_unlock();
1393
1394 return ret;
1395 }
1396
1397 int
1398 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1399 {
1400 unsigned long flags;
1401 int ret = 0;
1402
1403 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1404
1405 read_lock(&tasklist_lock);
1406 /* Since it_lock is held, p->sighand cannot be NULL. */
1407 spin_lock_irqsave(&p->sighand->siglock, flags);
1408 handle_stop_signal(sig, p);
1409
1410 /* Short-circuit ignored signals. */
1411 if (sig_ignored(p, sig)) {
1412 ret = 1;
1413 goto out;
1414 }
1415
1416 if (unlikely(!list_empty(&q->list))) {
1417 /*
1418 * If an SI_TIMER entry is already queue just increment
1419 * the overrun count. Other uses should not try to
1420 * send the signal multiple times.
1421 */
1422 if (q->info.si_code != SI_TIMER)
1423 BUG();
1424 q->info.si_overrun++;
1425 goto out;
1426 }
1427
1428 /*
1429 * Put this signal on the shared-pending queue.
1430 * We always use the shared queue for process-wide signals,
1431 * to avoid several races.
1432 */
1433 list_add_tail(&q->list, &p->signal->shared_pending.list);
1434 sigaddset(&p->signal->shared_pending.signal, sig);
1435
1436 __group_complete_signal(sig, p);
1437 out:
1438 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1439 read_unlock(&tasklist_lock);
1440 return ret;
1441 }
1442
1443 /*
1444 * Wake up any threads in the parent blocked in wait* syscalls.
1445 */
1446 static inline void __wake_up_parent(struct task_struct *p,
1447 struct task_struct *parent)
1448 {
1449 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1450 }
1451
1452 /*
1453 * Let a parent know about the death of a child.
1454 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1455 */
1456
1457 void do_notify_parent(struct task_struct *tsk, int sig)
1458 {
1459 struct siginfo info;
1460 unsigned long flags;
1461 struct sighand_struct *psig;
1462
1463 BUG_ON(sig == -1);
1464
1465 /* do_notify_parent_cldstop should have been called instead. */
1466 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1467
1468 BUG_ON(!tsk->ptrace &&
1469 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1470
1471 info.si_signo = sig;
1472 info.si_errno = 0;
1473 info.si_pid = tsk->pid;
1474 info.si_uid = tsk->uid;
1475
1476 /* FIXME: find out whether or not this is supposed to be c*time. */
1477 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1478 tsk->signal->utime));
1479 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1480 tsk->signal->stime));
1481
1482 info.si_status = tsk->exit_code & 0x7f;
1483 if (tsk->exit_code & 0x80)
1484 info.si_code = CLD_DUMPED;
1485 else if (tsk->exit_code & 0x7f)
1486 info.si_code = CLD_KILLED;
1487 else {
1488 info.si_code = CLD_EXITED;
1489 info.si_status = tsk->exit_code >> 8;
1490 }
1491
1492 psig = tsk->parent->sighand;
1493 spin_lock_irqsave(&psig->siglock, flags);
1494 if (!tsk->ptrace && sig == SIGCHLD &&
1495 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1496 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1497 /*
1498 * We are exiting and our parent doesn't care. POSIX.1
1499 * defines special semantics for setting SIGCHLD to SIG_IGN
1500 * or setting the SA_NOCLDWAIT flag: we should be reaped
1501 * automatically and not left for our parent's wait4 call.
1502 * Rather than having the parent do it as a magic kind of
1503 * signal handler, we just set this to tell do_exit that we
1504 * can be cleaned up without becoming a zombie. Note that
1505 * we still call __wake_up_parent in this case, because a
1506 * blocked sys_wait4 might now return -ECHILD.
1507 *
1508 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1509 * is implementation-defined: we do (if you don't want
1510 * it, just use SIG_IGN instead).
1511 */
1512 tsk->exit_signal = -1;
1513 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1514 sig = 0;
1515 }
1516 if (valid_signal(sig) && sig > 0)
1517 __group_send_sig_info(sig, &info, tsk->parent);
1518 __wake_up_parent(tsk, tsk->parent);
1519 spin_unlock_irqrestore(&psig->siglock, flags);
1520 }
1521
1522 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1523 {
1524 struct siginfo info;
1525 unsigned long flags;
1526 struct task_struct *parent;
1527 struct sighand_struct *sighand;
1528
1529 if (to_self)
1530 parent = tsk->parent;
1531 else {
1532 tsk = tsk->group_leader;
1533 parent = tsk->real_parent;
1534 }
1535
1536 info.si_signo = SIGCHLD;
1537 info.si_errno = 0;
1538 info.si_pid = tsk->pid;
1539 info.si_uid = tsk->uid;
1540
1541 /* FIXME: find out whether or not this is supposed to be c*time. */
1542 info.si_utime = cputime_to_jiffies(tsk->utime);
1543 info.si_stime = cputime_to_jiffies(tsk->stime);
1544
1545 info.si_code = why;
1546 switch (why) {
1547 case CLD_CONTINUED:
1548 info.si_status = SIGCONT;
1549 break;
1550 case CLD_STOPPED:
1551 info.si_status = tsk->signal->group_exit_code & 0x7f;
1552 break;
1553 case CLD_TRAPPED:
1554 info.si_status = tsk->exit_code & 0x7f;
1555 break;
1556 default:
1557 BUG();
1558 }
1559
1560 sighand = parent->sighand;
1561 spin_lock_irqsave(&sighand->siglock, flags);
1562 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1563 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1564 __group_send_sig_info(SIGCHLD, &info, parent);
1565 /*
1566 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1567 */
1568 __wake_up_parent(tsk, parent);
1569 spin_unlock_irqrestore(&sighand->siglock, flags);
1570 }
1571
1572 /*
1573 * This must be called with current->sighand->siglock held.
1574 *
1575 * This should be the path for all ptrace stops.
1576 * We always set current->last_siginfo while stopped here.
1577 * That makes it a way to test a stopped process for
1578 * being ptrace-stopped vs being job-control-stopped.
1579 *
1580 * If we actually decide not to stop at all because the tracer is gone,
1581 * we leave nostop_code in current->exit_code.
1582 */
1583 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1584 {
1585 /*
1586 * If there is a group stop in progress,
1587 * we must participate in the bookkeeping.
1588 */
1589 if (current->signal->group_stop_count > 0)
1590 --current->signal->group_stop_count;
1591
1592 current->last_siginfo = info;
1593 current->exit_code = exit_code;
1594
1595 /* Let the debugger run. */
1596 set_current_state(TASK_TRACED);
1597 spin_unlock_irq(&current->sighand->siglock);
1598 read_lock(&tasklist_lock);
1599 if (likely(current->ptrace & PT_PTRACED) &&
1600 likely(current->parent != current->real_parent ||
1601 !(current->ptrace & PT_ATTACHED)) &&
1602 (likely(current->parent->signal != current->signal) ||
1603 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1604 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1605 read_unlock(&tasklist_lock);
1606 schedule();
1607 } else {
1608 /*
1609 * By the time we got the lock, our tracer went away.
1610 * Don't stop here.
1611 */
1612 read_unlock(&tasklist_lock);
1613 set_current_state(TASK_RUNNING);
1614 current->exit_code = nostop_code;
1615 }
1616
1617 /*
1618 * We are back. Now reacquire the siglock before touching
1619 * last_siginfo, so that we are sure to have synchronized with
1620 * any signal-sending on another CPU that wants to examine it.
1621 */
1622 spin_lock_irq(&current->sighand->siglock);
1623 current->last_siginfo = NULL;
1624
1625 /*
1626 * Queued signals ignored us while we were stopped for tracing.
1627 * So check for any that we should take before resuming user mode.
1628 */
1629 recalc_sigpending();
1630 }
1631
1632 void ptrace_notify(int exit_code)
1633 {
1634 siginfo_t info;
1635
1636 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1637
1638 memset(&info, 0, sizeof info);
1639 info.si_signo = SIGTRAP;
1640 info.si_code = exit_code;
1641 info.si_pid = current->pid;
1642 info.si_uid = current->uid;
1643
1644 /* Let the debugger run. */
1645 spin_lock_irq(&current->sighand->siglock);
1646 ptrace_stop(exit_code, 0, &info);
1647 spin_unlock_irq(&current->sighand->siglock);
1648 }
1649
1650 static void
1651 finish_stop(int stop_count)
1652 {
1653 int to_self;
1654
1655 /*
1656 * If there are no other threads in the group, or if there is
1657 * a group stop in progress and we are the last to stop,
1658 * report to the parent. When ptraced, every thread reports itself.
1659 */
1660 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1661 to_self = 1;
1662 else if (stop_count == 0)
1663 to_self = 0;
1664 else
1665 goto out;
1666
1667 read_lock(&tasklist_lock);
1668 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1669 read_unlock(&tasklist_lock);
1670
1671 out:
1672 schedule();
1673 /*
1674 * Now we don't run again until continued.
1675 */
1676 current->exit_code = 0;
1677 }
1678
1679 /*
1680 * This performs the stopping for SIGSTOP and other stop signals.
1681 * We have to stop all threads in the thread group.
1682 * Returns nonzero if we've actually stopped and released the siglock.
1683 * Returns zero if we didn't stop and still hold the siglock.
1684 */
1685 static int do_signal_stop(int signr)
1686 {
1687 struct signal_struct *sig = current->signal;
1688 struct sighand_struct *sighand = current->sighand;
1689 int stop_count = -1;
1690
1691 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1692 return 0;
1693
1694 if (sig->group_stop_count > 0) {
1695 /*
1696 * There is a group stop in progress. We don't need to
1697 * start another one.
1698 */
1699 signr = sig->group_exit_code;
1700 stop_count = --sig->group_stop_count;
1701 current->exit_code = signr;
1702 set_current_state(TASK_STOPPED);
1703 if (stop_count == 0)
1704 sig->flags = SIGNAL_STOP_STOPPED;
1705 }
1706 else if (thread_group_empty(current)) {
1707 /*
1708 * Lock must be held through transition to stopped state.
1709 */
1710 current->exit_code = current->signal->group_exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 sig->flags = SIGNAL_STOP_STOPPED;
1713 }
1714 else {
1715 /*
1716 * (sig->group_stop_count == 0)
1717 * There is no group stop already in progress.
1718 * We must initiate one now.
1719 */
1720 struct task_struct *t;
1721
1722 current->exit_code = signr;
1723 sig->group_exit_code = signr;
1724
1725 stop_count = 0;
1726 for (t = next_thread(current); t != current; t = next_thread(t))
1727 /*
1728 * Setting state to TASK_STOPPED for a group
1729 * stop is always done with the siglock held,
1730 * so this check has no races.
1731 */
1732 if (!t->exit_state &&
1733 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1734 stop_count++;
1735 signal_wake_up(t, 0);
1736 }
1737 sig->group_stop_count = stop_count;
1738
1739 set_current_state(TASK_STOPPED);
1740 if (stop_count == 0)
1741 sig->flags = SIGNAL_STOP_STOPPED;
1742 }
1743
1744 spin_unlock_irq(&sighand->siglock);
1745 finish_stop(stop_count);
1746 return 1;
1747 }
1748
1749 /*
1750 * Do appropriate magic when group_stop_count > 0.
1751 * We return nonzero if we stopped, after releasing the siglock.
1752 * We return zero if we still hold the siglock and should look
1753 * for another signal without checking group_stop_count again.
1754 */
1755 static int handle_group_stop(void)
1756 {
1757 int stop_count;
1758
1759 if (current->signal->group_exit_task == current) {
1760 /*
1761 * Group stop is so we can do a core dump,
1762 * We are the initiating thread, so get on with it.
1763 */
1764 current->signal->group_exit_task = NULL;
1765 return 0;
1766 }
1767
1768 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1769 /*
1770 * Group stop is so another thread can do a core dump,
1771 * or else we are racing against a death signal.
1772 * Just punt the stop so we can get the next signal.
1773 */
1774 return 0;
1775
1776 /*
1777 * There is a group stop in progress. We stop
1778 * without any associated signal being in our queue.
1779 */
1780 stop_count = --current->signal->group_stop_count;
1781 if (stop_count == 0)
1782 current->signal->flags = SIGNAL_STOP_STOPPED;
1783 current->exit_code = current->signal->group_exit_code;
1784 set_current_state(TASK_STOPPED);
1785 spin_unlock_irq(&current->sighand->siglock);
1786 finish_stop(stop_count);
1787 return 1;
1788 }
1789
1790 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1791 struct pt_regs *regs, void *cookie)
1792 {
1793 sigset_t *mask = &current->blocked;
1794 int signr = 0;
1795
1796 try_to_freeze();
1797
1798 relock:
1799 spin_lock_irq(&current->sighand->siglock);
1800 for (;;) {
1801 struct k_sigaction *ka;
1802
1803 if (unlikely(current->signal->group_stop_count > 0) &&
1804 handle_group_stop())
1805 goto relock;
1806
1807 signr = dequeue_signal(current, mask, info);
1808
1809 if (!signr)
1810 break; /* will return 0 */
1811
1812 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1813 ptrace_signal_deliver(regs, cookie);
1814
1815 /* Let the debugger run. */
1816 ptrace_stop(signr, signr, info);
1817
1818 /* We're back. Did the debugger cancel the sig or group_exit? */
1819 signr = current->exit_code;
1820 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1821 continue;
1822
1823 current->exit_code = 0;
1824
1825 /* Update the siginfo structure if the signal has
1826 changed. If the debugger wanted something
1827 specific in the siginfo structure then it should
1828 have updated *info via PTRACE_SETSIGINFO. */
1829 if (signr != info->si_signo) {
1830 info->si_signo = signr;
1831 info->si_errno = 0;
1832 info->si_code = SI_USER;
1833 info->si_pid = current->parent->pid;
1834 info->si_uid = current->parent->uid;
1835 }
1836
1837 /* If the (new) signal is now blocked, requeue it. */
1838 if (sigismember(&current->blocked, signr)) {
1839 specific_send_sig_info(signr, info, current);
1840 continue;
1841 }
1842 }
1843
1844 ka = &current->sighand->action[signr-1];
1845 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1846 continue;
1847 if (ka->sa.sa_handler != SIG_DFL) {
1848 /* Run the handler. */
1849 *return_ka = *ka;
1850
1851 if (ka->sa.sa_flags & SA_ONESHOT)
1852 ka->sa.sa_handler = SIG_DFL;
1853
1854 break; /* will return non-zero "signr" value */
1855 }
1856
1857 /*
1858 * Now we are doing the default action for this signal.
1859 */
1860 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1861 continue;
1862
1863 /* Init gets no signals it doesn't want. */
1864 if (current == child_reaper)
1865 continue;
1866
1867 if (sig_kernel_stop(signr)) {
1868 /*
1869 * The default action is to stop all threads in
1870 * the thread group. The job control signals
1871 * do nothing in an orphaned pgrp, but SIGSTOP
1872 * always works. Note that siglock needs to be
1873 * dropped during the call to is_orphaned_pgrp()
1874 * because of lock ordering with tasklist_lock.
1875 * This allows an intervening SIGCONT to be posted.
1876 * We need to check for that and bail out if necessary.
1877 */
1878 if (signr != SIGSTOP) {
1879 spin_unlock_irq(&current->sighand->siglock);
1880
1881 /* signals can be posted during this window */
1882
1883 if (is_orphaned_pgrp(process_group(current)))
1884 goto relock;
1885
1886 spin_lock_irq(&current->sighand->siglock);
1887 }
1888
1889 if (likely(do_signal_stop(signr))) {
1890 /* It released the siglock. */
1891 goto relock;
1892 }
1893
1894 /*
1895 * We didn't actually stop, due to a race
1896 * with SIGCONT or something like that.
1897 */
1898 continue;
1899 }
1900
1901 spin_unlock_irq(&current->sighand->siglock);
1902
1903 /*
1904 * Anything else is fatal, maybe with a core dump.
1905 */
1906 current->flags |= PF_SIGNALED;
1907 if (sig_kernel_coredump(signr)) {
1908 /*
1909 * If it was able to dump core, this kills all
1910 * other threads in the group and synchronizes with
1911 * their demise. If we lost the race with another
1912 * thread getting here, it set group_exit_code
1913 * first and our do_group_exit call below will use
1914 * that value and ignore the one we pass it.
1915 */
1916 do_coredump((long)signr, signr, regs);
1917 }
1918
1919 /*
1920 * Death signals, no core dump.
1921 */
1922 do_group_exit(signr);
1923 /* NOTREACHED */
1924 }
1925 spin_unlock_irq(&current->sighand->siglock);
1926 return signr;
1927 }
1928
1929 EXPORT_SYMBOL(recalc_sigpending);
1930 EXPORT_SYMBOL_GPL(dequeue_signal);
1931 EXPORT_SYMBOL(flush_signals);
1932 EXPORT_SYMBOL(force_sig);
1933 EXPORT_SYMBOL(kill_pg);
1934 EXPORT_SYMBOL(kill_proc);
1935 EXPORT_SYMBOL(ptrace_notify);
1936 EXPORT_SYMBOL(send_sig);
1937 EXPORT_SYMBOL(send_sig_info);
1938 EXPORT_SYMBOL(sigprocmask);
1939 EXPORT_SYMBOL(block_all_signals);
1940 EXPORT_SYMBOL(unblock_all_signals);
1941
1942
1943 /*
1944 * System call entry points.
1945 */
1946
1947 asmlinkage long sys_restart_syscall(void)
1948 {
1949 struct restart_block *restart = &current_thread_info()->restart_block;
1950 return restart->fn(restart);
1951 }
1952
1953 long do_no_restart_syscall(struct restart_block *param)
1954 {
1955 return -EINTR;
1956 }
1957
1958 /*
1959 * We don't need to get the kernel lock - this is all local to this
1960 * particular thread.. (and that's good, because this is _heavily_
1961 * used by various programs)
1962 */
1963
1964 /*
1965 * This is also useful for kernel threads that want to temporarily
1966 * (or permanently) block certain signals.
1967 *
1968 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1969 * interface happily blocks "unblockable" signals like SIGKILL
1970 * and friends.
1971 */
1972 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1973 {
1974 int error;
1975
1976 spin_lock_irq(&current->sighand->siglock);
1977 if (oldset)
1978 *oldset = current->blocked;
1979
1980 error = 0;
1981 switch (how) {
1982 case SIG_BLOCK:
1983 sigorsets(&current->blocked, &current->blocked, set);
1984 break;
1985 case SIG_UNBLOCK:
1986 signandsets(&current->blocked, &current->blocked, set);
1987 break;
1988 case SIG_SETMASK:
1989 current->blocked = *set;
1990 break;
1991 default:
1992 error = -EINVAL;
1993 }
1994 recalc_sigpending();
1995 spin_unlock_irq(&current->sighand->siglock);
1996
1997 return error;
1998 }
1999
2000 asmlinkage long
2001 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2002 {
2003 int error = -EINVAL;
2004 sigset_t old_set, new_set;
2005
2006 /* XXX: Don't preclude handling different sized sigset_t's. */
2007 if (sigsetsize != sizeof(sigset_t))
2008 goto out;
2009
2010 if (set) {
2011 error = -EFAULT;
2012 if (copy_from_user(&new_set, set, sizeof(*set)))
2013 goto out;
2014 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2015
2016 error = sigprocmask(how, &new_set, &old_set);
2017 if (error)
2018 goto out;
2019 if (oset)
2020 goto set_old;
2021 } else if (oset) {
2022 spin_lock_irq(&current->sighand->siglock);
2023 old_set = current->blocked;
2024 spin_unlock_irq(&current->sighand->siglock);
2025
2026 set_old:
2027 error = -EFAULT;
2028 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2029 goto out;
2030 }
2031 error = 0;
2032 out:
2033 return error;
2034 }
2035
2036 long do_sigpending(void __user *set, unsigned long sigsetsize)
2037 {
2038 long error = -EINVAL;
2039 sigset_t pending;
2040
2041 if (sigsetsize > sizeof(sigset_t))
2042 goto out;
2043
2044 spin_lock_irq(&current->sighand->siglock);
2045 sigorsets(&pending, &current->pending.signal,
2046 &current->signal->shared_pending.signal);
2047 spin_unlock_irq(&current->sighand->siglock);
2048
2049 /* Outside the lock because only this thread touches it. */
2050 sigandsets(&pending, &current->blocked, &pending);
2051
2052 error = -EFAULT;
2053 if (!copy_to_user(set, &pending, sigsetsize))
2054 error = 0;
2055
2056 out:
2057 return error;
2058 }
2059
2060 asmlinkage long
2061 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2062 {
2063 return do_sigpending(set, sigsetsize);
2064 }
2065
2066 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2067
2068 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2069 {
2070 int err;
2071
2072 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2073 return -EFAULT;
2074 if (from->si_code < 0)
2075 return __copy_to_user(to, from, sizeof(siginfo_t))
2076 ? -EFAULT : 0;
2077 /*
2078 * If you change siginfo_t structure, please be sure
2079 * this code is fixed accordingly.
2080 * It should never copy any pad contained in the structure
2081 * to avoid security leaks, but must copy the generic
2082 * 3 ints plus the relevant union member.
2083 */
2084 err = __put_user(from->si_signo, &to->si_signo);
2085 err |= __put_user(from->si_errno, &to->si_errno);
2086 err |= __put_user((short)from->si_code, &to->si_code);
2087 switch (from->si_code & __SI_MASK) {
2088 case __SI_KILL:
2089 err |= __put_user(from->si_pid, &to->si_pid);
2090 err |= __put_user(from->si_uid, &to->si_uid);
2091 break;
2092 case __SI_TIMER:
2093 err |= __put_user(from->si_tid, &to->si_tid);
2094 err |= __put_user(from->si_overrun, &to->si_overrun);
2095 err |= __put_user(from->si_ptr, &to->si_ptr);
2096 break;
2097 case __SI_POLL:
2098 err |= __put_user(from->si_band, &to->si_band);
2099 err |= __put_user(from->si_fd, &to->si_fd);
2100 break;
2101 case __SI_FAULT:
2102 err |= __put_user(from->si_addr, &to->si_addr);
2103 #ifdef __ARCH_SI_TRAPNO
2104 err |= __put_user(from->si_trapno, &to->si_trapno);
2105 #endif
2106 break;
2107 case __SI_CHLD:
2108 err |= __put_user(from->si_pid, &to->si_pid);
2109 err |= __put_user(from->si_uid, &to->si_uid);
2110 err |= __put_user(from->si_status, &to->si_status);
2111 err |= __put_user(from->si_utime, &to->si_utime);
2112 err |= __put_user(from->si_stime, &to->si_stime);
2113 break;
2114 case __SI_RT: /* This is not generated by the kernel as of now. */
2115 case __SI_MESGQ: /* But this is */
2116 err |= __put_user(from->si_pid, &to->si_pid);
2117 err |= __put_user(from->si_uid, &to->si_uid);
2118 err |= __put_user(from->si_ptr, &to->si_ptr);
2119 break;
2120 default: /* this is just in case for now ... */
2121 err |= __put_user(from->si_pid, &to->si_pid);
2122 err |= __put_user(from->si_uid, &to->si_uid);
2123 break;
2124 }
2125 return err;
2126 }
2127
2128 #endif
2129
2130 asmlinkage long
2131 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2132 siginfo_t __user *uinfo,
2133 const struct timespec __user *uts,
2134 size_t sigsetsize)
2135 {
2136 int ret, sig;
2137 sigset_t these;
2138 struct timespec ts;
2139 siginfo_t info;
2140 long timeout = 0;
2141
2142 /* XXX: Don't preclude handling different sized sigset_t's. */
2143 if (sigsetsize != sizeof(sigset_t))
2144 return -EINVAL;
2145
2146 if (copy_from_user(&these, uthese, sizeof(these)))
2147 return -EFAULT;
2148
2149 /*
2150 * Invert the set of allowed signals to get those we
2151 * want to block.
2152 */
2153 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2154 signotset(&these);
2155
2156 if (uts) {
2157 if (copy_from_user(&ts, uts, sizeof(ts)))
2158 return -EFAULT;
2159 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2160 || ts.tv_sec < 0)
2161 return -EINVAL;
2162 }
2163
2164 spin_lock_irq(&current->sighand->siglock);
2165 sig = dequeue_signal(current, &these, &info);
2166 if (!sig) {
2167 timeout = MAX_SCHEDULE_TIMEOUT;
2168 if (uts)
2169 timeout = (timespec_to_jiffies(&ts)
2170 + (ts.tv_sec || ts.tv_nsec));
2171
2172 if (timeout) {
2173 /* None ready -- temporarily unblock those we're
2174 * interested while we are sleeping in so that we'll
2175 * be awakened when they arrive. */
2176 current->real_blocked = current->blocked;
2177 sigandsets(&current->blocked, &current->blocked, &these);
2178 recalc_sigpending();
2179 spin_unlock_irq(&current->sighand->siglock);
2180
2181 timeout = schedule_timeout_interruptible(timeout);
2182
2183 spin_lock_irq(&current->sighand->siglock);
2184 sig = dequeue_signal(current, &these, &info);
2185 current->blocked = current->real_blocked;
2186 siginitset(&current->real_blocked, 0);
2187 recalc_sigpending();
2188 }
2189 }
2190 spin_unlock_irq(&current->sighand->siglock);
2191
2192 if (sig) {
2193 ret = sig;
2194 if (uinfo) {
2195 if (copy_siginfo_to_user(uinfo, &info))
2196 ret = -EFAULT;
2197 }
2198 } else {
2199 ret = -EAGAIN;
2200 if (timeout)
2201 ret = -EINTR;
2202 }
2203
2204 return ret;
2205 }
2206
2207 asmlinkage long
2208 sys_kill(int pid, int sig)
2209 {
2210 struct siginfo info;
2211
2212 info.si_signo = sig;
2213 info.si_errno = 0;
2214 info.si_code = SI_USER;
2215 info.si_pid = current->tgid;
2216 info.si_uid = current->uid;
2217
2218 return kill_something_info(sig, &info, pid);
2219 }
2220
2221 static int do_tkill(int tgid, int pid, int sig)
2222 {
2223 int error;
2224 struct siginfo info;
2225 struct task_struct *p;
2226
2227 error = -ESRCH;
2228 info.si_signo = sig;
2229 info.si_errno = 0;
2230 info.si_code = SI_TKILL;
2231 info.si_pid = current->tgid;
2232 info.si_uid = current->uid;
2233
2234 read_lock(&tasklist_lock);
2235 p = find_task_by_pid(pid);
2236 if (p && (tgid <= 0 || p->tgid == tgid)) {
2237 error = check_kill_permission(sig, &info, p);
2238 /*
2239 * The null signal is a permissions and process existence
2240 * probe. No signal is actually delivered.
2241 */
2242 if (!error && sig && p->sighand) {
2243 spin_lock_irq(&p->sighand->siglock);
2244 handle_stop_signal(sig, p);
2245 error = specific_send_sig_info(sig, &info, p);
2246 spin_unlock_irq(&p->sighand->siglock);
2247 }
2248 }
2249 read_unlock(&tasklist_lock);
2250
2251 return error;
2252 }
2253
2254 /**
2255 * sys_tgkill - send signal to one specific thread
2256 * @tgid: the thread group ID of the thread
2257 * @pid: the PID of the thread
2258 * @sig: signal to be sent
2259 *
2260 * This syscall also checks the tgid and returns -ESRCH even if the PID
2261 * exists but it's not belonging to the target process anymore. This
2262 * method solves the problem of threads exiting and PIDs getting reused.
2263 */
2264 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2265 {
2266 /* This is only valid for single tasks */
2267 if (pid <= 0 || tgid <= 0)
2268 return -EINVAL;
2269
2270 return do_tkill(tgid, pid, sig);
2271 }
2272
2273 /*
2274 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2275 */
2276 asmlinkage long
2277 sys_tkill(int pid, int sig)
2278 {
2279 /* This is only valid for single tasks */
2280 if (pid <= 0)
2281 return -EINVAL;
2282
2283 return do_tkill(0, pid, sig);
2284 }
2285
2286 asmlinkage long
2287 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2288 {
2289 siginfo_t info;
2290
2291 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2292 return -EFAULT;
2293
2294 /* Not even root can pretend to send signals from the kernel.
2295 Nor can they impersonate a kill(), which adds source info. */
2296 if (info.si_code >= 0)
2297 return -EPERM;
2298 info.si_signo = sig;
2299
2300 /* POSIX.1b doesn't mention process groups. */
2301 return kill_proc_info(sig, &info, pid);
2302 }
2303
2304 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2305 {
2306 struct k_sigaction *k;
2307 sigset_t mask;
2308
2309 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2310 return -EINVAL;
2311
2312 k = &current->sighand->action[sig-1];
2313
2314 spin_lock_irq(&current->sighand->siglock);
2315 if (signal_pending(current)) {
2316 /*
2317 * If there might be a fatal signal pending on multiple
2318 * threads, make sure we take it before changing the action.
2319 */
2320 spin_unlock_irq(&current->sighand->siglock);
2321 return -ERESTARTNOINTR;
2322 }
2323
2324 if (oact)
2325 *oact = *k;
2326
2327 if (act) {
2328 sigdelsetmask(&act->sa.sa_mask,
2329 sigmask(SIGKILL) | sigmask(SIGSTOP));
2330 *k = *act;
2331 /*
2332 * POSIX 3.3.1.3:
2333 * "Setting a signal action to SIG_IGN for a signal that is
2334 * pending shall cause the pending signal to be discarded,
2335 * whether or not it is blocked."
2336 *
2337 * "Setting a signal action to SIG_DFL for a signal that is
2338 * pending and whose default action is to ignore the signal
2339 * (for example, SIGCHLD), shall cause the pending signal to
2340 * be discarded, whether or not it is blocked"
2341 */
2342 if (act->sa.sa_handler == SIG_IGN ||
2343 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2344 struct task_struct *t = current;
2345 sigemptyset(&mask);
2346 sigaddset(&mask, sig);
2347 rm_from_queue_full(&mask, &t->signal->shared_pending);
2348 do {
2349 rm_from_queue_full(&mask, &t->pending);
2350 recalc_sigpending_tsk(t);
2351 t = next_thread(t);
2352 } while (t != current);
2353 }
2354 }
2355
2356 spin_unlock_irq(&current->sighand->siglock);
2357 return 0;
2358 }
2359
2360 int
2361 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2362 {
2363 stack_t oss;
2364 int error;
2365
2366 if (uoss) {
2367 oss.ss_sp = (void __user *) current->sas_ss_sp;
2368 oss.ss_size = current->sas_ss_size;
2369 oss.ss_flags = sas_ss_flags(sp);
2370 }
2371
2372 if (uss) {
2373 void __user *ss_sp;
2374 size_t ss_size;
2375 int ss_flags;
2376
2377 error = -EFAULT;
2378 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2379 || __get_user(ss_sp, &uss->ss_sp)
2380 || __get_user(ss_flags, &uss->ss_flags)
2381 || __get_user(ss_size, &uss->ss_size))
2382 goto out;
2383
2384 error = -EPERM;
2385 if (on_sig_stack(sp))
2386 goto out;
2387
2388 error = -EINVAL;
2389 /*
2390 *
2391 * Note - this code used to test ss_flags incorrectly
2392 * old code may have been written using ss_flags==0
2393 * to mean ss_flags==SS_ONSTACK (as this was the only
2394 * way that worked) - this fix preserves that older
2395 * mechanism
2396 */
2397 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2398 goto out;
2399
2400 if (ss_flags == SS_DISABLE) {
2401 ss_size = 0;
2402 ss_sp = NULL;
2403 } else {
2404 error = -ENOMEM;
2405 if (ss_size < MINSIGSTKSZ)
2406 goto out;
2407 }
2408
2409 current->sas_ss_sp = (unsigned long) ss_sp;
2410 current->sas_ss_size = ss_size;
2411 }
2412
2413 if (uoss) {
2414 error = -EFAULT;
2415 if (copy_to_user(uoss, &oss, sizeof(oss)))
2416 goto out;
2417 }
2418
2419 error = 0;
2420 out:
2421 return error;
2422 }
2423
2424 #ifdef __ARCH_WANT_SYS_SIGPENDING
2425
2426 asmlinkage long
2427 sys_sigpending(old_sigset_t __user *set)
2428 {
2429 return do_sigpending(set, sizeof(*set));
2430 }
2431
2432 #endif
2433
2434 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2435 /* Some platforms have their own version with special arguments others
2436 support only sys_rt_sigprocmask. */
2437
2438 asmlinkage long
2439 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2440 {
2441 int error;
2442 old_sigset_t old_set, new_set;
2443
2444 if (set) {
2445 error = -EFAULT;
2446 if (copy_from_user(&new_set, set, sizeof(*set)))
2447 goto out;
2448 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2449
2450 spin_lock_irq(&current->sighand->siglock);
2451 old_set = current->blocked.sig[0];
2452
2453 error = 0;
2454 switch (how) {
2455 default:
2456 error = -EINVAL;
2457 break;
2458 case SIG_BLOCK:
2459 sigaddsetmask(&current->blocked, new_set);
2460 break;
2461 case SIG_UNBLOCK:
2462 sigdelsetmask(&current->blocked, new_set);
2463 break;
2464 case SIG_SETMASK:
2465 current->blocked.sig[0] = new_set;
2466 break;
2467 }
2468
2469 recalc_sigpending();
2470 spin_unlock_irq(&current->sighand->siglock);
2471 if (error)
2472 goto out;
2473 if (oset)
2474 goto set_old;
2475 } else if (oset) {
2476 old_set = current->blocked.sig[0];
2477 set_old:
2478 error = -EFAULT;
2479 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2480 goto out;
2481 }
2482 error = 0;
2483 out:
2484 return error;
2485 }
2486 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2487
2488 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2489 asmlinkage long
2490 sys_rt_sigaction(int sig,
2491 const struct sigaction __user *act,
2492 struct sigaction __user *oact,
2493 size_t sigsetsize)
2494 {
2495 struct k_sigaction new_sa, old_sa;
2496 int ret = -EINVAL;
2497
2498 /* XXX: Don't preclude handling different sized sigset_t's. */
2499 if (sigsetsize != sizeof(sigset_t))
2500 goto out;
2501
2502 if (act) {
2503 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2504 return -EFAULT;
2505 }
2506
2507 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2508
2509 if (!ret && oact) {
2510 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2511 return -EFAULT;
2512 }
2513 out:
2514 return ret;
2515 }
2516 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2517
2518 #ifdef __ARCH_WANT_SYS_SGETMASK
2519
2520 /*
2521 * For backwards compatibility. Functionality superseded by sigprocmask.
2522 */
2523 asmlinkage long
2524 sys_sgetmask(void)
2525 {
2526 /* SMP safe */
2527 return current->blocked.sig[0];
2528 }
2529
2530 asmlinkage long
2531 sys_ssetmask(int newmask)
2532 {
2533 int old;
2534
2535 spin_lock_irq(&current->sighand->siglock);
2536 old = current->blocked.sig[0];
2537
2538 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2539 sigmask(SIGSTOP)));
2540 recalc_sigpending();
2541 spin_unlock_irq(&current->sighand->siglock);
2542
2543 return old;
2544 }
2545 #endif /* __ARCH_WANT_SGETMASK */
2546
2547 #ifdef __ARCH_WANT_SYS_SIGNAL
2548 /*
2549 * For backwards compatibility. Functionality superseded by sigaction.
2550 */
2551 asmlinkage unsigned long
2552 sys_signal(int sig, __sighandler_t handler)
2553 {
2554 struct k_sigaction new_sa, old_sa;
2555 int ret;
2556
2557 new_sa.sa.sa_handler = handler;
2558 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2559 sigemptyset(&new_sa.sa.sa_mask);
2560
2561 ret = do_sigaction(sig, &new_sa, &old_sa);
2562
2563 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2564 }
2565 #endif /* __ARCH_WANT_SYS_SIGNAL */
2566
2567 #ifdef __ARCH_WANT_SYS_PAUSE
2568
2569 asmlinkage long
2570 sys_pause(void)
2571 {
2572 current->state = TASK_INTERRUPTIBLE;
2573 schedule();
2574 return -ERESTARTNOHAND;
2575 }
2576
2577 #endif
2578
2579 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2580 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2581 {
2582 sigset_t newset;
2583
2584 /* XXX: Don't preclude handling different sized sigset_t's. */
2585 if (sigsetsize != sizeof(sigset_t))
2586 return -EINVAL;
2587
2588 if (copy_from_user(&newset, unewset, sizeof(newset)))
2589 return -EFAULT;
2590 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2591
2592 spin_lock_irq(&current->sighand->siglock);
2593 current->saved_sigmask = current->blocked;
2594 current->blocked = newset;
2595 recalc_sigpending();
2596 spin_unlock_irq(&current->sighand->siglock);
2597
2598 current->state = TASK_INTERRUPTIBLE;
2599 schedule();
2600 set_thread_flag(TIF_RESTORE_SIGMASK);
2601 return -ERESTARTNOHAND;
2602 }
2603 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2604
2605 void __init signals_init(void)
2606 {
2607 sigqueue_cachep =
2608 kmem_cache_create("sigqueue",
2609 sizeof(struct sigqueue),
2610 __alignof__(struct sigqueue),
2611 SLAB_PANIC, NULL, NULL);
2612 }
This page took 0.084553 seconds and 6 git commands to generate.