Revert "[PATCH] make kernel/signal.c:kill_proc_info() static"
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 /*
43 * In POSIX a signal is sent either to a specific thread (Linux task)
44 * or to the process as a whole (Linux thread group). How the signal
45 * is sent determines whether it's to one thread or the whole group,
46 * which determines which signal mask(s) are involved in blocking it
47 * from being delivered until later. When the signal is delivered,
48 * either it's caught or ignored by a user handler or it has a default
49 * effect that applies to the whole thread group (POSIX process).
50 *
51 * The possible effects an unblocked signal set to SIG_DFL can have are:
52 * ignore - Nothing Happens
53 * terminate - kill the process, i.e. all threads in the group,
54 * similar to exit_group. The group leader (only) reports
55 * WIFSIGNALED status to its parent.
56 * coredump - write a core dump file describing all threads using
57 * the same mm and then kill all those threads
58 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
59 *
60 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61 * Other signals when not blocked and set to SIG_DFL behaves as follows.
62 * The job control signals also have other special effects.
63 *
64 * +--------------------+------------------+
65 * | POSIX signal | default action |
66 * +--------------------+------------------+
67 * | SIGHUP | terminate |
68 * | SIGINT | terminate |
69 * | SIGQUIT | coredump |
70 * | SIGILL | coredump |
71 * | SIGTRAP | coredump |
72 * | SIGABRT/SIGIOT | coredump |
73 * | SIGBUS | coredump |
74 * | SIGFPE | coredump |
75 * | SIGKILL | terminate(+) |
76 * | SIGUSR1 | terminate |
77 * | SIGSEGV | coredump |
78 * | SIGUSR2 | terminate |
79 * | SIGPIPE | terminate |
80 * | SIGALRM | terminate |
81 * | SIGTERM | terminate |
82 * | SIGCHLD | ignore |
83 * | SIGCONT | ignore(*) |
84 * | SIGSTOP | stop(*)(+) |
85 * | SIGTSTP | stop(*) |
86 * | SIGTTIN | stop(*) |
87 * | SIGTTOU | stop(*) |
88 * | SIGURG | ignore |
89 * | SIGXCPU | coredump |
90 * | SIGXFSZ | coredump |
91 * | SIGVTALRM | terminate |
92 * | SIGPROF | terminate |
93 * | SIGPOLL/SIGIO | terminate |
94 * | SIGSYS/SIGUNUSED | coredump |
95 * | SIGSTKFLT | terminate |
96 * | SIGWINCH | ignore |
97 * | SIGPWR | terminate |
98 * | SIGRTMIN-SIGRTMAX | terminate |
99 * +--------------------+------------------+
100 * | non-POSIX signal | default action |
101 * +--------------------+------------------+
102 * | SIGEMT | coredump |
103 * +--------------------+------------------+
104 *
105 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106 * (*) Special job control effects:
107 * When SIGCONT is sent, it resumes the process (all threads in the group)
108 * from TASK_STOPPED state and also clears any pending/queued stop signals
109 * (any of those marked with "stop(*)"). This happens regardless of blocking,
110 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
111 * any pending/queued SIGCONT signals; this happens regardless of blocking,
112 * catching, or ignored the stop signal, though (except for SIGSTOP) the
113 * default action of stopping the process may happen later or never.
114 */
115
116 #ifdef SIGEMT
117 #define M_SIGEMT M(SIGEMT)
118 #else
119 #define M_SIGEMT 0
120 #endif
121
122 #if SIGRTMIN > BITS_PER_LONG
123 #define M(sig) (1ULL << ((sig)-1))
124 #else
125 #define M(sig) (1UL << ((sig)-1))
126 #endif
127 #define T(sig, mask) (M(sig) & (mask))
128
129 #define SIG_KERNEL_ONLY_MASK (\
130 M(SIGKILL) | M(SIGSTOP) )
131
132 #define SIG_KERNEL_STOP_MASK (\
133 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
134
135 #define SIG_KERNEL_COREDUMP_MASK (\
136 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
137 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
138 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
139
140 #define SIG_KERNEL_IGNORE_MASK (\
141 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
142
143 #define sig_kernel_only(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
145 #define sig_kernel_coredump(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
147 #define sig_kernel_ignore(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
149 #define sig_kernel_stop(sig) \
150 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
151
152 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
153
154 #define sig_user_defined(t, signr) \
155 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
156 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
157
158 #define sig_fatal(t, signr) \
159 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
161
162 static int sig_ignored(struct task_struct *t, int sig)
163 {
164 void __user * handler;
165
166 /*
167 * Tracers always want to know about signals..
168 */
169 if (t->ptrace & PT_PTRACED)
170 return 0;
171
172 /*
173 * Blocked signals are never ignored, since the
174 * signal handler may change by the time it is
175 * unblocked.
176 */
177 if (sigismember(&t->blocked, sig))
178 return 0;
179
180 /* Is it explicitly or implicitly ignored? */
181 handler = t->sighand->action[sig-1].sa.sa_handler;
182 return handler == SIG_IGN ||
183 (handler == SIG_DFL && sig_kernel_ignore(sig));
184 }
185
186 /*
187 * Re-calculate pending state from the set of locally pending
188 * signals, globally pending signals, and blocked signals.
189 */
190 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 {
192 unsigned long ready;
193 long i;
194
195 switch (_NSIG_WORDS) {
196 default:
197 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 ready |= signal->sig[i] &~ blocked->sig[i];
199 break;
200
201 case 4: ready = signal->sig[3] &~ blocked->sig[3];
202 ready |= signal->sig[2] &~ blocked->sig[2];
203 ready |= signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
206
207 case 2: ready = signal->sig[1] &~ blocked->sig[1];
208 ready |= signal->sig[0] &~ blocked->sig[0];
209 break;
210
211 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 }
213 return ready != 0;
214 }
215
216 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
217
218 fastcall void recalc_sigpending_tsk(struct task_struct *t)
219 {
220 if (t->signal->group_stop_count > 0 ||
221 (freezing(t)) ||
222 PENDING(&t->pending, &t->blocked) ||
223 PENDING(&t->signal->shared_pending, &t->blocked))
224 set_tsk_thread_flag(t, TIF_SIGPENDING);
225 else
226 clear_tsk_thread_flag(t, TIF_SIGPENDING);
227 }
228
229 void recalc_sigpending(void)
230 {
231 recalc_sigpending_tsk(current);
232 }
233
234 /* Given the mask, find the first available signal that should be serviced. */
235
236 static int
237 next_signal(struct sigpending *pending, sigset_t *mask)
238 {
239 unsigned long i, *s, *m, x;
240 int sig = 0;
241
242 s = pending->signal.sig;
243 m = mask->sig;
244 switch (_NSIG_WORDS) {
245 default:
246 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 if ((x = *s &~ *m) != 0) {
248 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 break;
250 }
251 break;
252
253 case 2: if ((x = s[0] &~ m[0]) != 0)
254 sig = 1;
255 else if ((x = s[1] &~ m[1]) != 0)
256 sig = _NSIG_BPW + 1;
257 else
258 break;
259 sig += ffz(~x);
260 break;
261
262 case 1: if ((x = *s &~ *m) != 0)
263 sig = ffz(~x) + 1;
264 break;
265 }
266
267 return sig;
268 }
269
270 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
271 int override_rlimit)
272 {
273 struct sigqueue *q = NULL;
274 struct user_struct *user;
275
276 /*
277 * In order to avoid problems with "switch_user()", we want to make
278 * sure that the compiler doesn't re-load "t->user"
279 */
280 user = t->user;
281 barrier();
282 atomic_inc(&user->sigpending);
283 if (override_rlimit ||
284 atomic_read(&user->sigpending) <=
285 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 q = kmem_cache_alloc(sigqueue_cachep, flags);
287 if (unlikely(q == NULL)) {
288 atomic_dec(&user->sigpending);
289 } else {
290 INIT_LIST_HEAD(&q->list);
291 q->flags = 0;
292 q->user = get_uid(user);
293 }
294 return(q);
295 }
296
297 static void __sigqueue_free(struct sigqueue *q)
298 {
299 if (q->flags & SIGQUEUE_PREALLOC)
300 return;
301 atomic_dec(&q->user->sigpending);
302 free_uid(q->user);
303 kmem_cache_free(sigqueue_cachep, q);
304 }
305
306 void flush_sigqueue(struct sigpending *queue)
307 {
308 struct sigqueue *q;
309
310 sigemptyset(&queue->signal);
311 while (!list_empty(&queue->list)) {
312 q = list_entry(queue->list.next, struct sigqueue , list);
313 list_del_init(&q->list);
314 __sigqueue_free(q);
315 }
316 }
317
318 /*
319 * Flush all pending signals for a task.
320 */
321 void flush_signals(struct task_struct *t)
322 {
323 unsigned long flags;
324
325 spin_lock_irqsave(&t->sighand->siglock, flags);
326 clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 flush_sigqueue(&t->pending);
328 flush_sigqueue(&t->signal->shared_pending);
329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
330 }
331
332 /*
333 * Flush all handlers for a task.
334 */
335
336 void
337 flush_signal_handlers(struct task_struct *t, int force_default)
338 {
339 int i;
340 struct k_sigaction *ka = &t->sighand->action[0];
341 for (i = _NSIG ; i != 0 ; i--) {
342 if (force_default || ka->sa.sa_handler != SIG_IGN)
343 ka->sa.sa_handler = SIG_DFL;
344 ka->sa.sa_flags = 0;
345 sigemptyset(&ka->sa.sa_mask);
346 ka++;
347 }
348 }
349
350
351 /* Notify the system that a driver wants to block all signals for this
352 * process, and wants to be notified if any signals at all were to be
353 * sent/acted upon. If the notifier routine returns non-zero, then the
354 * signal will be acted upon after all. If the notifier routine returns 0,
355 * then then signal will be blocked. Only one block per process is
356 * allowed. priv is a pointer to private data that the notifier routine
357 * can use to determine if the signal should be blocked or not. */
358
359 void
360 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
361 {
362 unsigned long flags;
363
364 spin_lock_irqsave(&current->sighand->siglock, flags);
365 current->notifier_mask = mask;
366 current->notifier_data = priv;
367 current->notifier = notifier;
368 spin_unlock_irqrestore(&current->sighand->siglock, flags);
369 }
370
371 /* Notify the system that blocking has ended. */
372
373 void
374 unblock_all_signals(void)
375 {
376 unsigned long flags;
377
378 spin_lock_irqsave(&current->sighand->siglock, flags);
379 current->notifier = NULL;
380 current->notifier_data = NULL;
381 recalc_sigpending();
382 spin_unlock_irqrestore(&current->sighand->siglock, flags);
383 }
384
385 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
386 {
387 struct sigqueue *q, *first = NULL;
388 int still_pending = 0;
389
390 if (unlikely(!sigismember(&list->signal, sig)))
391 return 0;
392
393 /*
394 * Collect the siginfo appropriate to this signal. Check if
395 * there is another siginfo for the same signal.
396 */
397 list_for_each_entry(q, &list->list, list) {
398 if (q->info.si_signo == sig) {
399 if (first) {
400 still_pending = 1;
401 break;
402 }
403 first = q;
404 }
405 }
406 if (first) {
407 list_del_init(&first->list);
408 copy_siginfo(info, &first->info);
409 __sigqueue_free(first);
410 if (!still_pending)
411 sigdelset(&list->signal, sig);
412 } else {
413
414 /* Ok, it wasn't in the queue. This must be
415 a fast-pathed signal or we must have been
416 out of queue space. So zero out the info.
417 */
418 sigdelset(&list->signal, sig);
419 info->si_signo = sig;
420 info->si_errno = 0;
421 info->si_code = 0;
422 info->si_pid = 0;
423 info->si_uid = 0;
424 }
425 return 1;
426 }
427
428 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
429 siginfo_t *info)
430 {
431 int sig = next_signal(pending, mask);
432
433 if (sig) {
434 if (current->notifier) {
435 if (sigismember(current->notifier_mask, sig)) {
436 if (!(current->notifier)(current->notifier_data)) {
437 clear_thread_flag(TIF_SIGPENDING);
438 return 0;
439 }
440 }
441 }
442
443 if (!collect_signal(sig, pending, info))
444 sig = 0;
445 }
446
447 return sig;
448 }
449
450 /*
451 * Dequeue a signal and return the element to the caller, which is
452 * expected to free it.
453 *
454 * All callers have to hold the siglock.
455 */
456 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
457 {
458 int signr = __dequeue_signal(&tsk->pending, mask, info);
459 if (!signr)
460 signr = __dequeue_signal(&tsk->signal->shared_pending,
461 mask, info);
462 recalc_sigpending_tsk(tsk);
463 if (signr && unlikely(sig_kernel_stop(signr))) {
464 /*
465 * Set a marker that we have dequeued a stop signal. Our
466 * caller might release the siglock and then the pending
467 * stop signal it is about to process is no longer in the
468 * pending bitmasks, but must still be cleared by a SIGCONT
469 * (and overruled by a SIGKILL). So those cases clear this
470 * shared flag after we've set it. Note that this flag may
471 * remain set after the signal we return is ignored or
472 * handled. That doesn't matter because its only purpose
473 * is to alert stop-signal processing code when another
474 * processor has come along and cleared the flag.
475 */
476 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
477 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
478 }
479 if ( signr &&
480 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
481 info->si_sys_private){
482 /*
483 * Release the siglock to ensure proper locking order
484 * of timer locks outside of siglocks. Note, we leave
485 * irqs disabled here, since the posix-timers code is
486 * about to disable them again anyway.
487 */
488 spin_unlock(&tsk->sighand->siglock);
489 do_schedule_next_timer(info);
490 spin_lock(&tsk->sighand->siglock);
491 }
492 return signr;
493 }
494
495 /*
496 * Tell a process that it has a new active signal..
497 *
498 * NOTE! we rely on the previous spin_lock to
499 * lock interrupts for us! We can only be called with
500 * "siglock" held, and the local interrupt must
501 * have been disabled when that got acquired!
502 *
503 * No need to set need_resched since signal event passing
504 * goes through ->blocked
505 */
506 void signal_wake_up(struct task_struct *t, int resume)
507 {
508 unsigned int mask;
509
510 set_tsk_thread_flag(t, TIF_SIGPENDING);
511
512 /*
513 * For SIGKILL, we want to wake it up in the stopped/traced case.
514 * We don't check t->state here because there is a race with it
515 * executing another processor and just now entering stopped state.
516 * By using wake_up_state, we ensure the process will wake up and
517 * handle its death signal.
518 */
519 mask = TASK_INTERRUPTIBLE;
520 if (resume)
521 mask |= TASK_STOPPED | TASK_TRACED;
522 if (!wake_up_state(t, mask))
523 kick_process(t);
524 }
525
526 /*
527 * Remove signals in mask from the pending set and queue.
528 * Returns 1 if any signals were found.
529 *
530 * All callers must be holding the siglock.
531 *
532 * This version takes a sigset mask and looks at all signals,
533 * not just those in the first mask word.
534 */
535 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
536 {
537 struct sigqueue *q, *n;
538 sigset_t m;
539
540 sigandsets(&m, mask, &s->signal);
541 if (sigisemptyset(&m))
542 return 0;
543
544 signandsets(&s->signal, &s->signal, mask);
545 list_for_each_entry_safe(q, n, &s->list, list) {
546 if (sigismember(mask, q->info.si_signo)) {
547 list_del_init(&q->list);
548 __sigqueue_free(q);
549 }
550 }
551 return 1;
552 }
553 /*
554 * Remove signals in mask from the pending set and queue.
555 * Returns 1 if any signals were found.
556 *
557 * All callers must be holding the siglock.
558 */
559 static int rm_from_queue(unsigned long mask, struct sigpending *s)
560 {
561 struct sigqueue *q, *n;
562
563 if (!sigtestsetmask(&s->signal, mask))
564 return 0;
565
566 sigdelsetmask(&s->signal, mask);
567 list_for_each_entry_safe(q, n, &s->list, list) {
568 if (q->info.si_signo < SIGRTMIN &&
569 (mask & sigmask(q->info.si_signo))) {
570 list_del_init(&q->list);
571 __sigqueue_free(q);
572 }
573 }
574 return 1;
575 }
576
577 /*
578 * Bad permissions for sending the signal
579 */
580 static int check_kill_permission(int sig, struct siginfo *info,
581 struct task_struct *t)
582 {
583 int error = -EINVAL;
584 if (!valid_signal(sig))
585 return error;
586 error = -EPERM;
587 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
588 && ((sig != SIGCONT) ||
589 (process_session(current) != process_session(t)))
590 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
591 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
592 && !capable(CAP_KILL))
593 return error;
594
595 error = security_task_kill(t, info, sig, 0);
596 if (!error)
597 audit_signal_info(sig, t); /* Let audit system see the signal */
598 return error;
599 }
600
601 /* forward decl */
602 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
603
604 /*
605 * Handle magic process-wide effects of stop/continue signals.
606 * Unlike the signal actions, these happen immediately at signal-generation
607 * time regardless of blocking, ignoring, or handling. This does the
608 * actual continuing for SIGCONT, but not the actual stopping for stop
609 * signals. The process stop is done as a signal action for SIG_DFL.
610 */
611 static void handle_stop_signal(int sig, struct task_struct *p)
612 {
613 struct task_struct *t;
614
615 if (p->signal->flags & SIGNAL_GROUP_EXIT)
616 /*
617 * The process is in the middle of dying already.
618 */
619 return;
620
621 if (sig_kernel_stop(sig)) {
622 /*
623 * This is a stop signal. Remove SIGCONT from all queues.
624 */
625 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
626 t = p;
627 do {
628 rm_from_queue(sigmask(SIGCONT), &t->pending);
629 t = next_thread(t);
630 } while (t != p);
631 } else if (sig == SIGCONT) {
632 /*
633 * Remove all stop signals from all queues,
634 * and wake all threads.
635 */
636 if (unlikely(p->signal->group_stop_count > 0)) {
637 /*
638 * There was a group stop in progress. We'll
639 * pretend it finished before we got here. We are
640 * obliged to report it to the parent: if the
641 * SIGSTOP happened "after" this SIGCONT, then it
642 * would have cleared this pending SIGCONT. If it
643 * happened "before" this SIGCONT, then the parent
644 * got the SIGCHLD about the stop finishing before
645 * the continue happened. We do the notification
646 * now, and it's as if the stop had finished and
647 * the SIGCHLD was pending on entry to this kill.
648 */
649 p->signal->group_stop_count = 0;
650 p->signal->flags = SIGNAL_STOP_CONTINUED;
651 spin_unlock(&p->sighand->siglock);
652 do_notify_parent_cldstop(p, CLD_STOPPED);
653 spin_lock(&p->sighand->siglock);
654 }
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
656 t = p;
657 do {
658 unsigned int state;
659 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
660
661 /*
662 * If there is a handler for SIGCONT, we must make
663 * sure that no thread returns to user mode before
664 * we post the signal, in case it was the only
665 * thread eligible to run the signal handler--then
666 * it must not do anything between resuming and
667 * running the handler. With the TIF_SIGPENDING
668 * flag set, the thread will pause and acquire the
669 * siglock that we hold now and until we've queued
670 * the pending signal.
671 *
672 * Wake up the stopped thread _after_ setting
673 * TIF_SIGPENDING
674 */
675 state = TASK_STOPPED;
676 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
677 set_tsk_thread_flag(t, TIF_SIGPENDING);
678 state |= TASK_INTERRUPTIBLE;
679 }
680 wake_up_state(t, state);
681
682 t = next_thread(t);
683 } while (t != p);
684
685 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
686 /*
687 * We were in fact stopped, and are now continued.
688 * Notify the parent with CLD_CONTINUED.
689 */
690 p->signal->flags = SIGNAL_STOP_CONTINUED;
691 p->signal->group_exit_code = 0;
692 spin_unlock(&p->sighand->siglock);
693 do_notify_parent_cldstop(p, CLD_CONTINUED);
694 spin_lock(&p->sighand->siglock);
695 } else {
696 /*
697 * We are not stopped, but there could be a stop
698 * signal in the middle of being processed after
699 * being removed from the queue. Clear that too.
700 */
701 p->signal->flags = 0;
702 }
703 } else if (sig == SIGKILL) {
704 /*
705 * Make sure that any pending stop signal already dequeued
706 * is undone by the wakeup for SIGKILL.
707 */
708 p->signal->flags = 0;
709 }
710 }
711
712 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
713 struct sigpending *signals)
714 {
715 struct sigqueue * q = NULL;
716 int ret = 0;
717
718 /*
719 * fast-pathed signals for kernel-internal things like SIGSTOP
720 * or SIGKILL.
721 */
722 if (info == SEND_SIG_FORCED)
723 goto out_set;
724
725 /* Real-time signals must be queued if sent by sigqueue, or
726 some other real-time mechanism. It is implementation
727 defined whether kill() does so. We attempt to do so, on
728 the principle of least surprise, but since kill is not
729 allowed to fail with EAGAIN when low on memory we just
730 make sure at least one signal gets delivered and don't
731 pass on the info struct. */
732
733 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
734 (is_si_special(info) ||
735 info->si_code >= 0)));
736 if (q) {
737 list_add_tail(&q->list, &signals->list);
738 switch ((unsigned long) info) {
739 case (unsigned long) SEND_SIG_NOINFO:
740 q->info.si_signo = sig;
741 q->info.si_errno = 0;
742 q->info.si_code = SI_USER;
743 q->info.si_pid = current->pid;
744 q->info.si_uid = current->uid;
745 break;
746 case (unsigned long) SEND_SIG_PRIV:
747 q->info.si_signo = sig;
748 q->info.si_errno = 0;
749 q->info.si_code = SI_KERNEL;
750 q->info.si_pid = 0;
751 q->info.si_uid = 0;
752 break;
753 default:
754 copy_siginfo(&q->info, info);
755 break;
756 }
757 } else if (!is_si_special(info)) {
758 if (sig >= SIGRTMIN && info->si_code != SI_USER)
759 /*
760 * Queue overflow, abort. We may abort if the signal was rt
761 * and sent by user using something other than kill().
762 */
763 return -EAGAIN;
764 }
765
766 out_set:
767 sigaddset(&signals->signal, sig);
768 return ret;
769 }
770
771 #define LEGACY_QUEUE(sigptr, sig) \
772 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
773
774
775 static int
776 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
777 {
778 int ret = 0;
779
780 BUG_ON(!irqs_disabled());
781 assert_spin_locked(&t->sighand->siglock);
782
783 /* Short-circuit ignored signals. */
784 if (sig_ignored(t, sig))
785 goto out;
786
787 /* Support queueing exactly one non-rt signal, so that we
788 can get more detailed information about the cause of
789 the signal. */
790 if (LEGACY_QUEUE(&t->pending, sig))
791 goto out;
792
793 ret = send_signal(sig, info, t, &t->pending);
794 if (!ret && !sigismember(&t->blocked, sig))
795 signal_wake_up(t, sig == SIGKILL);
796 out:
797 return ret;
798 }
799
800 /*
801 * Force a signal that the process can't ignore: if necessary
802 * we unblock the signal and change any SIG_IGN to SIG_DFL.
803 *
804 * Note: If we unblock the signal, we always reset it to SIG_DFL,
805 * since we do not want to have a signal handler that was blocked
806 * be invoked when user space had explicitly blocked it.
807 *
808 * We don't want to have recursive SIGSEGV's etc, for example.
809 */
810 int
811 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
812 {
813 unsigned long int flags;
814 int ret, blocked, ignored;
815 struct k_sigaction *action;
816
817 spin_lock_irqsave(&t->sighand->siglock, flags);
818 action = &t->sighand->action[sig-1];
819 ignored = action->sa.sa_handler == SIG_IGN;
820 blocked = sigismember(&t->blocked, sig);
821 if (blocked || ignored) {
822 action->sa.sa_handler = SIG_DFL;
823 if (blocked) {
824 sigdelset(&t->blocked, sig);
825 recalc_sigpending_tsk(t);
826 }
827 }
828 ret = specific_send_sig_info(sig, info, t);
829 spin_unlock_irqrestore(&t->sighand->siglock, flags);
830
831 return ret;
832 }
833
834 void
835 force_sig_specific(int sig, struct task_struct *t)
836 {
837 force_sig_info(sig, SEND_SIG_FORCED, t);
838 }
839
840 /*
841 * Test if P wants to take SIG. After we've checked all threads with this,
842 * it's equivalent to finding no threads not blocking SIG. Any threads not
843 * blocking SIG were ruled out because they are not running and already
844 * have pending signals. Such threads will dequeue from the shared queue
845 * as soon as they're available, so putting the signal on the shared queue
846 * will be equivalent to sending it to one such thread.
847 */
848 static inline int wants_signal(int sig, struct task_struct *p)
849 {
850 if (sigismember(&p->blocked, sig))
851 return 0;
852 if (p->flags & PF_EXITING)
853 return 0;
854 if (sig == SIGKILL)
855 return 1;
856 if (p->state & (TASK_STOPPED | TASK_TRACED))
857 return 0;
858 return task_curr(p) || !signal_pending(p);
859 }
860
861 static void
862 __group_complete_signal(int sig, struct task_struct *p)
863 {
864 struct task_struct *t;
865
866 /*
867 * Now find a thread we can wake up to take the signal off the queue.
868 *
869 * If the main thread wants the signal, it gets first crack.
870 * Probably the least surprising to the average bear.
871 */
872 if (wants_signal(sig, p))
873 t = p;
874 else if (thread_group_empty(p))
875 /*
876 * There is just one thread and it does not need to be woken.
877 * It will dequeue unblocked signals before it runs again.
878 */
879 return;
880 else {
881 /*
882 * Otherwise try to find a suitable thread.
883 */
884 t = p->signal->curr_target;
885 if (t == NULL)
886 /* restart balancing at this thread */
887 t = p->signal->curr_target = p;
888
889 while (!wants_signal(sig, t)) {
890 t = next_thread(t);
891 if (t == p->signal->curr_target)
892 /*
893 * No thread needs to be woken.
894 * Any eligible threads will see
895 * the signal in the queue soon.
896 */
897 return;
898 }
899 p->signal->curr_target = t;
900 }
901
902 /*
903 * Found a killable thread. If the signal will be fatal,
904 * then start taking the whole group down immediately.
905 */
906 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
907 !sigismember(&t->real_blocked, sig) &&
908 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
909 /*
910 * This signal will be fatal to the whole group.
911 */
912 if (!sig_kernel_coredump(sig)) {
913 /*
914 * Start a group exit and wake everybody up.
915 * This way we don't have other threads
916 * running and doing things after a slower
917 * thread has the fatal signal pending.
918 */
919 p->signal->flags = SIGNAL_GROUP_EXIT;
920 p->signal->group_exit_code = sig;
921 p->signal->group_stop_count = 0;
922 t = p;
923 do {
924 sigaddset(&t->pending.signal, SIGKILL);
925 signal_wake_up(t, 1);
926 t = next_thread(t);
927 } while (t != p);
928 return;
929 }
930
931 /*
932 * There will be a core dump. We make all threads other
933 * than the chosen one go into a group stop so that nothing
934 * happens until it gets scheduled, takes the signal off
935 * the shared queue, and does the core dump. This is a
936 * little more complicated than strictly necessary, but it
937 * keeps the signal state that winds up in the core dump
938 * unchanged from the death state, e.g. which thread had
939 * the core-dump signal unblocked.
940 */
941 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
942 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
943 p->signal->group_stop_count = 0;
944 p->signal->group_exit_task = t;
945 t = p;
946 do {
947 p->signal->group_stop_count++;
948 signal_wake_up(t, 0);
949 t = next_thread(t);
950 } while (t != p);
951 wake_up_process(p->signal->group_exit_task);
952 return;
953 }
954
955 /*
956 * The signal is already in the shared-pending queue.
957 * Tell the chosen thread to wake up and dequeue it.
958 */
959 signal_wake_up(t, sig == SIGKILL);
960 return;
961 }
962
963 int
964 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
965 {
966 int ret = 0;
967
968 assert_spin_locked(&p->sighand->siglock);
969 handle_stop_signal(sig, p);
970
971 /* Short-circuit ignored signals. */
972 if (sig_ignored(p, sig))
973 return ret;
974
975 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
976 /* This is a non-RT signal and we already have one queued. */
977 return ret;
978
979 /*
980 * Put this signal on the shared-pending queue, or fail with EAGAIN.
981 * We always use the shared queue for process-wide signals,
982 * to avoid several races.
983 */
984 ret = send_signal(sig, info, p, &p->signal->shared_pending);
985 if (unlikely(ret))
986 return ret;
987
988 __group_complete_signal(sig, p);
989 return 0;
990 }
991
992 /*
993 * Nuke all other threads in the group.
994 */
995 void zap_other_threads(struct task_struct *p)
996 {
997 struct task_struct *t;
998
999 p->signal->flags = SIGNAL_GROUP_EXIT;
1000 p->signal->group_stop_count = 0;
1001
1002 if (thread_group_empty(p))
1003 return;
1004
1005 for (t = next_thread(p); t != p; t = next_thread(t)) {
1006 /*
1007 * Don't bother with already dead threads
1008 */
1009 if (t->exit_state)
1010 continue;
1011
1012 /*
1013 * We don't want to notify the parent, since we are
1014 * killed as part of a thread group due to another
1015 * thread doing an execve() or similar. So set the
1016 * exit signal to -1 to allow immediate reaping of
1017 * the process. But don't detach the thread group
1018 * leader.
1019 */
1020 if (t != p->group_leader)
1021 t->exit_signal = -1;
1022
1023 /* SIGKILL will be handled before any pending SIGSTOP */
1024 sigaddset(&t->pending.signal, SIGKILL);
1025 signal_wake_up(t, 1);
1026 }
1027 }
1028
1029 /*
1030 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1031 */
1032 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1033 {
1034 struct sighand_struct *sighand;
1035
1036 for (;;) {
1037 sighand = rcu_dereference(tsk->sighand);
1038 if (unlikely(sighand == NULL))
1039 break;
1040
1041 spin_lock_irqsave(&sighand->siglock, *flags);
1042 if (likely(sighand == tsk->sighand))
1043 break;
1044 spin_unlock_irqrestore(&sighand->siglock, *flags);
1045 }
1046
1047 return sighand;
1048 }
1049
1050 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1051 {
1052 unsigned long flags;
1053 int ret;
1054
1055 ret = check_kill_permission(sig, info, p);
1056
1057 if (!ret && sig) {
1058 ret = -ESRCH;
1059 if (lock_task_sighand(p, &flags)) {
1060 ret = __group_send_sig_info(sig, info, p);
1061 unlock_task_sighand(p, &flags);
1062 }
1063 }
1064
1065 return ret;
1066 }
1067
1068 /*
1069 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1070 * control characters do (^C, ^Z etc)
1071 */
1072
1073 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1074 {
1075 struct task_struct *p = NULL;
1076 int retval, success;
1077
1078 success = 0;
1079 retval = -ESRCH;
1080 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1081 int err = group_send_sig_info(sig, info, p);
1082 success |= !err;
1083 retval = err;
1084 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1085 return success ? 0 : retval;
1086 }
1087
1088 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1089 {
1090 int retval;
1091
1092 read_lock(&tasklist_lock);
1093 retval = __kill_pgrp_info(sig, info, pgrp);
1094 read_unlock(&tasklist_lock);
1095
1096 return retval;
1097 }
1098
1099 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1100 {
1101 if (pgrp <= 0)
1102 return -EINVAL;
1103
1104 return __kill_pgrp_info(sig, info, find_pid(pgrp));
1105 }
1106
1107 int
1108 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1109 {
1110 int retval;
1111
1112 read_lock(&tasklist_lock);
1113 retval = __kill_pg_info(sig, info, pgrp);
1114 read_unlock(&tasklist_lock);
1115
1116 return retval;
1117 }
1118
1119 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1120 {
1121 int error;
1122 int acquired_tasklist_lock = 0;
1123 struct task_struct *p;
1124
1125 rcu_read_lock();
1126 if (unlikely(sig_needs_tasklist(sig))) {
1127 read_lock(&tasklist_lock);
1128 acquired_tasklist_lock = 1;
1129 }
1130 p = pid_task(pid, PIDTYPE_PID);
1131 error = -ESRCH;
1132 if (p)
1133 error = group_send_sig_info(sig, info, p);
1134 if (unlikely(acquired_tasklist_lock))
1135 read_unlock(&tasklist_lock);
1136 rcu_read_unlock();
1137 return error;
1138 }
1139
1140 int
1141 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1142 {
1143 int error;
1144 rcu_read_lock();
1145 error = kill_pid_info(sig, info, find_pid(pid));
1146 rcu_read_unlock();
1147 return error;
1148 }
1149
1150 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1151 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1152 uid_t uid, uid_t euid, u32 secid)
1153 {
1154 int ret = -EINVAL;
1155 struct task_struct *p;
1156
1157 if (!valid_signal(sig))
1158 return ret;
1159
1160 read_lock(&tasklist_lock);
1161 p = pid_task(pid, PIDTYPE_PID);
1162 if (!p) {
1163 ret = -ESRCH;
1164 goto out_unlock;
1165 }
1166 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1167 && (euid != p->suid) && (euid != p->uid)
1168 && (uid != p->suid) && (uid != p->uid)) {
1169 ret = -EPERM;
1170 goto out_unlock;
1171 }
1172 ret = security_task_kill(p, info, sig, secid);
1173 if (ret)
1174 goto out_unlock;
1175 if (sig && p->sighand) {
1176 unsigned long flags;
1177 spin_lock_irqsave(&p->sighand->siglock, flags);
1178 ret = __group_send_sig_info(sig, info, p);
1179 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1180 }
1181 out_unlock:
1182 read_unlock(&tasklist_lock);
1183 return ret;
1184 }
1185 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1186
1187 /*
1188 * kill_something_info() interprets pid in interesting ways just like kill(2).
1189 *
1190 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1191 * is probably wrong. Should make it like BSD or SYSV.
1192 */
1193
1194 static int kill_something_info(int sig, struct siginfo *info, int pid)
1195 {
1196 if (!pid) {
1197 return kill_pg_info(sig, info, process_group(current));
1198 } else if (pid == -1) {
1199 int retval = 0, count = 0;
1200 struct task_struct * p;
1201
1202 read_lock(&tasklist_lock);
1203 for_each_process(p) {
1204 if (p->pid > 1 && p->tgid != current->tgid) {
1205 int err = group_send_sig_info(sig, info, p);
1206 ++count;
1207 if (err != -EPERM)
1208 retval = err;
1209 }
1210 }
1211 read_unlock(&tasklist_lock);
1212 return count ? retval : -ESRCH;
1213 } else if (pid < 0) {
1214 return kill_pg_info(sig, info, -pid);
1215 } else {
1216 return kill_proc_info(sig, info, pid);
1217 }
1218 }
1219
1220 /*
1221 * These are for backward compatibility with the rest of the kernel source.
1222 */
1223
1224 /*
1225 * These two are the most common entry points. They send a signal
1226 * just to the specific thread.
1227 */
1228 int
1229 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1230 {
1231 int ret;
1232 unsigned long flags;
1233
1234 /*
1235 * Make sure legacy kernel users don't send in bad values
1236 * (normal paths check this in check_kill_permission).
1237 */
1238 if (!valid_signal(sig))
1239 return -EINVAL;
1240
1241 /*
1242 * We need the tasklist lock even for the specific
1243 * thread case (when we don't need to follow the group
1244 * lists) in order to avoid races with "p->sighand"
1245 * going away or changing from under us.
1246 */
1247 read_lock(&tasklist_lock);
1248 spin_lock_irqsave(&p->sighand->siglock, flags);
1249 ret = specific_send_sig_info(sig, info, p);
1250 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1251 read_unlock(&tasklist_lock);
1252 return ret;
1253 }
1254
1255 #define __si_special(priv) \
1256 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1257
1258 int
1259 send_sig(int sig, struct task_struct *p, int priv)
1260 {
1261 return send_sig_info(sig, __si_special(priv), p);
1262 }
1263
1264 /*
1265 * This is the entry point for "process-wide" signals.
1266 * They will go to an appropriate thread in the thread group.
1267 */
1268 int
1269 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1270 {
1271 int ret;
1272 read_lock(&tasklist_lock);
1273 ret = group_send_sig_info(sig, info, p);
1274 read_unlock(&tasklist_lock);
1275 return ret;
1276 }
1277
1278 void
1279 force_sig(int sig, struct task_struct *p)
1280 {
1281 force_sig_info(sig, SEND_SIG_PRIV, p);
1282 }
1283
1284 /*
1285 * When things go south during signal handling, we
1286 * will force a SIGSEGV. And if the signal that caused
1287 * the problem was already a SIGSEGV, we'll want to
1288 * make sure we don't even try to deliver the signal..
1289 */
1290 int
1291 force_sigsegv(int sig, struct task_struct *p)
1292 {
1293 if (sig == SIGSEGV) {
1294 unsigned long flags;
1295 spin_lock_irqsave(&p->sighand->siglock, flags);
1296 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1297 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1298 }
1299 force_sig(SIGSEGV, p);
1300 return 0;
1301 }
1302
1303 int kill_pgrp(struct pid *pid, int sig, int priv)
1304 {
1305 return kill_pgrp_info(sig, __si_special(priv), pid);
1306 }
1307 EXPORT_SYMBOL(kill_pgrp);
1308
1309 int kill_pid(struct pid *pid, int sig, int priv)
1310 {
1311 return kill_pid_info(sig, __si_special(priv), pid);
1312 }
1313 EXPORT_SYMBOL(kill_pid);
1314
1315 int
1316 kill_pg(pid_t pgrp, int sig, int priv)
1317 {
1318 return kill_pg_info(sig, __si_special(priv), pgrp);
1319 }
1320
1321 int
1322 kill_proc(pid_t pid, int sig, int priv)
1323 {
1324 return kill_proc_info(sig, __si_special(priv), pid);
1325 }
1326
1327 /*
1328 * These functions support sending signals using preallocated sigqueue
1329 * structures. This is needed "because realtime applications cannot
1330 * afford to lose notifications of asynchronous events, like timer
1331 * expirations or I/O completions". In the case of Posix Timers
1332 * we allocate the sigqueue structure from the timer_create. If this
1333 * allocation fails we are able to report the failure to the application
1334 * with an EAGAIN error.
1335 */
1336
1337 struct sigqueue *sigqueue_alloc(void)
1338 {
1339 struct sigqueue *q;
1340
1341 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1342 q->flags |= SIGQUEUE_PREALLOC;
1343 return(q);
1344 }
1345
1346 void sigqueue_free(struct sigqueue *q)
1347 {
1348 unsigned long flags;
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1350 /*
1351 * If the signal is still pending remove it from the
1352 * pending queue.
1353 */
1354 if (unlikely(!list_empty(&q->list))) {
1355 spinlock_t *lock = &current->sighand->siglock;
1356 read_lock(&tasklist_lock);
1357 spin_lock_irqsave(lock, flags);
1358 if (!list_empty(&q->list))
1359 list_del_init(&q->list);
1360 spin_unlock_irqrestore(lock, flags);
1361 read_unlock(&tasklist_lock);
1362 }
1363 q->flags &= ~SIGQUEUE_PREALLOC;
1364 __sigqueue_free(q);
1365 }
1366
1367 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1368 {
1369 unsigned long flags;
1370 int ret = 0;
1371
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373
1374 /*
1375 * The rcu based delayed sighand destroy makes it possible to
1376 * run this without tasklist lock held. The task struct itself
1377 * cannot go away as create_timer did get_task_struct().
1378 *
1379 * We return -1, when the task is marked exiting, so
1380 * posix_timer_event can redirect it to the group leader
1381 */
1382 rcu_read_lock();
1383
1384 if (!likely(lock_task_sighand(p, &flags))) {
1385 ret = -1;
1386 goto out_err;
1387 }
1388
1389 if (unlikely(!list_empty(&q->list))) {
1390 /*
1391 * If an SI_TIMER entry is already queue just increment
1392 * the overrun count.
1393 */
1394 BUG_ON(q->info.si_code != SI_TIMER);
1395 q->info.si_overrun++;
1396 goto out;
1397 }
1398 /* Short-circuit ignored signals. */
1399 if (sig_ignored(p, sig)) {
1400 ret = 1;
1401 goto out;
1402 }
1403
1404 list_add_tail(&q->list, &p->pending.list);
1405 sigaddset(&p->pending.signal, sig);
1406 if (!sigismember(&p->blocked, sig))
1407 signal_wake_up(p, sig == SIGKILL);
1408
1409 out:
1410 unlock_task_sighand(p, &flags);
1411 out_err:
1412 rcu_read_unlock();
1413
1414 return ret;
1415 }
1416
1417 int
1418 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1419 {
1420 unsigned long flags;
1421 int ret = 0;
1422
1423 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1424
1425 read_lock(&tasklist_lock);
1426 /* Since it_lock is held, p->sighand cannot be NULL. */
1427 spin_lock_irqsave(&p->sighand->siglock, flags);
1428 handle_stop_signal(sig, p);
1429
1430 /* Short-circuit ignored signals. */
1431 if (sig_ignored(p, sig)) {
1432 ret = 1;
1433 goto out;
1434 }
1435
1436 if (unlikely(!list_empty(&q->list))) {
1437 /*
1438 * If an SI_TIMER entry is already queue just increment
1439 * the overrun count. Other uses should not try to
1440 * send the signal multiple times.
1441 */
1442 BUG_ON(q->info.si_code != SI_TIMER);
1443 q->info.si_overrun++;
1444 goto out;
1445 }
1446
1447 /*
1448 * Put this signal on the shared-pending queue.
1449 * We always use the shared queue for process-wide signals,
1450 * to avoid several races.
1451 */
1452 list_add_tail(&q->list, &p->signal->shared_pending.list);
1453 sigaddset(&p->signal->shared_pending.signal, sig);
1454
1455 __group_complete_signal(sig, p);
1456 out:
1457 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1458 read_unlock(&tasklist_lock);
1459 return ret;
1460 }
1461
1462 /*
1463 * Wake up any threads in the parent blocked in wait* syscalls.
1464 */
1465 static inline void __wake_up_parent(struct task_struct *p,
1466 struct task_struct *parent)
1467 {
1468 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1469 }
1470
1471 /*
1472 * Let a parent know about the death of a child.
1473 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1474 */
1475
1476 void do_notify_parent(struct task_struct *tsk, int sig)
1477 {
1478 struct siginfo info;
1479 unsigned long flags;
1480 struct sighand_struct *psig;
1481
1482 BUG_ON(sig == -1);
1483
1484 /* do_notify_parent_cldstop should have been called instead. */
1485 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1486
1487 BUG_ON(!tsk->ptrace &&
1488 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1489
1490 info.si_signo = sig;
1491 info.si_errno = 0;
1492 info.si_pid = tsk->pid;
1493 info.si_uid = tsk->uid;
1494
1495 /* FIXME: find out whether or not this is supposed to be c*time. */
1496 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1497 tsk->signal->utime));
1498 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1499 tsk->signal->stime));
1500
1501 info.si_status = tsk->exit_code & 0x7f;
1502 if (tsk->exit_code & 0x80)
1503 info.si_code = CLD_DUMPED;
1504 else if (tsk->exit_code & 0x7f)
1505 info.si_code = CLD_KILLED;
1506 else {
1507 info.si_code = CLD_EXITED;
1508 info.si_status = tsk->exit_code >> 8;
1509 }
1510
1511 psig = tsk->parent->sighand;
1512 spin_lock_irqsave(&psig->siglock, flags);
1513 if (!tsk->ptrace && sig == SIGCHLD &&
1514 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1515 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1516 /*
1517 * We are exiting and our parent doesn't care. POSIX.1
1518 * defines special semantics for setting SIGCHLD to SIG_IGN
1519 * or setting the SA_NOCLDWAIT flag: we should be reaped
1520 * automatically and not left for our parent's wait4 call.
1521 * Rather than having the parent do it as a magic kind of
1522 * signal handler, we just set this to tell do_exit that we
1523 * can be cleaned up without becoming a zombie. Note that
1524 * we still call __wake_up_parent in this case, because a
1525 * blocked sys_wait4 might now return -ECHILD.
1526 *
1527 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1528 * is implementation-defined: we do (if you don't want
1529 * it, just use SIG_IGN instead).
1530 */
1531 tsk->exit_signal = -1;
1532 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1533 sig = 0;
1534 }
1535 if (valid_signal(sig) && sig > 0)
1536 __group_send_sig_info(sig, &info, tsk->parent);
1537 __wake_up_parent(tsk, tsk->parent);
1538 spin_unlock_irqrestore(&psig->siglock, flags);
1539 }
1540
1541 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1542 {
1543 struct siginfo info;
1544 unsigned long flags;
1545 struct task_struct *parent;
1546 struct sighand_struct *sighand;
1547
1548 if (tsk->ptrace & PT_PTRACED)
1549 parent = tsk->parent;
1550 else {
1551 tsk = tsk->group_leader;
1552 parent = tsk->real_parent;
1553 }
1554
1555 info.si_signo = SIGCHLD;
1556 info.si_errno = 0;
1557 info.si_pid = tsk->pid;
1558 info.si_uid = tsk->uid;
1559
1560 /* FIXME: find out whether or not this is supposed to be c*time. */
1561 info.si_utime = cputime_to_jiffies(tsk->utime);
1562 info.si_stime = cputime_to_jiffies(tsk->stime);
1563
1564 info.si_code = why;
1565 switch (why) {
1566 case CLD_CONTINUED:
1567 info.si_status = SIGCONT;
1568 break;
1569 case CLD_STOPPED:
1570 info.si_status = tsk->signal->group_exit_code & 0x7f;
1571 break;
1572 case CLD_TRAPPED:
1573 info.si_status = tsk->exit_code & 0x7f;
1574 break;
1575 default:
1576 BUG();
1577 }
1578
1579 sighand = parent->sighand;
1580 spin_lock_irqsave(&sighand->siglock, flags);
1581 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1582 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1583 __group_send_sig_info(SIGCHLD, &info, parent);
1584 /*
1585 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1586 */
1587 __wake_up_parent(tsk, parent);
1588 spin_unlock_irqrestore(&sighand->siglock, flags);
1589 }
1590
1591 static inline int may_ptrace_stop(void)
1592 {
1593 if (!likely(current->ptrace & PT_PTRACED))
1594 return 0;
1595
1596 if (unlikely(current->parent == current->real_parent &&
1597 (current->ptrace & PT_ATTACHED)))
1598 return 0;
1599
1600 if (unlikely(current->signal == current->parent->signal) &&
1601 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1602 return 0;
1603
1604 /*
1605 * Are we in the middle of do_coredump?
1606 * If so and our tracer is also part of the coredump stopping
1607 * is a deadlock situation, and pointless because our tracer
1608 * is dead so don't allow us to stop.
1609 * If SIGKILL was already sent before the caller unlocked
1610 * ->siglock we must see ->core_waiters != 0. Otherwise it
1611 * is safe to enter schedule().
1612 */
1613 if (unlikely(current->mm->core_waiters) &&
1614 unlikely(current->mm == current->parent->mm))
1615 return 0;
1616
1617 return 1;
1618 }
1619
1620 /*
1621 * This must be called with current->sighand->siglock held.
1622 *
1623 * This should be the path for all ptrace stops.
1624 * We always set current->last_siginfo while stopped here.
1625 * That makes it a way to test a stopped process for
1626 * being ptrace-stopped vs being job-control-stopped.
1627 *
1628 * If we actually decide not to stop at all because the tracer is gone,
1629 * we leave nostop_code in current->exit_code.
1630 */
1631 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1632 {
1633 /*
1634 * If there is a group stop in progress,
1635 * we must participate in the bookkeeping.
1636 */
1637 if (current->signal->group_stop_count > 0)
1638 --current->signal->group_stop_count;
1639
1640 current->last_siginfo = info;
1641 current->exit_code = exit_code;
1642
1643 /* Let the debugger run. */
1644 set_current_state(TASK_TRACED);
1645 spin_unlock_irq(&current->sighand->siglock);
1646 try_to_freeze();
1647 read_lock(&tasklist_lock);
1648 if (may_ptrace_stop()) {
1649 do_notify_parent_cldstop(current, CLD_TRAPPED);
1650 read_unlock(&tasklist_lock);
1651 schedule();
1652 } else {
1653 /*
1654 * By the time we got the lock, our tracer went away.
1655 * Don't stop here.
1656 */
1657 read_unlock(&tasklist_lock);
1658 set_current_state(TASK_RUNNING);
1659 current->exit_code = nostop_code;
1660 }
1661
1662 /*
1663 * We are back. Now reacquire the siglock before touching
1664 * last_siginfo, so that we are sure to have synchronized with
1665 * any signal-sending on another CPU that wants to examine it.
1666 */
1667 spin_lock_irq(&current->sighand->siglock);
1668 current->last_siginfo = NULL;
1669
1670 /*
1671 * Queued signals ignored us while we were stopped for tracing.
1672 * So check for any that we should take before resuming user mode.
1673 */
1674 recalc_sigpending();
1675 }
1676
1677 void ptrace_notify(int exit_code)
1678 {
1679 siginfo_t info;
1680
1681 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1682
1683 memset(&info, 0, sizeof info);
1684 info.si_signo = SIGTRAP;
1685 info.si_code = exit_code;
1686 info.si_pid = current->pid;
1687 info.si_uid = current->uid;
1688
1689 /* Let the debugger run. */
1690 spin_lock_irq(&current->sighand->siglock);
1691 ptrace_stop(exit_code, 0, &info);
1692 spin_unlock_irq(&current->sighand->siglock);
1693 }
1694
1695 static void
1696 finish_stop(int stop_count)
1697 {
1698 /*
1699 * If there are no other threads in the group, or if there is
1700 * a group stop in progress and we are the last to stop,
1701 * report to the parent. When ptraced, every thread reports itself.
1702 */
1703 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1704 read_lock(&tasklist_lock);
1705 do_notify_parent_cldstop(current, CLD_STOPPED);
1706 read_unlock(&tasklist_lock);
1707 }
1708
1709 do {
1710 schedule();
1711 } while (try_to_freeze());
1712 /*
1713 * Now we don't run again until continued.
1714 */
1715 current->exit_code = 0;
1716 }
1717
1718 /*
1719 * This performs the stopping for SIGSTOP and other stop signals.
1720 * We have to stop all threads in the thread group.
1721 * Returns nonzero if we've actually stopped and released the siglock.
1722 * Returns zero if we didn't stop and still hold the siglock.
1723 */
1724 static int do_signal_stop(int signr)
1725 {
1726 struct signal_struct *sig = current->signal;
1727 int stop_count;
1728
1729 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1730 return 0;
1731
1732 if (sig->group_stop_count > 0) {
1733 /*
1734 * There is a group stop in progress. We don't need to
1735 * start another one.
1736 */
1737 stop_count = --sig->group_stop_count;
1738 } else {
1739 /*
1740 * There is no group stop already in progress.
1741 * We must initiate one now.
1742 */
1743 struct task_struct *t;
1744
1745 sig->group_exit_code = signr;
1746
1747 stop_count = 0;
1748 for (t = next_thread(current); t != current; t = next_thread(t))
1749 /*
1750 * Setting state to TASK_STOPPED for a group
1751 * stop is always done with the siglock held,
1752 * so this check has no races.
1753 */
1754 if (!t->exit_state &&
1755 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1756 stop_count++;
1757 signal_wake_up(t, 0);
1758 }
1759 sig->group_stop_count = stop_count;
1760 }
1761
1762 if (stop_count == 0)
1763 sig->flags = SIGNAL_STOP_STOPPED;
1764 current->exit_code = sig->group_exit_code;
1765 __set_current_state(TASK_STOPPED);
1766
1767 spin_unlock_irq(&current->sighand->siglock);
1768 finish_stop(stop_count);
1769 return 1;
1770 }
1771
1772 /*
1773 * Do appropriate magic when group_stop_count > 0.
1774 * We return nonzero if we stopped, after releasing the siglock.
1775 * We return zero if we still hold the siglock and should look
1776 * for another signal without checking group_stop_count again.
1777 */
1778 static int handle_group_stop(void)
1779 {
1780 int stop_count;
1781
1782 if (current->signal->group_exit_task == current) {
1783 /*
1784 * Group stop is so we can do a core dump,
1785 * We are the initiating thread, so get on with it.
1786 */
1787 current->signal->group_exit_task = NULL;
1788 return 0;
1789 }
1790
1791 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1792 /*
1793 * Group stop is so another thread can do a core dump,
1794 * or else we are racing against a death signal.
1795 * Just punt the stop so we can get the next signal.
1796 */
1797 return 0;
1798
1799 /*
1800 * There is a group stop in progress. We stop
1801 * without any associated signal being in our queue.
1802 */
1803 stop_count = --current->signal->group_stop_count;
1804 if (stop_count == 0)
1805 current->signal->flags = SIGNAL_STOP_STOPPED;
1806 current->exit_code = current->signal->group_exit_code;
1807 set_current_state(TASK_STOPPED);
1808 spin_unlock_irq(&current->sighand->siglock);
1809 finish_stop(stop_count);
1810 return 1;
1811 }
1812
1813 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1814 struct pt_regs *regs, void *cookie)
1815 {
1816 sigset_t *mask = &current->blocked;
1817 int signr = 0;
1818
1819 try_to_freeze();
1820
1821 relock:
1822 spin_lock_irq(&current->sighand->siglock);
1823 for (;;) {
1824 struct k_sigaction *ka;
1825
1826 if (unlikely(current->signal->group_stop_count > 0) &&
1827 handle_group_stop())
1828 goto relock;
1829
1830 signr = dequeue_signal(current, mask, info);
1831
1832 if (!signr)
1833 break; /* will return 0 */
1834
1835 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1836 ptrace_signal_deliver(regs, cookie);
1837
1838 /* Let the debugger run. */
1839 ptrace_stop(signr, signr, info);
1840
1841 /* We're back. Did the debugger cancel the sig? */
1842 signr = current->exit_code;
1843 if (signr == 0)
1844 continue;
1845
1846 current->exit_code = 0;
1847
1848 /* Update the siginfo structure if the signal has
1849 changed. If the debugger wanted something
1850 specific in the siginfo structure then it should
1851 have updated *info via PTRACE_SETSIGINFO. */
1852 if (signr != info->si_signo) {
1853 info->si_signo = signr;
1854 info->si_errno = 0;
1855 info->si_code = SI_USER;
1856 info->si_pid = current->parent->pid;
1857 info->si_uid = current->parent->uid;
1858 }
1859
1860 /* If the (new) signal is now blocked, requeue it. */
1861 if (sigismember(&current->blocked, signr)) {
1862 specific_send_sig_info(signr, info, current);
1863 continue;
1864 }
1865 }
1866
1867 ka = &current->sighand->action[signr-1];
1868 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1869 continue;
1870 if (ka->sa.sa_handler != SIG_DFL) {
1871 /* Run the handler. */
1872 *return_ka = *ka;
1873
1874 if (ka->sa.sa_flags & SA_ONESHOT)
1875 ka->sa.sa_handler = SIG_DFL;
1876
1877 break; /* will return non-zero "signr" value */
1878 }
1879
1880 /*
1881 * Now we are doing the default action for this signal.
1882 */
1883 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1884 continue;
1885
1886 /*
1887 * Init of a pid space gets no signals it doesn't want from
1888 * within that pid space. It can of course get signals from
1889 * its parent pid space.
1890 */
1891 if (current == child_reaper(current))
1892 continue;
1893
1894 if (sig_kernel_stop(signr)) {
1895 /*
1896 * The default action is to stop all threads in
1897 * the thread group. The job control signals
1898 * do nothing in an orphaned pgrp, but SIGSTOP
1899 * always works. Note that siglock needs to be
1900 * dropped during the call to is_orphaned_pgrp()
1901 * because of lock ordering with tasklist_lock.
1902 * This allows an intervening SIGCONT to be posted.
1903 * We need to check for that and bail out if necessary.
1904 */
1905 if (signr != SIGSTOP) {
1906 spin_unlock_irq(&current->sighand->siglock);
1907
1908 /* signals can be posted during this window */
1909
1910 if (is_orphaned_pgrp(process_group(current)))
1911 goto relock;
1912
1913 spin_lock_irq(&current->sighand->siglock);
1914 }
1915
1916 if (likely(do_signal_stop(signr))) {
1917 /* It released the siglock. */
1918 goto relock;
1919 }
1920
1921 /*
1922 * We didn't actually stop, due to a race
1923 * with SIGCONT or something like that.
1924 */
1925 continue;
1926 }
1927
1928 spin_unlock_irq(&current->sighand->siglock);
1929
1930 /*
1931 * Anything else is fatal, maybe with a core dump.
1932 */
1933 current->flags |= PF_SIGNALED;
1934 if (sig_kernel_coredump(signr)) {
1935 /*
1936 * If it was able to dump core, this kills all
1937 * other threads in the group and synchronizes with
1938 * their demise. If we lost the race with another
1939 * thread getting here, it set group_exit_code
1940 * first and our do_group_exit call below will use
1941 * that value and ignore the one we pass it.
1942 */
1943 do_coredump((long)signr, signr, regs);
1944 }
1945
1946 /*
1947 * Death signals, no core dump.
1948 */
1949 do_group_exit(signr);
1950 /* NOTREACHED */
1951 }
1952 spin_unlock_irq(&current->sighand->siglock);
1953 return signr;
1954 }
1955
1956 EXPORT_SYMBOL(recalc_sigpending);
1957 EXPORT_SYMBOL_GPL(dequeue_signal);
1958 EXPORT_SYMBOL(flush_signals);
1959 EXPORT_SYMBOL(force_sig);
1960 EXPORT_SYMBOL(kill_pg);
1961 EXPORT_SYMBOL(kill_proc);
1962 EXPORT_SYMBOL(ptrace_notify);
1963 EXPORT_SYMBOL(send_sig);
1964 EXPORT_SYMBOL(send_sig_info);
1965 EXPORT_SYMBOL(sigprocmask);
1966 EXPORT_SYMBOL(block_all_signals);
1967 EXPORT_SYMBOL(unblock_all_signals);
1968
1969
1970 /*
1971 * System call entry points.
1972 */
1973
1974 asmlinkage long sys_restart_syscall(void)
1975 {
1976 struct restart_block *restart = &current_thread_info()->restart_block;
1977 return restart->fn(restart);
1978 }
1979
1980 long do_no_restart_syscall(struct restart_block *param)
1981 {
1982 return -EINTR;
1983 }
1984
1985 /*
1986 * We don't need to get the kernel lock - this is all local to this
1987 * particular thread.. (and that's good, because this is _heavily_
1988 * used by various programs)
1989 */
1990
1991 /*
1992 * This is also useful for kernel threads that want to temporarily
1993 * (or permanently) block certain signals.
1994 *
1995 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1996 * interface happily blocks "unblockable" signals like SIGKILL
1997 * and friends.
1998 */
1999 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2000 {
2001 int error;
2002
2003 spin_lock_irq(&current->sighand->siglock);
2004 if (oldset)
2005 *oldset = current->blocked;
2006
2007 error = 0;
2008 switch (how) {
2009 case SIG_BLOCK:
2010 sigorsets(&current->blocked, &current->blocked, set);
2011 break;
2012 case SIG_UNBLOCK:
2013 signandsets(&current->blocked, &current->blocked, set);
2014 break;
2015 case SIG_SETMASK:
2016 current->blocked = *set;
2017 break;
2018 default:
2019 error = -EINVAL;
2020 }
2021 recalc_sigpending();
2022 spin_unlock_irq(&current->sighand->siglock);
2023
2024 return error;
2025 }
2026
2027 asmlinkage long
2028 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2029 {
2030 int error = -EINVAL;
2031 sigset_t old_set, new_set;
2032
2033 /* XXX: Don't preclude handling different sized sigset_t's. */
2034 if (sigsetsize != sizeof(sigset_t))
2035 goto out;
2036
2037 if (set) {
2038 error = -EFAULT;
2039 if (copy_from_user(&new_set, set, sizeof(*set)))
2040 goto out;
2041 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2042
2043 error = sigprocmask(how, &new_set, &old_set);
2044 if (error)
2045 goto out;
2046 if (oset)
2047 goto set_old;
2048 } else if (oset) {
2049 spin_lock_irq(&current->sighand->siglock);
2050 old_set = current->blocked;
2051 spin_unlock_irq(&current->sighand->siglock);
2052
2053 set_old:
2054 error = -EFAULT;
2055 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2056 goto out;
2057 }
2058 error = 0;
2059 out:
2060 return error;
2061 }
2062
2063 long do_sigpending(void __user *set, unsigned long sigsetsize)
2064 {
2065 long error = -EINVAL;
2066 sigset_t pending;
2067
2068 if (sigsetsize > sizeof(sigset_t))
2069 goto out;
2070
2071 spin_lock_irq(&current->sighand->siglock);
2072 sigorsets(&pending, &current->pending.signal,
2073 &current->signal->shared_pending.signal);
2074 spin_unlock_irq(&current->sighand->siglock);
2075
2076 /* Outside the lock because only this thread touches it. */
2077 sigandsets(&pending, &current->blocked, &pending);
2078
2079 error = -EFAULT;
2080 if (!copy_to_user(set, &pending, sigsetsize))
2081 error = 0;
2082
2083 out:
2084 return error;
2085 }
2086
2087 asmlinkage long
2088 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2089 {
2090 return do_sigpending(set, sigsetsize);
2091 }
2092
2093 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2094
2095 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2096 {
2097 int err;
2098
2099 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2100 return -EFAULT;
2101 if (from->si_code < 0)
2102 return __copy_to_user(to, from, sizeof(siginfo_t))
2103 ? -EFAULT : 0;
2104 /*
2105 * If you change siginfo_t structure, please be sure
2106 * this code is fixed accordingly.
2107 * It should never copy any pad contained in the structure
2108 * to avoid security leaks, but must copy the generic
2109 * 3 ints plus the relevant union member.
2110 */
2111 err = __put_user(from->si_signo, &to->si_signo);
2112 err |= __put_user(from->si_errno, &to->si_errno);
2113 err |= __put_user((short)from->si_code, &to->si_code);
2114 switch (from->si_code & __SI_MASK) {
2115 case __SI_KILL:
2116 err |= __put_user(from->si_pid, &to->si_pid);
2117 err |= __put_user(from->si_uid, &to->si_uid);
2118 break;
2119 case __SI_TIMER:
2120 err |= __put_user(from->si_tid, &to->si_tid);
2121 err |= __put_user(from->si_overrun, &to->si_overrun);
2122 err |= __put_user(from->si_ptr, &to->si_ptr);
2123 break;
2124 case __SI_POLL:
2125 err |= __put_user(from->si_band, &to->si_band);
2126 err |= __put_user(from->si_fd, &to->si_fd);
2127 break;
2128 case __SI_FAULT:
2129 err |= __put_user(from->si_addr, &to->si_addr);
2130 #ifdef __ARCH_SI_TRAPNO
2131 err |= __put_user(from->si_trapno, &to->si_trapno);
2132 #endif
2133 break;
2134 case __SI_CHLD:
2135 err |= __put_user(from->si_pid, &to->si_pid);
2136 err |= __put_user(from->si_uid, &to->si_uid);
2137 err |= __put_user(from->si_status, &to->si_status);
2138 err |= __put_user(from->si_utime, &to->si_utime);
2139 err |= __put_user(from->si_stime, &to->si_stime);
2140 break;
2141 case __SI_RT: /* This is not generated by the kernel as of now. */
2142 case __SI_MESGQ: /* But this is */
2143 err |= __put_user(from->si_pid, &to->si_pid);
2144 err |= __put_user(from->si_uid, &to->si_uid);
2145 err |= __put_user(from->si_ptr, &to->si_ptr);
2146 break;
2147 default: /* this is just in case for now ... */
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 break;
2151 }
2152 return err;
2153 }
2154
2155 #endif
2156
2157 asmlinkage long
2158 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2159 siginfo_t __user *uinfo,
2160 const struct timespec __user *uts,
2161 size_t sigsetsize)
2162 {
2163 int ret, sig;
2164 sigset_t these;
2165 struct timespec ts;
2166 siginfo_t info;
2167 long timeout = 0;
2168
2169 /* XXX: Don't preclude handling different sized sigset_t's. */
2170 if (sigsetsize != sizeof(sigset_t))
2171 return -EINVAL;
2172
2173 if (copy_from_user(&these, uthese, sizeof(these)))
2174 return -EFAULT;
2175
2176 /*
2177 * Invert the set of allowed signals to get those we
2178 * want to block.
2179 */
2180 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2181 signotset(&these);
2182
2183 if (uts) {
2184 if (copy_from_user(&ts, uts, sizeof(ts)))
2185 return -EFAULT;
2186 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2187 || ts.tv_sec < 0)
2188 return -EINVAL;
2189 }
2190
2191 spin_lock_irq(&current->sighand->siglock);
2192 sig = dequeue_signal(current, &these, &info);
2193 if (!sig) {
2194 timeout = MAX_SCHEDULE_TIMEOUT;
2195 if (uts)
2196 timeout = (timespec_to_jiffies(&ts)
2197 + (ts.tv_sec || ts.tv_nsec));
2198
2199 if (timeout) {
2200 /* None ready -- temporarily unblock those we're
2201 * interested while we are sleeping in so that we'll
2202 * be awakened when they arrive. */
2203 current->real_blocked = current->blocked;
2204 sigandsets(&current->blocked, &current->blocked, &these);
2205 recalc_sigpending();
2206 spin_unlock_irq(&current->sighand->siglock);
2207
2208 timeout = schedule_timeout_interruptible(timeout);
2209
2210 spin_lock_irq(&current->sighand->siglock);
2211 sig = dequeue_signal(current, &these, &info);
2212 current->blocked = current->real_blocked;
2213 siginitset(&current->real_blocked, 0);
2214 recalc_sigpending();
2215 }
2216 }
2217 spin_unlock_irq(&current->sighand->siglock);
2218
2219 if (sig) {
2220 ret = sig;
2221 if (uinfo) {
2222 if (copy_siginfo_to_user(uinfo, &info))
2223 ret = -EFAULT;
2224 }
2225 } else {
2226 ret = -EAGAIN;
2227 if (timeout)
2228 ret = -EINTR;
2229 }
2230
2231 return ret;
2232 }
2233
2234 asmlinkage long
2235 sys_kill(int pid, int sig)
2236 {
2237 struct siginfo info;
2238
2239 info.si_signo = sig;
2240 info.si_errno = 0;
2241 info.si_code = SI_USER;
2242 info.si_pid = current->tgid;
2243 info.si_uid = current->uid;
2244
2245 return kill_something_info(sig, &info, pid);
2246 }
2247
2248 static int do_tkill(int tgid, int pid, int sig)
2249 {
2250 int error;
2251 struct siginfo info;
2252 struct task_struct *p;
2253
2254 error = -ESRCH;
2255 info.si_signo = sig;
2256 info.si_errno = 0;
2257 info.si_code = SI_TKILL;
2258 info.si_pid = current->tgid;
2259 info.si_uid = current->uid;
2260
2261 read_lock(&tasklist_lock);
2262 p = find_task_by_pid(pid);
2263 if (p && (tgid <= 0 || p->tgid == tgid)) {
2264 error = check_kill_permission(sig, &info, p);
2265 /*
2266 * The null signal is a permissions and process existence
2267 * probe. No signal is actually delivered.
2268 */
2269 if (!error && sig && p->sighand) {
2270 spin_lock_irq(&p->sighand->siglock);
2271 handle_stop_signal(sig, p);
2272 error = specific_send_sig_info(sig, &info, p);
2273 spin_unlock_irq(&p->sighand->siglock);
2274 }
2275 }
2276 read_unlock(&tasklist_lock);
2277
2278 return error;
2279 }
2280
2281 /**
2282 * sys_tgkill - send signal to one specific thread
2283 * @tgid: the thread group ID of the thread
2284 * @pid: the PID of the thread
2285 * @sig: signal to be sent
2286 *
2287 * This syscall also checks the tgid and returns -ESRCH even if the PID
2288 * exists but it's not belonging to the target process anymore. This
2289 * method solves the problem of threads exiting and PIDs getting reused.
2290 */
2291 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2292 {
2293 /* This is only valid for single tasks */
2294 if (pid <= 0 || tgid <= 0)
2295 return -EINVAL;
2296
2297 return do_tkill(tgid, pid, sig);
2298 }
2299
2300 /*
2301 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2302 */
2303 asmlinkage long
2304 sys_tkill(int pid, int sig)
2305 {
2306 /* This is only valid for single tasks */
2307 if (pid <= 0)
2308 return -EINVAL;
2309
2310 return do_tkill(0, pid, sig);
2311 }
2312
2313 asmlinkage long
2314 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2315 {
2316 siginfo_t info;
2317
2318 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2319 return -EFAULT;
2320
2321 /* Not even root can pretend to send signals from the kernel.
2322 Nor can they impersonate a kill(), which adds source info. */
2323 if (info.si_code >= 0)
2324 return -EPERM;
2325 info.si_signo = sig;
2326
2327 /* POSIX.1b doesn't mention process groups. */
2328 return kill_proc_info(sig, &info, pid);
2329 }
2330
2331 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2332 {
2333 struct k_sigaction *k;
2334 sigset_t mask;
2335
2336 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2337 return -EINVAL;
2338
2339 k = &current->sighand->action[sig-1];
2340
2341 spin_lock_irq(&current->sighand->siglock);
2342 if (signal_pending(current)) {
2343 /*
2344 * If there might be a fatal signal pending on multiple
2345 * threads, make sure we take it before changing the action.
2346 */
2347 spin_unlock_irq(&current->sighand->siglock);
2348 return -ERESTARTNOINTR;
2349 }
2350
2351 if (oact)
2352 *oact = *k;
2353
2354 if (act) {
2355 sigdelsetmask(&act->sa.sa_mask,
2356 sigmask(SIGKILL) | sigmask(SIGSTOP));
2357 *k = *act;
2358 /*
2359 * POSIX 3.3.1.3:
2360 * "Setting a signal action to SIG_IGN for a signal that is
2361 * pending shall cause the pending signal to be discarded,
2362 * whether or not it is blocked."
2363 *
2364 * "Setting a signal action to SIG_DFL for a signal that is
2365 * pending and whose default action is to ignore the signal
2366 * (for example, SIGCHLD), shall cause the pending signal to
2367 * be discarded, whether or not it is blocked"
2368 */
2369 if (act->sa.sa_handler == SIG_IGN ||
2370 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2371 struct task_struct *t = current;
2372 sigemptyset(&mask);
2373 sigaddset(&mask, sig);
2374 rm_from_queue_full(&mask, &t->signal->shared_pending);
2375 do {
2376 rm_from_queue_full(&mask, &t->pending);
2377 recalc_sigpending_tsk(t);
2378 t = next_thread(t);
2379 } while (t != current);
2380 }
2381 }
2382
2383 spin_unlock_irq(&current->sighand->siglock);
2384 return 0;
2385 }
2386
2387 int
2388 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2389 {
2390 stack_t oss;
2391 int error;
2392
2393 if (uoss) {
2394 oss.ss_sp = (void __user *) current->sas_ss_sp;
2395 oss.ss_size = current->sas_ss_size;
2396 oss.ss_flags = sas_ss_flags(sp);
2397 }
2398
2399 if (uss) {
2400 void __user *ss_sp;
2401 size_t ss_size;
2402 int ss_flags;
2403
2404 error = -EFAULT;
2405 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2406 || __get_user(ss_sp, &uss->ss_sp)
2407 || __get_user(ss_flags, &uss->ss_flags)
2408 || __get_user(ss_size, &uss->ss_size))
2409 goto out;
2410
2411 error = -EPERM;
2412 if (on_sig_stack(sp))
2413 goto out;
2414
2415 error = -EINVAL;
2416 /*
2417 *
2418 * Note - this code used to test ss_flags incorrectly
2419 * old code may have been written using ss_flags==0
2420 * to mean ss_flags==SS_ONSTACK (as this was the only
2421 * way that worked) - this fix preserves that older
2422 * mechanism
2423 */
2424 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2425 goto out;
2426
2427 if (ss_flags == SS_DISABLE) {
2428 ss_size = 0;
2429 ss_sp = NULL;
2430 } else {
2431 error = -ENOMEM;
2432 if (ss_size < MINSIGSTKSZ)
2433 goto out;
2434 }
2435
2436 current->sas_ss_sp = (unsigned long) ss_sp;
2437 current->sas_ss_size = ss_size;
2438 }
2439
2440 if (uoss) {
2441 error = -EFAULT;
2442 if (copy_to_user(uoss, &oss, sizeof(oss)))
2443 goto out;
2444 }
2445
2446 error = 0;
2447 out:
2448 return error;
2449 }
2450
2451 #ifdef __ARCH_WANT_SYS_SIGPENDING
2452
2453 asmlinkage long
2454 sys_sigpending(old_sigset_t __user *set)
2455 {
2456 return do_sigpending(set, sizeof(*set));
2457 }
2458
2459 #endif
2460
2461 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2462 /* Some platforms have their own version with special arguments others
2463 support only sys_rt_sigprocmask. */
2464
2465 asmlinkage long
2466 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2467 {
2468 int error;
2469 old_sigset_t old_set, new_set;
2470
2471 if (set) {
2472 error = -EFAULT;
2473 if (copy_from_user(&new_set, set, sizeof(*set)))
2474 goto out;
2475 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2476
2477 spin_lock_irq(&current->sighand->siglock);
2478 old_set = current->blocked.sig[0];
2479
2480 error = 0;
2481 switch (how) {
2482 default:
2483 error = -EINVAL;
2484 break;
2485 case SIG_BLOCK:
2486 sigaddsetmask(&current->blocked, new_set);
2487 break;
2488 case SIG_UNBLOCK:
2489 sigdelsetmask(&current->blocked, new_set);
2490 break;
2491 case SIG_SETMASK:
2492 current->blocked.sig[0] = new_set;
2493 break;
2494 }
2495
2496 recalc_sigpending();
2497 spin_unlock_irq(&current->sighand->siglock);
2498 if (error)
2499 goto out;
2500 if (oset)
2501 goto set_old;
2502 } else if (oset) {
2503 old_set = current->blocked.sig[0];
2504 set_old:
2505 error = -EFAULT;
2506 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2507 goto out;
2508 }
2509 error = 0;
2510 out:
2511 return error;
2512 }
2513 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2514
2515 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2516 asmlinkage long
2517 sys_rt_sigaction(int sig,
2518 const struct sigaction __user *act,
2519 struct sigaction __user *oact,
2520 size_t sigsetsize)
2521 {
2522 struct k_sigaction new_sa, old_sa;
2523 int ret = -EINVAL;
2524
2525 /* XXX: Don't preclude handling different sized sigset_t's. */
2526 if (sigsetsize != sizeof(sigset_t))
2527 goto out;
2528
2529 if (act) {
2530 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2531 return -EFAULT;
2532 }
2533
2534 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2535
2536 if (!ret && oact) {
2537 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2538 return -EFAULT;
2539 }
2540 out:
2541 return ret;
2542 }
2543 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2544
2545 #ifdef __ARCH_WANT_SYS_SGETMASK
2546
2547 /*
2548 * For backwards compatibility. Functionality superseded by sigprocmask.
2549 */
2550 asmlinkage long
2551 sys_sgetmask(void)
2552 {
2553 /* SMP safe */
2554 return current->blocked.sig[0];
2555 }
2556
2557 asmlinkage long
2558 sys_ssetmask(int newmask)
2559 {
2560 int old;
2561
2562 spin_lock_irq(&current->sighand->siglock);
2563 old = current->blocked.sig[0];
2564
2565 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2566 sigmask(SIGSTOP)));
2567 recalc_sigpending();
2568 spin_unlock_irq(&current->sighand->siglock);
2569
2570 return old;
2571 }
2572 #endif /* __ARCH_WANT_SGETMASK */
2573
2574 #ifdef __ARCH_WANT_SYS_SIGNAL
2575 /*
2576 * For backwards compatibility. Functionality superseded by sigaction.
2577 */
2578 asmlinkage unsigned long
2579 sys_signal(int sig, __sighandler_t handler)
2580 {
2581 struct k_sigaction new_sa, old_sa;
2582 int ret;
2583
2584 new_sa.sa.sa_handler = handler;
2585 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2586 sigemptyset(&new_sa.sa.sa_mask);
2587
2588 ret = do_sigaction(sig, &new_sa, &old_sa);
2589
2590 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2591 }
2592 #endif /* __ARCH_WANT_SYS_SIGNAL */
2593
2594 #ifdef __ARCH_WANT_SYS_PAUSE
2595
2596 asmlinkage long
2597 sys_pause(void)
2598 {
2599 current->state = TASK_INTERRUPTIBLE;
2600 schedule();
2601 return -ERESTARTNOHAND;
2602 }
2603
2604 #endif
2605
2606 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2607 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2608 {
2609 sigset_t newset;
2610
2611 /* XXX: Don't preclude handling different sized sigset_t's. */
2612 if (sigsetsize != sizeof(sigset_t))
2613 return -EINVAL;
2614
2615 if (copy_from_user(&newset, unewset, sizeof(newset)))
2616 return -EFAULT;
2617 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2618
2619 spin_lock_irq(&current->sighand->siglock);
2620 current->saved_sigmask = current->blocked;
2621 current->blocked = newset;
2622 recalc_sigpending();
2623 spin_unlock_irq(&current->sighand->siglock);
2624
2625 current->state = TASK_INTERRUPTIBLE;
2626 schedule();
2627 set_thread_flag(TIF_RESTORE_SIGMASK);
2628 return -ERESTARTNOHAND;
2629 }
2630 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2631
2632 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2633 {
2634 return NULL;
2635 }
2636
2637 void __init signals_init(void)
2638 {
2639 sigqueue_cachep =
2640 kmem_cache_create("sigqueue",
2641 sizeof(struct sigqueue),
2642 __alignof__(struct sigqueue),
2643 SLAB_PANIC, NULL, NULL);
2644 }
This page took 0.081423 seconds and 6 git commands to generate.