Merge branch 'master'
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32
33 /*
34 * SLAB caches for signal bits.
35 */
36
37 static kmem_cache_t *sigqueue_cachep;
38
39 /*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
118
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157 static int sig_ignored(struct task_struct *t, int sig)
158 {
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179 }
180
181 /*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186 {
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209 }
210
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
214 {
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222 }
223
224 void recalc_sigpending(void)
225 {
226 recalc_sigpending_tsk(current);
227 }
228
229 /* Given the mask, find the first available signal that should be serviced. */
230
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
233 {
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263 }
264
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
266 int override_rlimit)
267 {
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284 }
285
286 static inline void __sigqueue_free(struct sigqueue *q)
287 {
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293 }
294
295 static void flush_sigqueue(struct sigpending *queue)
296 {
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305 }
306
307 /*
308 * Flush all pending signals for a task.
309 */
310
311 void
312 flush_signals(struct task_struct *t)
313 {
314 unsigned long flags;
315
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
321 }
322
323 /*
324 * This function expects the tasklist_lock write-locked.
325 */
326 void __exit_sighand(struct task_struct *tsk)
327 {
328 struct sighand_struct * sighand = tsk->sighand;
329
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
334 }
335
336 void exit_sighand(struct task_struct *tsk)
337 {
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
341 }
342
343 /*
344 * This function expects the tasklist_lock write-locked.
345 */
346 void __exit_signal(struct task_struct *tsk)
347 {
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
350
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
365 /*
366 * If there is any task waiting for the group exit
367 * then notify it:
368 */
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
372 }
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
376 /*
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
385 */
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
395 }
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
399 /*
400 * We are cleaning up the signal_struct here.
401 */
402 exit_thread_group_keys(sig);
403 kmem_cache_free(signal_cachep, sig);
404 }
405 }
406
407 void exit_signal(struct task_struct *tsk)
408 {
409 atomic_dec(&tsk->signal->live);
410
411 write_lock_irq(&tasklist_lock);
412 __exit_signal(tsk);
413 write_unlock_irq(&tasklist_lock);
414 }
415
416 /*
417 * Flush all handlers for a task.
418 */
419
420 void
421 flush_signal_handlers(struct task_struct *t, int force_default)
422 {
423 int i;
424 struct k_sigaction *ka = &t->sighand->action[0];
425 for (i = _NSIG ; i != 0 ; i--) {
426 if (force_default || ka->sa.sa_handler != SIG_IGN)
427 ka->sa.sa_handler = SIG_DFL;
428 ka->sa.sa_flags = 0;
429 sigemptyset(&ka->sa.sa_mask);
430 ka++;
431 }
432 }
433
434
435 /* Notify the system that a driver wants to block all signals for this
436 * process, and wants to be notified if any signals at all were to be
437 * sent/acted upon. If the notifier routine returns non-zero, then the
438 * signal will be acted upon after all. If the notifier routine returns 0,
439 * then then signal will be blocked. Only one block per process is
440 * allowed. priv is a pointer to private data that the notifier routine
441 * can use to determine if the signal should be blocked or not. */
442
443 void
444 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
445 {
446 unsigned long flags;
447
448 spin_lock_irqsave(&current->sighand->siglock, flags);
449 current->notifier_mask = mask;
450 current->notifier_data = priv;
451 current->notifier = notifier;
452 spin_unlock_irqrestore(&current->sighand->siglock, flags);
453 }
454
455 /* Notify the system that blocking has ended. */
456
457 void
458 unblock_all_signals(void)
459 {
460 unsigned long flags;
461
462 spin_lock_irqsave(&current->sighand->siglock, flags);
463 current->notifier = NULL;
464 current->notifier_data = NULL;
465 recalc_sigpending();
466 spin_unlock_irqrestore(&current->sighand->siglock, flags);
467 }
468
469 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
470 {
471 struct sigqueue *q, *first = NULL;
472 int still_pending = 0;
473
474 if (unlikely(!sigismember(&list->signal, sig)))
475 return 0;
476
477 /*
478 * Collect the siginfo appropriate to this signal. Check if
479 * there is another siginfo for the same signal.
480 */
481 list_for_each_entry(q, &list->list, list) {
482 if (q->info.si_signo == sig) {
483 if (first) {
484 still_pending = 1;
485 break;
486 }
487 first = q;
488 }
489 }
490 if (first) {
491 list_del_init(&first->list);
492 copy_siginfo(info, &first->info);
493 __sigqueue_free(first);
494 if (!still_pending)
495 sigdelset(&list->signal, sig);
496 } else {
497
498 /* Ok, it wasn't in the queue. This must be
499 a fast-pathed signal or we must have been
500 out of queue space. So zero out the info.
501 */
502 sigdelset(&list->signal, sig);
503 info->si_signo = sig;
504 info->si_errno = 0;
505 info->si_code = 0;
506 info->si_pid = 0;
507 info->si_uid = 0;
508 }
509 return 1;
510 }
511
512 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
513 siginfo_t *info)
514 {
515 int sig = 0;
516
517 /* SIGKILL must have priority, otherwise it is quite easy
518 * to create an unkillable process, sending sig < SIGKILL
519 * to self */
520 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
521 if (!sigismember(mask, SIGKILL))
522 sig = SIGKILL;
523 }
524
525 if (likely(!sig))
526 sig = next_signal(pending, mask);
527 if (sig) {
528 if (current->notifier) {
529 if (sigismember(current->notifier_mask, sig)) {
530 if (!(current->notifier)(current->notifier_data)) {
531 clear_thread_flag(TIF_SIGPENDING);
532 return 0;
533 }
534 }
535 }
536
537 if (!collect_signal(sig, pending, info))
538 sig = 0;
539
540 }
541 recalc_sigpending();
542
543 return sig;
544 }
545
546 /*
547 * Dequeue a signal and return the element to the caller, which is
548 * expected to free it.
549 *
550 * All callers have to hold the siglock.
551 */
552 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
553 {
554 int signr = __dequeue_signal(&tsk->pending, mask, info);
555 if (!signr)
556 signr = __dequeue_signal(&tsk->signal->shared_pending,
557 mask, info);
558 if (signr && unlikely(sig_kernel_stop(signr))) {
559 /*
560 * Set a marker that we have dequeued a stop signal. Our
561 * caller might release the siglock and then the pending
562 * stop signal it is about to process is no longer in the
563 * pending bitmasks, but must still be cleared by a SIGCONT
564 * (and overruled by a SIGKILL). So those cases clear this
565 * shared flag after we've set it. Note that this flag may
566 * remain set after the signal we return is ignored or
567 * handled. That doesn't matter because its only purpose
568 * is to alert stop-signal processing code when another
569 * processor has come along and cleared the flag.
570 */
571 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
572 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
573 }
574 if ( signr &&
575 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
576 info->si_sys_private){
577 /*
578 * Release the siglock to ensure proper locking order
579 * of timer locks outside of siglocks. Note, we leave
580 * irqs disabled here, since the posix-timers code is
581 * about to disable them again anyway.
582 */
583 spin_unlock(&tsk->sighand->siglock);
584 do_schedule_next_timer(info);
585 spin_lock(&tsk->sighand->siglock);
586 }
587 return signr;
588 }
589
590 /*
591 * Tell a process that it has a new active signal..
592 *
593 * NOTE! we rely on the previous spin_lock to
594 * lock interrupts for us! We can only be called with
595 * "siglock" held, and the local interrupt must
596 * have been disabled when that got acquired!
597 *
598 * No need to set need_resched since signal event passing
599 * goes through ->blocked
600 */
601 void signal_wake_up(struct task_struct *t, int resume)
602 {
603 unsigned int mask;
604
605 set_tsk_thread_flag(t, TIF_SIGPENDING);
606
607 /*
608 * For SIGKILL, we want to wake it up in the stopped/traced case.
609 * We don't check t->state here because there is a race with it
610 * executing another processor and just now entering stopped state.
611 * By using wake_up_state, we ensure the process will wake up and
612 * handle its death signal.
613 */
614 mask = TASK_INTERRUPTIBLE;
615 if (resume)
616 mask |= TASK_STOPPED | TASK_TRACED;
617 if (!wake_up_state(t, mask))
618 kick_process(t);
619 }
620
621 /*
622 * Remove signals in mask from the pending set and queue.
623 * Returns 1 if any signals were found.
624 *
625 * All callers must be holding the siglock.
626 */
627 static int rm_from_queue(unsigned long mask, struct sigpending *s)
628 {
629 struct sigqueue *q, *n;
630
631 if (!sigtestsetmask(&s->signal, mask))
632 return 0;
633
634 sigdelsetmask(&s->signal, mask);
635 list_for_each_entry_safe(q, n, &s->list, list) {
636 if (q->info.si_signo < SIGRTMIN &&
637 (mask & sigmask(q->info.si_signo))) {
638 list_del_init(&q->list);
639 __sigqueue_free(q);
640 }
641 }
642 return 1;
643 }
644
645 /*
646 * Bad permissions for sending the signal
647 */
648 static int check_kill_permission(int sig, struct siginfo *info,
649 struct task_struct *t)
650 {
651 int error = -EINVAL;
652 if (!valid_signal(sig))
653 return error;
654 error = -EPERM;
655 if ((!info || ((unsigned long)info != 1 &&
656 (unsigned long)info != 2 && SI_FROMUSER(info)))
657 && ((sig != SIGCONT) ||
658 (current->signal->session != t->signal->session))
659 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
660 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
661 && !capable(CAP_KILL))
662 return error;
663
664 error = security_task_kill(t, info, sig);
665 if (!error)
666 audit_signal_info(sig, t); /* Let audit system see the signal */
667 return error;
668 }
669
670 /* forward decl */
671 static void do_notify_parent_cldstop(struct task_struct *tsk,
672 int to_self,
673 int why);
674
675 /*
676 * Handle magic process-wide effects of stop/continue signals.
677 * Unlike the signal actions, these happen immediately at signal-generation
678 * time regardless of blocking, ignoring, or handling. This does the
679 * actual continuing for SIGCONT, but not the actual stopping for stop
680 * signals. The process stop is done as a signal action for SIG_DFL.
681 */
682 static void handle_stop_signal(int sig, struct task_struct *p)
683 {
684 struct task_struct *t;
685
686 if (p->signal->flags & SIGNAL_GROUP_EXIT)
687 /*
688 * The process is in the middle of dying already.
689 */
690 return;
691
692 if (sig_kernel_stop(sig)) {
693 /*
694 * This is a stop signal. Remove SIGCONT from all queues.
695 */
696 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
697 t = p;
698 do {
699 rm_from_queue(sigmask(SIGCONT), &t->pending);
700 t = next_thread(t);
701 } while (t != p);
702 } else if (sig == SIGCONT) {
703 /*
704 * Remove all stop signals from all queues,
705 * and wake all threads.
706 */
707 if (unlikely(p->signal->group_stop_count > 0)) {
708 /*
709 * There was a group stop in progress. We'll
710 * pretend it finished before we got here. We are
711 * obliged to report it to the parent: if the
712 * SIGSTOP happened "after" this SIGCONT, then it
713 * would have cleared this pending SIGCONT. If it
714 * happened "before" this SIGCONT, then the parent
715 * got the SIGCHLD about the stop finishing before
716 * the continue happened. We do the notification
717 * now, and it's as if the stop had finished and
718 * the SIGCHLD was pending on entry to this kill.
719 */
720 p->signal->group_stop_count = 0;
721 p->signal->flags = SIGNAL_STOP_CONTINUED;
722 spin_unlock(&p->sighand->siglock);
723 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
724 spin_lock(&p->sighand->siglock);
725 }
726 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
727 t = p;
728 do {
729 unsigned int state;
730 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
731
732 /*
733 * If there is a handler for SIGCONT, we must make
734 * sure that no thread returns to user mode before
735 * we post the signal, in case it was the only
736 * thread eligible to run the signal handler--then
737 * it must not do anything between resuming and
738 * running the handler. With the TIF_SIGPENDING
739 * flag set, the thread will pause and acquire the
740 * siglock that we hold now and until we've queued
741 * the pending signal.
742 *
743 * Wake up the stopped thread _after_ setting
744 * TIF_SIGPENDING
745 */
746 state = TASK_STOPPED;
747 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
748 set_tsk_thread_flag(t, TIF_SIGPENDING);
749 state |= TASK_INTERRUPTIBLE;
750 }
751 wake_up_state(t, state);
752
753 t = next_thread(t);
754 } while (t != p);
755
756 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
757 /*
758 * We were in fact stopped, and are now continued.
759 * Notify the parent with CLD_CONTINUED.
760 */
761 p->signal->flags = SIGNAL_STOP_CONTINUED;
762 p->signal->group_exit_code = 0;
763 spin_unlock(&p->sighand->siglock);
764 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
765 spin_lock(&p->sighand->siglock);
766 } else {
767 /*
768 * We are not stopped, but there could be a stop
769 * signal in the middle of being processed after
770 * being removed from the queue. Clear that too.
771 */
772 p->signal->flags = 0;
773 }
774 } else if (sig == SIGKILL) {
775 /*
776 * Make sure that any pending stop signal already dequeued
777 * is undone by the wakeup for SIGKILL.
778 */
779 p->signal->flags = 0;
780 }
781 }
782
783 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
784 struct sigpending *signals)
785 {
786 struct sigqueue * q = NULL;
787 int ret = 0;
788
789 /*
790 * fast-pathed signals for kernel-internal things like SIGSTOP
791 * or SIGKILL.
792 */
793 if ((unsigned long)info == 2)
794 goto out_set;
795
796 /* Real-time signals must be queued if sent by sigqueue, or
797 some other real-time mechanism. It is implementation
798 defined whether kill() does so. We attempt to do so, on
799 the principle of least surprise, but since kill is not
800 allowed to fail with EAGAIN when low on memory we just
801 make sure at least one signal gets delivered and don't
802 pass on the info struct. */
803
804 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
805 ((unsigned long) info < 2 ||
806 info->si_code >= 0)));
807 if (q) {
808 list_add_tail(&q->list, &signals->list);
809 switch ((unsigned long) info) {
810 case 0:
811 q->info.si_signo = sig;
812 q->info.si_errno = 0;
813 q->info.si_code = SI_USER;
814 q->info.si_pid = current->pid;
815 q->info.si_uid = current->uid;
816 break;
817 case 1:
818 q->info.si_signo = sig;
819 q->info.si_errno = 0;
820 q->info.si_code = SI_KERNEL;
821 q->info.si_pid = 0;
822 q->info.si_uid = 0;
823 break;
824 default:
825 copy_siginfo(&q->info, info);
826 break;
827 }
828 } else {
829 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
830 && info->si_code != SI_USER)
831 /*
832 * Queue overflow, abort. We may abort if the signal was rt
833 * and sent by user using something other than kill().
834 */
835 return -EAGAIN;
836 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
837 /*
838 * Set up a return to indicate that we dropped
839 * the signal.
840 */
841 ret = info->si_sys_private;
842 }
843
844 out_set:
845 sigaddset(&signals->signal, sig);
846 return ret;
847 }
848
849 #define LEGACY_QUEUE(sigptr, sig) \
850 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
851
852
853 static int
854 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
855 {
856 int ret = 0;
857
858 if (!irqs_disabled())
859 BUG();
860 assert_spin_locked(&t->sighand->siglock);
861
862 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
863 /*
864 * Set up a return to indicate that we dropped the signal.
865 */
866 ret = info->si_sys_private;
867
868 /* Short-circuit ignored signals. */
869 if (sig_ignored(t, sig))
870 goto out;
871
872 /* Support queueing exactly one non-rt signal, so that we
873 can get more detailed information about the cause of
874 the signal. */
875 if (LEGACY_QUEUE(&t->pending, sig))
876 goto out;
877
878 ret = send_signal(sig, info, t, &t->pending);
879 if (!ret && !sigismember(&t->blocked, sig))
880 signal_wake_up(t, sig == SIGKILL);
881 out:
882 return ret;
883 }
884
885 /*
886 * Force a signal that the process can't ignore: if necessary
887 * we unblock the signal and change any SIG_IGN to SIG_DFL.
888 */
889
890 int
891 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
892 {
893 unsigned long int flags;
894 int ret;
895
896 spin_lock_irqsave(&t->sighand->siglock, flags);
897 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
898 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
899 sigdelset(&t->blocked, sig);
900 recalc_sigpending_tsk(t);
901 }
902 ret = specific_send_sig_info(sig, info, t);
903 spin_unlock_irqrestore(&t->sighand->siglock, flags);
904
905 return ret;
906 }
907
908 void
909 force_sig_specific(int sig, struct task_struct *t)
910 {
911 unsigned long int flags;
912
913 spin_lock_irqsave(&t->sighand->siglock, flags);
914 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
915 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
916 sigdelset(&t->blocked, sig);
917 recalc_sigpending_tsk(t);
918 specific_send_sig_info(sig, (void *)2, t);
919 spin_unlock_irqrestore(&t->sighand->siglock, flags);
920 }
921
922 /*
923 * Test if P wants to take SIG. After we've checked all threads with this,
924 * it's equivalent to finding no threads not blocking SIG. Any threads not
925 * blocking SIG were ruled out because they are not running and already
926 * have pending signals. Such threads will dequeue from the shared queue
927 * as soon as they're available, so putting the signal on the shared queue
928 * will be equivalent to sending it to one such thread.
929 */
930 static inline int wants_signal(int sig, struct task_struct *p)
931 {
932 if (sigismember(&p->blocked, sig))
933 return 0;
934 if (p->flags & PF_EXITING)
935 return 0;
936 if (sig == SIGKILL)
937 return 1;
938 if (p->state & (TASK_STOPPED | TASK_TRACED))
939 return 0;
940 return task_curr(p) || !signal_pending(p);
941 }
942
943 static void
944 __group_complete_signal(int sig, struct task_struct *p)
945 {
946 struct task_struct *t;
947
948 /*
949 * Now find a thread we can wake up to take the signal off the queue.
950 *
951 * If the main thread wants the signal, it gets first crack.
952 * Probably the least surprising to the average bear.
953 */
954 if (wants_signal(sig, p))
955 t = p;
956 else if (thread_group_empty(p))
957 /*
958 * There is just one thread and it does not need to be woken.
959 * It will dequeue unblocked signals before it runs again.
960 */
961 return;
962 else {
963 /*
964 * Otherwise try to find a suitable thread.
965 */
966 t = p->signal->curr_target;
967 if (t == NULL)
968 /* restart balancing at this thread */
969 t = p->signal->curr_target = p;
970 BUG_ON(t->tgid != p->tgid);
971
972 while (!wants_signal(sig, t)) {
973 t = next_thread(t);
974 if (t == p->signal->curr_target)
975 /*
976 * No thread needs to be woken.
977 * Any eligible threads will see
978 * the signal in the queue soon.
979 */
980 return;
981 }
982 p->signal->curr_target = t;
983 }
984
985 /*
986 * Found a killable thread. If the signal will be fatal,
987 * then start taking the whole group down immediately.
988 */
989 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
990 !sigismember(&t->real_blocked, sig) &&
991 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
992 /*
993 * This signal will be fatal to the whole group.
994 */
995 if (!sig_kernel_coredump(sig)) {
996 /*
997 * Start a group exit and wake everybody up.
998 * This way we don't have other threads
999 * running and doing things after a slower
1000 * thread has the fatal signal pending.
1001 */
1002 p->signal->flags = SIGNAL_GROUP_EXIT;
1003 p->signal->group_exit_code = sig;
1004 p->signal->group_stop_count = 0;
1005 t = p;
1006 do {
1007 sigaddset(&t->pending.signal, SIGKILL);
1008 signal_wake_up(t, 1);
1009 t = next_thread(t);
1010 } while (t != p);
1011 return;
1012 }
1013
1014 /*
1015 * There will be a core dump. We make all threads other
1016 * than the chosen one go into a group stop so that nothing
1017 * happens until it gets scheduled, takes the signal off
1018 * the shared queue, and does the core dump. This is a
1019 * little more complicated than strictly necessary, but it
1020 * keeps the signal state that winds up in the core dump
1021 * unchanged from the death state, e.g. which thread had
1022 * the core-dump signal unblocked.
1023 */
1024 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1025 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1026 p->signal->group_stop_count = 0;
1027 p->signal->group_exit_task = t;
1028 t = p;
1029 do {
1030 p->signal->group_stop_count++;
1031 signal_wake_up(t, 0);
1032 t = next_thread(t);
1033 } while (t != p);
1034 wake_up_process(p->signal->group_exit_task);
1035 return;
1036 }
1037
1038 /*
1039 * The signal is already in the shared-pending queue.
1040 * Tell the chosen thread to wake up and dequeue it.
1041 */
1042 signal_wake_up(t, sig == SIGKILL);
1043 return;
1044 }
1045
1046 int
1047 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1048 {
1049 int ret = 0;
1050
1051 assert_spin_locked(&p->sighand->siglock);
1052 handle_stop_signal(sig, p);
1053
1054 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1055 /*
1056 * Set up a return to indicate that we dropped the signal.
1057 */
1058 ret = info->si_sys_private;
1059
1060 /* Short-circuit ignored signals. */
1061 if (sig_ignored(p, sig))
1062 return ret;
1063
1064 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1065 /* This is a non-RT signal and we already have one queued. */
1066 return ret;
1067
1068 /*
1069 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1070 * We always use the shared queue for process-wide signals,
1071 * to avoid several races.
1072 */
1073 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1074 if (unlikely(ret))
1075 return ret;
1076
1077 __group_complete_signal(sig, p);
1078 return 0;
1079 }
1080
1081 /*
1082 * Nuke all other threads in the group.
1083 */
1084 void zap_other_threads(struct task_struct *p)
1085 {
1086 struct task_struct *t;
1087
1088 p->signal->flags = SIGNAL_GROUP_EXIT;
1089 p->signal->group_stop_count = 0;
1090
1091 if (thread_group_empty(p))
1092 return;
1093
1094 for (t = next_thread(p); t != p; t = next_thread(t)) {
1095 /*
1096 * Don't bother with already dead threads
1097 */
1098 if (t->exit_state)
1099 continue;
1100
1101 /*
1102 * We don't want to notify the parent, since we are
1103 * killed as part of a thread group due to another
1104 * thread doing an execve() or similar. So set the
1105 * exit signal to -1 to allow immediate reaping of
1106 * the process. But don't detach the thread group
1107 * leader.
1108 */
1109 if (t != p->group_leader)
1110 t->exit_signal = -1;
1111
1112 sigaddset(&t->pending.signal, SIGKILL);
1113 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1114 signal_wake_up(t, 1);
1115 }
1116 }
1117
1118 /*
1119 * Must be called with the tasklist_lock held for reading!
1120 */
1121 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1122 {
1123 unsigned long flags;
1124 int ret;
1125
1126 ret = check_kill_permission(sig, info, p);
1127 if (!ret && sig && p->sighand) {
1128 spin_lock_irqsave(&p->sighand->siglock, flags);
1129 ret = __group_send_sig_info(sig, info, p);
1130 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1131 }
1132
1133 return ret;
1134 }
1135
1136 /*
1137 * kill_pg_info() sends a signal to a process group: this is what the tty
1138 * control characters do (^C, ^Z etc)
1139 */
1140
1141 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1142 {
1143 struct task_struct *p = NULL;
1144 int retval, success;
1145
1146 if (pgrp <= 0)
1147 return -EINVAL;
1148
1149 success = 0;
1150 retval = -ESRCH;
1151 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1152 int err = group_send_sig_info(sig, info, p);
1153 success |= !err;
1154 retval = err;
1155 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1156 return success ? 0 : retval;
1157 }
1158
1159 int
1160 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1161 {
1162 int retval;
1163
1164 read_lock(&tasklist_lock);
1165 retval = __kill_pg_info(sig, info, pgrp);
1166 read_unlock(&tasklist_lock);
1167
1168 return retval;
1169 }
1170
1171 int
1172 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1173 {
1174 int error;
1175 struct task_struct *p;
1176
1177 read_lock(&tasklist_lock);
1178 p = find_task_by_pid(pid);
1179 error = -ESRCH;
1180 if (p)
1181 error = group_send_sig_info(sig, info, p);
1182 read_unlock(&tasklist_lock);
1183 return error;
1184 }
1185
1186 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1187 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1188 uid_t uid, uid_t euid)
1189 {
1190 int ret = -EINVAL;
1191 struct task_struct *p;
1192
1193 if (!valid_signal(sig))
1194 return ret;
1195
1196 read_lock(&tasklist_lock);
1197 p = find_task_by_pid(pid);
1198 if (!p) {
1199 ret = -ESRCH;
1200 goto out_unlock;
1201 }
1202 if ((!info || ((unsigned long)info != 1 &&
1203 (unsigned long)info != 2 && SI_FROMUSER(info)))
1204 && (euid != p->suid) && (euid != p->uid)
1205 && (uid != p->suid) && (uid != p->uid)) {
1206 ret = -EPERM;
1207 goto out_unlock;
1208 }
1209 if (sig && p->sighand) {
1210 unsigned long flags;
1211 spin_lock_irqsave(&p->sighand->siglock, flags);
1212 ret = __group_send_sig_info(sig, info, p);
1213 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1214 }
1215 out_unlock:
1216 read_unlock(&tasklist_lock);
1217 return ret;
1218 }
1219 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1220
1221 /*
1222 * kill_something_info() interprets pid in interesting ways just like kill(2).
1223 *
1224 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1225 * is probably wrong. Should make it like BSD or SYSV.
1226 */
1227
1228 static int kill_something_info(int sig, struct siginfo *info, int pid)
1229 {
1230 if (!pid) {
1231 return kill_pg_info(sig, info, process_group(current));
1232 } else if (pid == -1) {
1233 int retval = 0, count = 0;
1234 struct task_struct * p;
1235
1236 read_lock(&tasklist_lock);
1237 for_each_process(p) {
1238 if (p->pid > 1 && p->tgid != current->tgid) {
1239 int err = group_send_sig_info(sig, info, p);
1240 ++count;
1241 if (err != -EPERM)
1242 retval = err;
1243 }
1244 }
1245 read_unlock(&tasklist_lock);
1246 return count ? retval : -ESRCH;
1247 } else if (pid < 0) {
1248 return kill_pg_info(sig, info, -pid);
1249 } else {
1250 return kill_proc_info(sig, info, pid);
1251 }
1252 }
1253
1254 /*
1255 * These are for backward compatibility with the rest of the kernel source.
1256 */
1257
1258 /*
1259 * These two are the most common entry points. They send a signal
1260 * just to the specific thread.
1261 */
1262 int
1263 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1264 {
1265 int ret;
1266 unsigned long flags;
1267
1268 /*
1269 * Make sure legacy kernel users don't send in bad values
1270 * (normal paths check this in check_kill_permission).
1271 */
1272 if (!valid_signal(sig))
1273 return -EINVAL;
1274
1275 /*
1276 * We need the tasklist lock even for the specific
1277 * thread case (when we don't need to follow the group
1278 * lists) in order to avoid races with "p->sighand"
1279 * going away or changing from under us.
1280 */
1281 read_lock(&tasklist_lock);
1282 spin_lock_irqsave(&p->sighand->siglock, flags);
1283 ret = specific_send_sig_info(sig, info, p);
1284 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1285 read_unlock(&tasklist_lock);
1286 return ret;
1287 }
1288
1289 int
1290 send_sig(int sig, struct task_struct *p, int priv)
1291 {
1292 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1293 }
1294
1295 /*
1296 * This is the entry point for "process-wide" signals.
1297 * They will go to an appropriate thread in the thread group.
1298 */
1299 int
1300 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1301 {
1302 int ret;
1303 read_lock(&tasklist_lock);
1304 ret = group_send_sig_info(sig, info, p);
1305 read_unlock(&tasklist_lock);
1306 return ret;
1307 }
1308
1309 void
1310 force_sig(int sig, struct task_struct *p)
1311 {
1312 force_sig_info(sig, (void*)1L, p);
1313 }
1314
1315 /*
1316 * When things go south during signal handling, we
1317 * will force a SIGSEGV. And if the signal that caused
1318 * the problem was already a SIGSEGV, we'll want to
1319 * make sure we don't even try to deliver the signal..
1320 */
1321 int
1322 force_sigsegv(int sig, struct task_struct *p)
1323 {
1324 if (sig == SIGSEGV) {
1325 unsigned long flags;
1326 spin_lock_irqsave(&p->sighand->siglock, flags);
1327 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1328 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1329 }
1330 force_sig(SIGSEGV, p);
1331 return 0;
1332 }
1333
1334 int
1335 kill_pg(pid_t pgrp, int sig, int priv)
1336 {
1337 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1338 }
1339
1340 int
1341 kill_proc(pid_t pid, int sig, int priv)
1342 {
1343 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1344 }
1345
1346 /*
1347 * These functions support sending signals using preallocated sigqueue
1348 * structures. This is needed "because realtime applications cannot
1349 * afford to lose notifications of asynchronous events, like timer
1350 * expirations or I/O completions". In the case of Posix Timers
1351 * we allocate the sigqueue structure from the timer_create. If this
1352 * allocation fails we are able to report the failure to the application
1353 * with an EAGAIN error.
1354 */
1355
1356 struct sigqueue *sigqueue_alloc(void)
1357 {
1358 struct sigqueue *q;
1359
1360 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1361 q->flags |= SIGQUEUE_PREALLOC;
1362 return(q);
1363 }
1364
1365 void sigqueue_free(struct sigqueue *q)
1366 {
1367 unsigned long flags;
1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1369 /*
1370 * If the signal is still pending remove it from the
1371 * pending queue.
1372 */
1373 if (unlikely(!list_empty(&q->list))) {
1374 read_lock(&tasklist_lock);
1375 spin_lock_irqsave(q->lock, flags);
1376 if (!list_empty(&q->list))
1377 list_del_init(&q->list);
1378 spin_unlock_irqrestore(q->lock, flags);
1379 read_unlock(&tasklist_lock);
1380 }
1381 q->flags &= ~SIGQUEUE_PREALLOC;
1382 __sigqueue_free(q);
1383 }
1384
1385 int
1386 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1387 {
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1392 read_lock(&tasklist_lock);
1393
1394 if (unlikely(p->flags & PF_EXITING)) {
1395 ret = -1;
1396 goto out_err;
1397 }
1398
1399 spin_lock_irqsave(&p->sighand->siglock, flags);
1400
1401 if (unlikely(!list_empty(&q->list))) {
1402 /*
1403 * If an SI_TIMER entry is already queue just increment
1404 * the overrun count.
1405 */
1406 if (q->info.si_code != SI_TIMER)
1407 BUG();
1408 q->info.si_overrun++;
1409 goto out;
1410 }
1411 /* Short-circuit ignored signals. */
1412 if (sig_ignored(p, sig)) {
1413 ret = 1;
1414 goto out;
1415 }
1416
1417 q->lock = &p->sighand->siglock;
1418 list_add_tail(&q->list, &p->pending.list);
1419 sigaddset(&p->pending.signal, sig);
1420 if (!sigismember(&p->blocked, sig))
1421 signal_wake_up(p, sig == SIGKILL);
1422
1423 out:
1424 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1425 out_err:
1426 read_unlock(&tasklist_lock);
1427
1428 return ret;
1429 }
1430
1431 int
1432 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1433 {
1434 unsigned long flags;
1435 int ret = 0;
1436
1437 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1438 read_lock(&tasklist_lock);
1439 spin_lock_irqsave(&p->sighand->siglock, flags);
1440 handle_stop_signal(sig, p);
1441
1442 /* Short-circuit ignored signals. */
1443 if (sig_ignored(p, sig)) {
1444 ret = 1;
1445 goto out;
1446 }
1447
1448 if (unlikely(!list_empty(&q->list))) {
1449 /*
1450 * If an SI_TIMER entry is already queue just increment
1451 * the overrun count. Other uses should not try to
1452 * send the signal multiple times.
1453 */
1454 if (q->info.si_code != SI_TIMER)
1455 BUG();
1456 q->info.si_overrun++;
1457 goto out;
1458 }
1459
1460 /*
1461 * Put this signal on the shared-pending queue.
1462 * We always use the shared queue for process-wide signals,
1463 * to avoid several races.
1464 */
1465 q->lock = &p->sighand->siglock;
1466 list_add_tail(&q->list, &p->signal->shared_pending.list);
1467 sigaddset(&p->signal->shared_pending.signal, sig);
1468
1469 __group_complete_signal(sig, p);
1470 out:
1471 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1472 read_unlock(&tasklist_lock);
1473 return(ret);
1474 }
1475
1476 /*
1477 * Wake up any threads in the parent blocked in wait* syscalls.
1478 */
1479 static inline void __wake_up_parent(struct task_struct *p,
1480 struct task_struct *parent)
1481 {
1482 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1483 }
1484
1485 /*
1486 * Let a parent know about the death of a child.
1487 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1488 */
1489
1490 void do_notify_parent(struct task_struct *tsk, int sig)
1491 {
1492 struct siginfo info;
1493 unsigned long flags;
1494 struct sighand_struct *psig;
1495
1496 BUG_ON(sig == -1);
1497
1498 /* do_notify_parent_cldstop should have been called instead. */
1499 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1500
1501 BUG_ON(!tsk->ptrace &&
1502 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1503
1504 info.si_signo = sig;
1505 info.si_errno = 0;
1506 info.si_pid = tsk->pid;
1507 info.si_uid = tsk->uid;
1508
1509 /* FIXME: find out whether or not this is supposed to be c*time. */
1510 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1511 tsk->signal->utime));
1512 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1513 tsk->signal->stime));
1514
1515 info.si_status = tsk->exit_code & 0x7f;
1516 if (tsk->exit_code & 0x80)
1517 info.si_code = CLD_DUMPED;
1518 else if (tsk->exit_code & 0x7f)
1519 info.si_code = CLD_KILLED;
1520 else {
1521 info.si_code = CLD_EXITED;
1522 info.si_status = tsk->exit_code >> 8;
1523 }
1524
1525 psig = tsk->parent->sighand;
1526 spin_lock_irqsave(&psig->siglock, flags);
1527 if (sig == SIGCHLD &&
1528 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1529 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1530 /*
1531 * We are exiting and our parent doesn't care. POSIX.1
1532 * defines special semantics for setting SIGCHLD to SIG_IGN
1533 * or setting the SA_NOCLDWAIT flag: we should be reaped
1534 * automatically and not left for our parent's wait4 call.
1535 * Rather than having the parent do it as a magic kind of
1536 * signal handler, we just set this to tell do_exit that we
1537 * can be cleaned up without becoming a zombie. Note that
1538 * we still call __wake_up_parent in this case, because a
1539 * blocked sys_wait4 might now return -ECHILD.
1540 *
1541 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1542 * is implementation-defined: we do (if you don't want
1543 * it, just use SIG_IGN instead).
1544 */
1545 tsk->exit_signal = -1;
1546 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1547 sig = 0;
1548 }
1549 if (valid_signal(sig) && sig > 0)
1550 __group_send_sig_info(sig, &info, tsk->parent);
1551 __wake_up_parent(tsk, tsk->parent);
1552 spin_unlock_irqrestore(&psig->siglock, flags);
1553 }
1554
1555 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1556 {
1557 struct siginfo info;
1558 unsigned long flags;
1559 struct task_struct *parent;
1560 struct sighand_struct *sighand;
1561
1562 if (to_self)
1563 parent = tsk->parent;
1564 else {
1565 tsk = tsk->group_leader;
1566 parent = tsk->real_parent;
1567 }
1568
1569 info.si_signo = SIGCHLD;
1570 info.si_errno = 0;
1571 info.si_pid = tsk->pid;
1572 info.si_uid = tsk->uid;
1573
1574 /* FIXME: find out whether or not this is supposed to be c*time. */
1575 info.si_utime = cputime_to_jiffies(tsk->utime);
1576 info.si_stime = cputime_to_jiffies(tsk->stime);
1577
1578 info.si_code = why;
1579 switch (why) {
1580 case CLD_CONTINUED:
1581 info.si_status = SIGCONT;
1582 break;
1583 case CLD_STOPPED:
1584 info.si_status = tsk->signal->group_exit_code & 0x7f;
1585 break;
1586 case CLD_TRAPPED:
1587 info.si_status = tsk->exit_code & 0x7f;
1588 break;
1589 default:
1590 BUG();
1591 }
1592
1593 sighand = parent->sighand;
1594 spin_lock_irqsave(&sighand->siglock, flags);
1595 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1596 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1597 __group_send_sig_info(SIGCHLD, &info, parent);
1598 /*
1599 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1600 */
1601 __wake_up_parent(tsk, parent);
1602 spin_unlock_irqrestore(&sighand->siglock, flags);
1603 }
1604
1605 /*
1606 * This must be called with current->sighand->siglock held.
1607 *
1608 * This should be the path for all ptrace stops.
1609 * We always set current->last_siginfo while stopped here.
1610 * That makes it a way to test a stopped process for
1611 * being ptrace-stopped vs being job-control-stopped.
1612 *
1613 * If we actually decide not to stop at all because the tracer is gone,
1614 * we leave nostop_code in current->exit_code.
1615 */
1616 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1617 {
1618 /*
1619 * If there is a group stop in progress,
1620 * we must participate in the bookkeeping.
1621 */
1622 if (current->signal->group_stop_count > 0)
1623 --current->signal->group_stop_count;
1624
1625 current->last_siginfo = info;
1626 current->exit_code = exit_code;
1627
1628 /* Let the debugger run. */
1629 set_current_state(TASK_TRACED);
1630 spin_unlock_irq(&current->sighand->siglock);
1631 read_lock(&tasklist_lock);
1632 if (likely(current->ptrace & PT_PTRACED) &&
1633 likely(current->parent != current->real_parent ||
1634 !(current->ptrace & PT_ATTACHED)) &&
1635 (likely(current->parent->signal != current->signal) ||
1636 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1637 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1638 read_unlock(&tasklist_lock);
1639 schedule();
1640 } else {
1641 /*
1642 * By the time we got the lock, our tracer went away.
1643 * Don't stop here.
1644 */
1645 read_unlock(&tasklist_lock);
1646 set_current_state(TASK_RUNNING);
1647 current->exit_code = nostop_code;
1648 }
1649
1650 /*
1651 * We are back. Now reacquire the siglock before touching
1652 * last_siginfo, so that we are sure to have synchronized with
1653 * any signal-sending on another CPU that wants to examine it.
1654 */
1655 spin_lock_irq(&current->sighand->siglock);
1656 current->last_siginfo = NULL;
1657
1658 /*
1659 * Queued signals ignored us while we were stopped for tracing.
1660 * So check for any that we should take before resuming user mode.
1661 */
1662 recalc_sigpending();
1663 }
1664
1665 void ptrace_notify(int exit_code)
1666 {
1667 siginfo_t info;
1668
1669 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1670
1671 memset(&info, 0, sizeof info);
1672 info.si_signo = SIGTRAP;
1673 info.si_code = exit_code;
1674 info.si_pid = current->pid;
1675 info.si_uid = current->uid;
1676
1677 /* Let the debugger run. */
1678 spin_lock_irq(&current->sighand->siglock);
1679 ptrace_stop(exit_code, 0, &info);
1680 spin_unlock_irq(&current->sighand->siglock);
1681 }
1682
1683 static void
1684 finish_stop(int stop_count)
1685 {
1686 int to_self;
1687
1688 /*
1689 * If there are no other threads in the group, or if there is
1690 * a group stop in progress and we are the last to stop,
1691 * report to the parent. When ptraced, every thread reports itself.
1692 */
1693 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1694 to_self = 1;
1695 else if (stop_count == 0)
1696 to_self = 0;
1697 else
1698 goto out;
1699
1700 read_lock(&tasklist_lock);
1701 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1702 read_unlock(&tasklist_lock);
1703
1704 out:
1705 schedule();
1706 /*
1707 * Now we don't run again until continued.
1708 */
1709 current->exit_code = 0;
1710 }
1711
1712 /*
1713 * This performs the stopping for SIGSTOP and other stop signals.
1714 * We have to stop all threads in the thread group.
1715 * Returns nonzero if we've actually stopped and released the siglock.
1716 * Returns zero if we didn't stop and still hold the siglock.
1717 */
1718 static int
1719 do_signal_stop(int signr)
1720 {
1721 struct signal_struct *sig = current->signal;
1722 struct sighand_struct *sighand = current->sighand;
1723 int stop_count = -1;
1724
1725 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1726 return 0;
1727
1728 if (sig->group_stop_count > 0) {
1729 /*
1730 * There is a group stop in progress. We don't need to
1731 * start another one.
1732 */
1733 signr = sig->group_exit_code;
1734 stop_count = --sig->group_stop_count;
1735 current->exit_code = signr;
1736 set_current_state(TASK_STOPPED);
1737 if (stop_count == 0)
1738 sig->flags = SIGNAL_STOP_STOPPED;
1739 spin_unlock_irq(&sighand->siglock);
1740 }
1741 else if (thread_group_empty(current)) {
1742 /*
1743 * Lock must be held through transition to stopped state.
1744 */
1745 current->exit_code = current->signal->group_exit_code = signr;
1746 set_current_state(TASK_STOPPED);
1747 sig->flags = SIGNAL_STOP_STOPPED;
1748 spin_unlock_irq(&sighand->siglock);
1749 }
1750 else {
1751 /*
1752 * There is no group stop already in progress.
1753 * We must initiate one now, but that requires
1754 * dropping siglock to get both the tasklist lock
1755 * and siglock again in the proper order. Note that
1756 * this allows an intervening SIGCONT to be posted.
1757 * We need to check for that and bail out if necessary.
1758 */
1759 struct task_struct *t;
1760
1761 spin_unlock_irq(&sighand->siglock);
1762
1763 /* signals can be posted during this window */
1764
1765 read_lock(&tasklist_lock);
1766 spin_lock_irq(&sighand->siglock);
1767
1768 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1769 /*
1770 * Another stop or continue happened while we
1771 * didn't have the lock. We can just swallow this
1772 * signal now. If we raced with a SIGCONT, that
1773 * should have just cleared it now. If we raced
1774 * with another processor delivering a stop signal,
1775 * then the SIGCONT that wakes us up should clear it.
1776 */
1777 read_unlock(&tasklist_lock);
1778 return 0;
1779 }
1780
1781 if (sig->group_stop_count == 0) {
1782 sig->group_exit_code = signr;
1783 stop_count = 0;
1784 for (t = next_thread(current); t != current;
1785 t = next_thread(t))
1786 /*
1787 * Setting state to TASK_STOPPED for a group
1788 * stop is always done with the siglock held,
1789 * so this check has no races.
1790 */
1791 if (!t->exit_state &&
1792 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1793 stop_count++;
1794 signal_wake_up(t, 0);
1795 }
1796 sig->group_stop_count = stop_count;
1797 }
1798 else {
1799 /* A race with another thread while unlocked. */
1800 signr = sig->group_exit_code;
1801 stop_count = --sig->group_stop_count;
1802 }
1803
1804 current->exit_code = signr;
1805 set_current_state(TASK_STOPPED);
1806 if (stop_count == 0)
1807 sig->flags = SIGNAL_STOP_STOPPED;
1808
1809 spin_unlock_irq(&sighand->siglock);
1810 read_unlock(&tasklist_lock);
1811 }
1812
1813 finish_stop(stop_count);
1814 return 1;
1815 }
1816
1817 /*
1818 * Do appropriate magic when group_stop_count > 0.
1819 * We return nonzero if we stopped, after releasing the siglock.
1820 * We return zero if we still hold the siglock and should look
1821 * for another signal without checking group_stop_count again.
1822 */
1823 static inline int handle_group_stop(void)
1824 {
1825 int stop_count;
1826
1827 if (current->signal->group_exit_task == current) {
1828 /*
1829 * Group stop is so we can do a core dump,
1830 * We are the initiating thread, so get on with it.
1831 */
1832 current->signal->group_exit_task = NULL;
1833 return 0;
1834 }
1835
1836 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1837 /*
1838 * Group stop is so another thread can do a core dump,
1839 * or else we are racing against a death signal.
1840 * Just punt the stop so we can get the next signal.
1841 */
1842 return 0;
1843
1844 /*
1845 * There is a group stop in progress. We stop
1846 * without any associated signal being in our queue.
1847 */
1848 stop_count = --current->signal->group_stop_count;
1849 if (stop_count == 0)
1850 current->signal->flags = SIGNAL_STOP_STOPPED;
1851 current->exit_code = current->signal->group_exit_code;
1852 set_current_state(TASK_STOPPED);
1853 spin_unlock_irq(&current->sighand->siglock);
1854 finish_stop(stop_count);
1855 return 1;
1856 }
1857
1858 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1859 struct pt_regs *regs, void *cookie)
1860 {
1861 sigset_t *mask = &current->blocked;
1862 int signr = 0;
1863
1864 relock:
1865 spin_lock_irq(&current->sighand->siglock);
1866 for (;;) {
1867 struct k_sigaction *ka;
1868
1869 if (unlikely(current->signal->group_stop_count > 0) &&
1870 handle_group_stop())
1871 goto relock;
1872
1873 signr = dequeue_signal(current, mask, info);
1874
1875 if (!signr)
1876 break; /* will return 0 */
1877
1878 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1879 ptrace_signal_deliver(regs, cookie);
1880
1881 /* Let the debugger run. */
1882 ptrace_stop(signr, signr, info);
1883
1884 /* We're back. Did the debugger cancel the sig? */
1885 signr = current->exit_code;
1886 if (signr == 0)
1887 continue;
1888
1889 current->exit_code = 0;
1890
1891 /* Update the siginfo structure if the signal has
1892 changed. If the debugger wanted something
1893 specific in the siginfo structure then it should
1894 have updated *info via PTRACE_SETSIGINFO. */
1895 if (signr != info->si_signo) {
1896 info->si_signo = signr;
1897 info->si_errno = 0;
1898 info->si_code = SI_USER;
1899 info->si_pid = current->parent->pid;
1900 info->si_uid = current->parent->uid;
1901 }
1902
1903 /* If the (new) signal is now blocked, requeue it. */
1904 if (sigismember(&current->blocked, signr)) {
1905 specific_send_sig_info(signr, info, current);
1906 continue;
1907 }
1908 }
1909
1910 ka = &current->sighand->action[signr-1];
1911 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1912 continue;
1913 if (ka->sa.sa_handler != SIG_DFL) {
1914 /* Run the handler. */
1915 *return_ka = *ka;
1916
1917 if (ka->sa.sa_flags & SA_ONESHOT)
1918 ka->sa.sa_handler = SIG_DFL;
1919
1920 break; /* will return non-zero "signr" value */
1921 }
1922
1923 /*
1924 * Now we are doing the default action for this signal.
1925 */
1926 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1927 continue;
1928
1929 /* Init gets no signals it doesn't want. */
1930 if (current->pid == 1)
1931 continue;
1932
1933 if (sig_kernel_stop(signr)) {
1934 /*
1935 * The default action is to stop all threads in
1936 * the thread group. The job control signals
1937 * do nothing in an orphaned pgrp, but SIGSTOP
1938 * always works. Note that siglock needs to be
1939 * dropped during the call to is_orphaned_pgrp()
1940 * because of lock ordering with tasklist_lock.
1941 * This allows an intervening SIGCONT to be posted.
1942 * We need to check for that and bail out if necessary.
1943 */
1944 if (signr != SIGSTOP) {
1945 spin_unlock_irq(&current->sighand->siglock);
1946
1947 /* signals can be posted during this window */
1948
1949 if (is_orphaned_pgrp(process_group(current)))
1950 goto relock;
1951
1952 spin_lock_irq(&current->sighand->siglock);
1953 }
1954
1955 if (likely(do_signal_stop(signr))) {
1956 /* It released the siglock. */
1957 goto relock;
1958 }
1959
1960 /*
1961 * We didn't actually stop, due to a race
1962 * with SIGCONT or something like that.
1963 */
1964 continue;
1965 }
1966
1967 spin_unlock_irq(&current->sighand->siglock);
1968
1969 /*
1970 * Anything else is fatal, maybe with a core dump.
1971 */
1972 current->flags |= PF_SIGNALED;
1973 if (sig_kernel_coredump(signr)) {
1974 /*
1975 * If it was able to dump core, this kills all
1976 * other threads in the group and synchronizes with
1977 * their demise. If we lost the race with another
1978 * thread getting here, it set group_exit_code
1979 * first and our do_group_exit call below will use
1980 * that value and ignore the one we pass it.
1981 */
1982 do_coredump((long)signr, signr, regs);
1983 }
1984
1985 /*
1986 * Death signals, no core dump.
1987 */
1988 do_group_exit(signr);
1989 /* NOTREACHED */
1990 }
1991 spin_unlock_irq(&current->sighand->siglock);
1992 return signr;
1993 }
1994
1995 EXPORT_SYMBOL(recalc_sigpending);
1996 EXPORT_SYMBOL_GPL(dequeue_signal);
1997 EXPORT_SYMBOL(flush_signals);
1998 EXPORT_SYMBOL(force_sig);
1999 EXPORT_SYMBOL(kill_pg);
2000 EXPORT_SYMBOL(kill_proc);
2001 EXPORT_SYMBOL(ptrace_notify);
2002 EXPORT_SYMBOL(send_sig);
2003 EXPORT_SYMBOL(send_sig_info);
2004 EXPORT_SYMBOL(sigprocmask);
2005 EXPORT_SYMBOL(block_all_signals);
2006 EXPORT_SYMBOL(unblock_all_signals);
2007
2008
2009 /*
2010 * System call entry points.
2011 */
2012
2013 asmlinkage long sys_restart_syscall(void)
2014 {
2015 struct restart_block *restart = &current_thread_info()->restart_block;
2016 return restart->fn(restart);
2017 }
2018
2019 long do_no_restart_syscall(struct restart_block *param)
2020 {
2021 return -EINTR;
2022 }
2023
2024 /*
2025 * We don't need to get the kernel lock - this is all local to this
2026 * particular thread.. (and that's good, because this is _heavily_
2027 * used by various programs)
2028 */
2029
2030 /*
2031 * This is also useful for kernel threads that want to temporarily
2032 * (or permanently) block certain signals.
2033 *
2034 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2035 * interface happily blocks "unblockable" signals like SIGKILL
2036 * and friends.
2037 */
2038 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2039 {
2040 int error;
2041 sigset_t old_block;
2042
2043 spin_lock_irq(&current->sighand->siglock);
2044 old_block = current->blocked;
2045 error = 0;
2046 switch (how) {
2047 case SIG_BLOCK:
2048 sigorsets(&current->blocked, &current->blocked, set);
2049 break;
2050 case SIG_UNBLOCK:
2051 signandsets(&current->blocked, &current->blocked, set);
2052 break;
2053 case SIG_SETMASK:
2054 current->blocked = *set;
2055 break;
2056 default:
2057 error = -EINVAL;
2058 }
2059 recalc_sigpending();
2060 spin_unlock_irq(&current->sighand->siglock);
2061 if (oldset)
2062 *oldset = old_block;
2063 return error;
2064 }
2065
2066 asmlinkage long
2067 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2068 {
2069 int error = -EINVAL;
2070 sigset_t old_set, new_set;
2071
2072 /* XXX: Don't preclude handling different sized sigset_t's. */
2073 if (sigsetsize != sizeof(sigset_t))
2074 goto out;
2075
2076 if (set) {
2077 error = -EFAULT;
2078 if (copy_from_user(&new_set, set, sizeof(*set)))
2079 goto out;
2080 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2081
2082 error = sigprocmask(how, &new_set, &old_set);
2083 if (error)
2084 goto out;
2085 if (oset)
2086 goto set_old;
2087 } else if (oset) {
2088 spin_lock_irq(&current->sighand->siglock);
2089 old_set = current->blocked;
2090 spin_unlock_irq(&current->sighand->siglock);
2091
2092 set_old:
2093 error = -EFAULT;
2094 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2095 goto out;
2096 }
2097 error = 0;
2098 out:
2099 return error;
2100 }
2101
2102 long do_sigpending(void __user *set, unsigned long sigsetsize)
2103 {
2104 long error = -EINVAL;
2105 sigset_t pending;
2106
2107 if (sigsetsize > sizeof(sigset_t))
2108 goto out;
2109
2110 spin_lock_irq(&current->sighand->siglock);
2111 sigorsets(&pending, &current->pending.signal,
2112 &current->signal->shared_pending.signal);
2113 spin_unlock_irq(&current->sighand->siglock);
2114
2115 /* Outside the lock because only this thread touches it. */
2116 sigandsets(&pending, &current->blocked, &pending);
2117
2118 error = -EFAULT;
2119 if (!copy_to_user(set, &pending, sigsetsize))
2120 error = 0;
2121
2122 out:
2123 return error;
2124 }
2125
2126 asmlinkage long
2127 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2128 {
2129 return do_sigpending(set, sigsetsize);
2130 }
2131
2132 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2133
2134 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2135 {
2136 int err;
2137
2138 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2139 return -EFAULT;
2140 if (from->si_code < 0)
2141 return __copy_to_user(to, from, sizeof(siginfo_t))
2142 ? -EFAULT : 0;
2143 /*
2144 * If you change siginfo_t structure, please be sure
2145 * this code is fixed accordingly.
2146 * It should never copy any pad contained in the structure
2147 * to avoid security leaks, but must copy the generic
2148 * 3 ints plus the relevant union member.
2149 */
2150 err = __put_user(from->si_signo, &to->si_signo);
2151 err |= __put_user(from->si_errno, &to->si_errno);
2152 err |= __put_user((short)from->si_code, &to->si_code);
2153 switch (from->si_code & __SI_MASK) {
2154 case __SI_KILL:
2155 err |= __put_user(from->si_pid, &to->si_pid);
2156 err |= __put_user(from->si_uid, &to->si_uid);
2157 break;
2158 case __SI_TIMER:
2159 err |= __put_user(from->si_tid, &to->si_tid);
2160 err |= __put_user(from->si_overrun, &to->si_overrun);
2161 err |= __put_user(from->si_ptr, &to->si_ptr);
2162 break;
2163 case __SI_POLL:
2164 err |= __put_user(from->si_band, &to->si_band);
2165 err |= __put_user(from->si_fd, &to->si_fd);
2166 break;
2167 case __SI_FAULT:
2168 err |= __put_user(from->si_addr, &to->si_addr);
2169 #ifdef __ARCH_SI_TRAPNO
2170 err |= __put_user(from->si_trapno, &to->si_trapno);
2171 #endif
2172 break;
2173 case __SI_CHLD:
2174 err |= __put_user(from->si_pid, &to->si_pid);
2175 err |= __put_user(from->si_uid, &to->si_uid);
2176 err |= __put_user(from->si_status, &to->si_status);
2177 err |= __put_user(from->si_utime, &to->si_utime);
2178 err |= __put_user(from->si_stime, &to->si_stime);
2179 break;
2180 case __SI_RT: /* This is not generated by the kernel as of now. */
2181 case __SI_MESGQ: /* But this is */
2182 err |= __put_user(from->si_pid, &to->si_pid);
2183 err |= __put_user(from->si_uid, &to->si_uid);
2184 err |= __put_user(from->si_ptr, &to->si_ptr);
2185 break;
2186 default: /* this is just in case for now ... */
2187 err |= __put_user(from->si_pid, &to->si_pid);
2188 err |= __put_user(from->si_uid, &to->si_uid);
2189 break;
2190 }
2191 return err;
2192 }
2193
2194 #endif
2195
2196 asmlinkage long
2197 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2198 siginfo_t __user *uinfo,
2199 const struct timespec __user *uts,
2200 size_t sigsetsize)
2201 {
2202 int ret, sig;
2203 sigset_t these;
2204 struct timespec ts;
2205 siginfo_t info;
2206 long timeout = 0;
2207
2208 /* XXX: Don't preclude handling different sized sigset_t's. */
2209 if (sigsetsize != sizeof(sigset_t))
2210 return -EINVAL;
2211
2212 if (copy_from_user(&these, uthese, sizeof(these)))
2213 return -EFAULT;
2214
2215 /*
2216 * Invert the set of allowed signals to get those we
2217 * want to block.
2218 */
2219 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2220 signotset(&these);
2221
2222 if (uts) {
2223 if (copy_from_user(&ts, uts, sizeof(ts)))
2224 return -EFAULT;
2225 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2226 || ts.tv_sec < 0)
2227 return -EINVAL;
2228 }
2229
2230 spin_lock_irq(&current->sighand->siglock);
2231 sig = dequeue_signal(current, &these, &info);
2232 if (!sig) {
2233 timeout = MAX_SCHEDULE_TIMEOUT;
2234 if (uts)
2235 timeout = (timespec_to_jiffies(&ts)
2236 + (ts.tv_sec || ts.tv_nsec));
2237
2238 if (timeout) {
2239 /* None ready -- temporarily unblock those we're
2240 * interested while we are sleeping in so that we'll
2241 * be awakened when they arrive. */
2242 current->real_blocked = current->blocked;
2243 sigandsets(&current->blocked, &current->blocked, &these);
2244 recalc_sigpending();
2245 spin_unlock_irq(&current->sighand->siglock);
2246
2247 timeout = schedule_timeout_interruptible(timeout);
2248
2249 try_to_freeze();
2250 spin_lock_irq(&current->sighand->siglock);
2251 sig = dequeue_signal(current, &these, &info);
2252 current->blocked = current->real_blocked;
2253 siginitset(&current->real_blocked, 0);
2254 recalc_sigpending();
2255 }
2256 }
2257 spin_unlock_irq(&current->sighand->siglock);
2258
2259 if (sig) {
2260 ret = sig;
2261 if (uinfo) {
2262 if (copy_siginfo_to_user(uinfo, &info))
2263 ret = -EFAULT;
2264 }
2265 } else {
2266 ret = -EAGAIN;
2267 if (timeout)
2268 ret = -EINTR;
2269 }
2270
2271 return ret;
2272 }
2273
2274 asmlinkage long
2275 sys_kill(int pid, int sig)
2276 {
2277 struct siginfo info;
2278
2279 info.si_signo = sig;
2280 info.si_errno = 0;
2281 info.si_code = SI_USER;
2282 info.si_pid = current->tgid;
2283 info.si_uid = current->uid;
2284
2285 return kill_something_info(sig, &info, pid);
2286 }
2287
2288 /**
2289 * sys_tgkill - send signal to one specific thread
2290 * @tgid: the thread group ID of the thread
2291 * @pid: the PID of the thread
2292 * @sig: signal to be sent
2293 *
2294 * This syscall also checks the tgid and returns -ESRCH even if the PID
2295 * exists but it's not belonging to the target process anymore. This
2296 * method solves the problem of threads exiting and PIDs getting reused.
2297 */
2298 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2299 {
2300 struct siginfo info;
2301 int error;
2302 struct task_struct *p;
2303
2304 /* This is only valid for single tasks */
2305 if (pid <= 0 || tgid <= 0)
2306 return -EINVAL;
2307
2308 info.si_signo = sig;
2309 info.si_errno = 0;
2310 info.si_code = SI_TKILL;
2311 info.si_pid = current->tgid;
2312 info.si_uid = current->uid;
2313
2314 read_lock(&tasklist_lock);
2315 p = find_task_by_pid(pid);
2316 error = -ESRCH;
2317 if (p && (p->tgid == tgid)) {
2318 error = check_kill_permission(sig, &info, p);
2319 /*
2320 * The null signal is a permissions and process existence
2321 * probe. No signal is actually delivered.
2322 */
2323 if (!error && sig && p->sighand) {
2324 spin_lock_irq(&p->sighand->siglock);
2325 handle_stop_signal(sig, p);
2326 error = specific_send_sig_info(sig, &info, p);
2327 spin_unlock_irq(&p->sighand->siglock);
2328 }
2329 }
2330 read_unlock(&tasklist_lock);
2331 return error;
2332 }
2333
2334 /*
2335 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2336 */
2337 asmlinkage long
2338 sys_tkill(int pid, int sig)
2339 {
2340 struct siginfo info;
2341 int error;
2342 struct task_struct *p;
2343
2344 /* This is only valid for single tasks */
2345 if (pid <= 0)
2346 return -EINVAL;
2347
2348 info.si_signo = sig;
2349 info.si_errno = 0;
2350 info.si_code = SI_TKILL;
2351 info.si_pid = current->tgid;
2352 info.si_uid = current->uid;
2353
2354 read_lock(&tasklist_lock);
2355 p = find_task_by_pid(pid);
2356 error = -ESRCH;
2357 if (p) {
2358 error = check_kill_permission(sig, &info, p);
2359 /*
2360 * The null signal is a permissions and process existence
2361 * probe. No signal is actually delivered.
2362 */
2363 if (!error && sig && p->sighand) {
2364 spin_lock_irq(&p->sighand->siglock);
2365 handle_stop_signal(sig, p);
2366 error = specific_send_sig_info(sig, &info, p);
2367 spin_unlock_irq(&p->sighand->siglock);
2368 }
2369 }
2370 read_unlock(&tasklist_lock);
2371 return error;
2372 }
2373
2374 asmlinkage long
2375 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2376 {
2377 siginfo_t info;
2378
2379 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2380 return -EFAULT;
2381
2382 /* Not even root can pretend to send signals from the kernel.
2383 Nor can they impersonate a kill(), which adds source info. */
2384 if (info.si_code >= 0)
2385 return -EPERM;
2386 info.si_signo = sig;
2387
2388 /* POSIX.1b doesn't mention process groups. */
2389 return kill_proc_info(sig, &info, pid);
2390 }
2391
2392 int
2393 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2394 {
2395 struct k_sigaction *k;
2396
2397 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2398 return -EINVAL;
2399
2400 k = &current->sighand->action[sig-1];
2401
2402 spin_lock_irq(&current->sighand->siglock);
2403 if (signal_pending(current)) {
2404 /*
2405 * If there might be a fatal signal pending on multiple
2406 * threads, make sure we take it before changing the action.
2407 */
2408 spin_unlock_irq(&current->sighand->siglock);
2409 return -ERESTARTNOINTR;
2410 }
2411
2412 if (oact)
2413 *oact = *k;
2414
2415 if (act) {
2416 /*
2417 * POSIX 3.3.1.3:
2418 * "Setting a signal action to SIG_IGN for a signal that is
2419 * pending shall cause the pending signal to be discarded,
2420 * whether or not it is blocked."
2421 *
2422 * "Setting a signal action to SIG_DFL for a signal that is
2423 * pending and whose default action is to ignore the signal
2424 * (for example, SIGCHLD), shall cause the pending signal to
2425 * be discarded, whether or not it is blocked"
2426 */
2427 if (act->sa.sa_handler == SIG_IGN ||
2428 (act->sa.sa_handler == SIG_DFL &&
2429 sig_kernel_ignore(sig))) {
2430 /*
2431 * This is a fairly rare case, so we only take the
2432 * tasklist_lock once we're sure we'll need it.
2433 * Now we must do this little unlock and relock
2434 * dance to maintain the lock hierarchy.
2435 */
2436 struct task_struct *t = current;
2437 spin_unlock_irq(&t->sighand->siglock);
2438 read_lock(&tasklist_lock);
2439 spin_lock_irq(&t->sighand->siglock);
2440 *k = *act;
2441 sigdelsetmask(&k->sa.sa_mask,
2442 sigmask(SIGKILL) | sigmask(SIGSTOP));
2443 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2444 do {
2445 rm_from_queue(sigmask(sig), &t->pending);
2446 recalc_sigpending_tsk(t);
2447 t = next_thread(t);
2448 } while (t != current);
2449 spin_unlock_irq(&current->sighand->siglock);
2450 read_unlock(&tasklist_lock);
2451 return 0;
2452 }
2453
2454 *k = *act;
2455 sigdelsetmask(&k->sa.sa_mask,
2456 sigmask(SIGKILL) | sigmask(SIGSTOP));
2457 }
2458
2459 spin_unlock_irq(&current->sighand->siglock);
2460 return 0;
2461 }
2462
2463 int
2464 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2465 {
2466 stack_t oss;
2467 int error;
2468
2469 if (uoss) {
2470 oss.ss_sp = (void __user *) current->sas_ss_sp;
2471 oss.ss_size = current->sas_ss_size;
2472 oss.ss_flags = sas_ss_flags(sp);
2473 }
2474
2475 if (uss) {
2476 void __user *ss_sp;
2477 size_t ss_size;
2478 int ss_flags;
2479
2480 error = -EFAULT;
2481 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2482 || __get_user(ss_sp, &uss->ss_sp)
2483 || __get_user(ss_flags, &uss->ss_flags)
2484 || __get_user(ss_size, &uss->ss_size))
2485 goto out;
2486
2487 error = -EPERM;
2488 if (on_sig_stack(sp))
2489 goto out;
2490
2491 error = -EINVAL;
2492 /*
2493 *
2494 * Note - this code used to test ss_flags incorrectly
2495 * old code may have been written using ss_flags==0
2496 * to mean ss_flags==SS_ONSTACK (as this was the only
2497 * way that worked) - this fix preserves that older
2498 * mechanism
2499 */
2500 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2501 goto out;
2502
2503 if (ss_flags == SS_DISABLE) {
2504 ss_size = 0;
2505 ss_sp = NULL;
2506 } else {
2507 error = -ENOMEM;
2508 if (ss_size < MINSIGSTKSZ)
2509 goto out;
2510 }
2511
2512 current->sas_ss_sp = (unsigned long) ss_sp;
2513 current->sas_ss_size = ss_size;
2514 }
2515
2516 if (uoss) {
2517 error = -EFAULT;
2518 if (copy_to_user(uoss, &oss, sizeof(oss)))
2519 goto out;
2520 }
2521
2522 error = 0;
2523 out:
2524 return error;
2525 }
2526
2527 #ifdef __ARCH_WANT_SYS_SIGPENDING
2528
2529 asmlinkage long
2530 sys_sigpending(old_sigset_t __user *set)
2531 {
2532 return do_sigpending(set, sizeof(*set));
2533 }
2534
2535 #endif
2536
2537 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2538 /* Some platforms have their own version with special arguments others
2539 support only sys_rt_sigprocmask. */
2540
2541 asmlinkage long
2542 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2543 {
2544 int error;
2545 old_sigset_t old_set, new_set;
2546
2547 if (set) {
2548 error = -EFAULT;
2549 if (copy_from_user(&new_set, set, sizeof(*set)))
2550 goto out;
2551 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2552
2553 spin_lock_irq(&current->sighand->siglock);
2554 old_set = current->blocked.sig[0];
2555
2556 error = 0;
2557 switch (how) {
2558 default:
2559 error = -EINVAL;
2560 break;
2561 case SIG_BLOCK:
2562 sigaddsetmask(&current->blocked, new_set);
2563 break;
2564 case SIG_UNBLOCK:
2565 sigdelsetmask(&current->blocked, new_set);
2566 break;
2567 case SIG_SETMASK:
2568 current->blocked.sig[0] = new_set;
2569 break;
2570 }
2571
2572 recalc_sigpending();
2573 spin_unlock_irq(&current->sighand->siglock);
2574 if (error)
2575 goto out;
2576 if (oset)
2577 goto set_old;
2578 } else if (oset) {
2579 old_set = current->blocked.sig[0];
2580 set_old:
2581 error = -EFAULT;
2582 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2583 goto out;
2584 }
2585 error = 0;
2586 out:
2587 return error;
2588 }
2589 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2590
2591 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2592 asmlinkage long
2593 sys_rt_sigaction(int sig,
2594 const struct sigaction __user *act,
2595 struct sigaction __user *oact,
2596 size_t sigsetsize)
2597 {
2598 struct k_sigaction new_sa, old_sa;
2599 int ret = -EINVAL;
2600
2601 /* XXX: Don't preclude handling different sized sigset_t's. */
2602 if (sigsetsize != sizeof(sigset_t))
2603 goto out;
2604
2605 if (act) {
2606 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2607 return -EFAULT;
2608 }
2609
2610 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2611
2612 if (!ret && oact) {
2613 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2614 return -EFAULT;
2615 }
2616 out:
2617 return ret;
2618 }
2619 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2620
2621 #ifdef __ARCH_WANT_SYS_SGETMASK
2622
2623 /*
2624 * For backwards compatibility. Functionality superseded by sigprocmask.
2625 */
2626 asmlinkage long
2627 sys_sgetmask(void)
2628 {
2629 /* SMP safe */
2630 return current->blocked.sig[0];
2631 }
2632
2633 asmlinkage long
2634 sys_ssetmask(int newmask)
2635 {
2636 int old;
2637
2638 spin_lock_irq(&current->sighand->siglock);
2639 old = current->blocked.sig[0];
2640
2641 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2642 sigmask(SIGSTOP)));
2643 recalc_sigpending();
2644 spin_unlock_irq(&current->sighand->siglock);
2645
2646 return old;
2647 }
2648 #endif /* __ARCH_WANT_SGETMASK */
2649
2650 #ifdef __ARCH_WANT_SYS_SIGNAL
2651 /*
2652 * For backwards compatibility. Functionality superseded by sigaction.
2653 */
2654 asmlinkage unsigned long
2655 sys_signal(int sig, __sighandler_t handler)
2656 {
2657 struct k_sigaction new_sa, old_sa;
2658 int ret;
2659
2660 new_sa.sa.sa_handler = handler;
2661 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2662
2663 ret = do_sigaction(sig, &new_sa, &old_sa);
2664
2665 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2666 }
2667 #endif /* __ARCH_WANT_SYS_SIGNAL */
2668
2669 #ifdef __ARCH_WANT_SYS_PAUSE
2670
2671 asmlinkage long
2672 sys_pause(void)
2673 {
2674 current->state = TASK_INTERRUPTIBLE;
2675 schedule();
2676 return -ERESTARTNOHAND;
2677 }
2678
2679 #endif
2680
2681 void __init signals_init(void)
2682 {
2683 sigqueue_cachep =
2684 kmem_cache_create("sigqueue",
2685 sizeof(struct sigqueue),
2686 __alignof__(struct sigqueue),
2687 SLAB_PANIC, NULL, NULL);
2688 }
This page took 0.112029 seconds and 6 git commands to generate.