signals: re-assign CLD_CONTINUED notification from the sender to reciever
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals.
562 * Unlike the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 */
567 static void handle_stop_signal(int sig, struct task_struct *p)
568 {
569 struct task_struct *t;
570
571 if (p->signal->flags & SIGNAL_GROUP_EXIT)
572 /*
573 * The process is in the middle of dying already.
574 */
575 return;
576
577 if (sig_kernel_stop(sig)) {
578 /*
579 * This is a stop signal. Remove SIGCONT from all queues.
580 */
581 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
582 t = p;
583 do {
584 rm_from_queue(sigmask(SIGCONT), &t->pending);
585 t = next_thread(t);
586 } while (t != p);
587 } else if (sig == SIGCONT) {
588 /*
589 * Remove all stop signals from all queues,
590 * and wake all threads.
591 */
592 if (unlikely(p->signal->group_stop_count > 0)) {
593 /*
594 * There was a group stop in progress. We'll
595 * pretend it finished before we got here. We are
596 * obliged to report it to the parent: if the
597 * SIGSTOP happened "after" this SIGCONT, then it
598 * would have cleared this pending SIGCONT. If it
599 * happened "before" this SIGCONT, then the parent
600 * got the SIGCHLD about the stop finishing before
601 * the continue happened. We do the notification
602 * now, and it's as if the stop had finished and
603 * the SIGCHLD was pending on entry to this kill.
604 */
605 p->signal->group_stop_count = 0;
606 p->signal->flags = SIGNAL_STOP_CONTINUED |
607 SIGNAL_CLD_STOPPED;
608 }
609 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
610 t = p;
611 do {
612 unsigned int state;
613 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
614
615 /*
616 * If there is a handler for SIGCONT, we must make
617 * sure that no thread returns to user mode before
618 * we post the signal, in case it was the only
619 * thread eligible to run the signal handler--then
620 * it must not do anything between resuming and
621 * running the handler. With the TIF_SIGPENDING
622 * flag set, the thread will pause and acquire the
623 * siglock that we hold now and until we've queued
624 * the pending signal.
625 *
626 * Wake up the stopped thread _after_ setting
627 * TIF_SIGPENDING
628 */
629 state = __TASK_STOPPED;
630 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
631 set_tsk_thread_flag(t, TIF_SIGPENDING);
632 state |= TASK_INTERRUPTIBLE;
633 }
634 wake_up_state(t, state);
635
636 t = next_thread(t);
637 } while (t != p);
638
639 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
640 /*
641 * We were in fact stopped, and are now continued.
642 * Notify the parent with CLD_CONTINUED.
643 */
644 p->signal->flags = SIGNAL_STOP_CONTINUED |
645 SIGNAL_CLD_CONTINUED;
646 p->signal->group_exit_code = 0;
647 } else {
648 /*
649 * We are not stopped, but there could be a stop
650 * signal in the middle of being processed after
651 * being removed from the queue. Clear that too.
652 */
653 p->signal->flags &= ~SIGNAL_STOP_DEQUEUED;
654 }
655 } else if (sig == SIGKILL) {
656 /*
657 * Make sure that any pending stop signal already dequeued
658 * is undone by the wakeup for SIGKILL.
659 */
660 p->signal->flags &= ~SIGNAL_STOP_DEQUEUED;
661 }
662 }
663
664 static inline int legacy_queue(struct sigpending *signals, int sig)
665 {
666 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
667 }
668
669 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
670 struct sigpending *signals)
671 {
672 struct sigqueue * q = NULL;
673
674 /*
675 * Short-circuit ignored signals and support queuing
676 * exactly one non-rt signal, so that we can get more
677 * detailed information about the cause of the signal.
678 */
679 if (sig_ignored(t, sig) || legacy_queue(signals, sig))
680 return 0;
681
682 /*
683 * Deliver the signal to listening signalfds. This must be called
684 * with the sighand lock held.
685 */
686 signalfd_notify(t, sig);
687
688 /*
689 * fast-pathed signals for kernel-internal things like SIGSTOP
690 * or SIGKILL.
691 */
692 if (info == SEND_SIG_FORCED)
693 goto out_set;
694
695 /* Real-time signals must be queued if sent by sigqueue, or
696 some other real-time mechanism. It is implementation
697 defined whether kill() does so. We attempt to do so, on
698 the principle of least surprise, but since kill is not
699 allowed to fail with EAGAIN when low on memory we just
700 make sure at least one signal gets delivered and don't
701 pass on the info struct. */
702
703 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
704 (is_si_special(info) ||
705 info->si_code >= 0)));
706 if (q) {
707 list_add_tail(&q->list, &signals->list);
708 switch ((unsigned long) info) {
709 case (unsigned long) SEND_SIG_NOINFO:
710 q->info.si_signo = sig;
711 q->info.si_errno = 0;
712 q->info.si_code = SI_USER;
713 q->info.si_pid = task_pid_vnr(current);
714 q->info.si_uid = current->uid;
715 break;
716 case (unsigned long) SEND_SIG_PRIV:
717 q->info.si_signo = sig;
718 q->info.si_errno = 0;
719 q->info.si_code = SI_KERNEL;
720 q->info.si_pid = 0;
721 q->info.si_uid = 0;
722 break;
723 default:
724 copy_siginfo(&q->info, info);
725 break;
726 }
727 } else if (!is_si_special(info)) {
728 if (sig >= SIGRTMIN && info->si_code != SI_USER)
729 /*
730 * Queue overflow, abort. We may abort if the signal was rt
731 * and sent by user using something other than kill().
732 */
733 return -EAGAIN;
734 }
735
736 out_set:
737 sigaddset(&signals->signal, sig);
738 return 1;
739 }
740
741 int print_fatal_signals;
742
743 static void print_fatal_signal(struct pt_regs *regs, int signr)
744 {
745 printk("%s/%d: potentially unexpected fatal signal %d.\n",
746 current->comm, task_pid_nr(current), signr);
747
748 #if defined(__i386__) && !defined(__arch_um__)
749 printk("code at %08lx: ", regs->ip);
750 {
751 int i;
752 for (i = 0; i < 16; i++) {
753 unsigned char insn;
754
755 __get_user(insn, (unsigned char *)(regs->ip + i));
756 printk("%02x ", insn);
757 }
758 }
759 #endif
760 printk("\n");
761 show_regs(regs);
762 }
763
764 static int __init setup_print_fatal_signals(char *str)
765 {
766 get_option (&str, &print_fatal_signals);
767
768 return 1;
769 }
770
771 __setup("print-fatal-signals=", setup_print_fatal_signals);
772
773 static int
774 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
775 {
776 int ret;
777
778 BUG_ON(!irqs_disabled());
779 assert_spin_locked(&t->sighand->siglock);
780
781 ret = send_signal(sig, info, t, &t->pending);
782 if (ret <= 0)
783 return ret;
784
785 if (!sigismember(&t->blocked, sig))
786 signal_wake_up(t, sig == SIGKILL);
787 return 0;
788 }
789
790 /*
791 * Force a signal that the process can't ignore: if necessary
792 * we unblock the signal and change any SIG_IGN to SIG_DFL.
793 *
794 * Note: If we unblock the signal, we always reset it to SIG_DFL,
795 * since we do not want to have a signal handler that was blocked
796 * be invoked when user space had explicitly blocked it.
797 *
798 * We don't want to have recursive SIGSEGV's etc, for example.
799 */
800 int
801 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
802 {
803 unsigned long int flags;
804 int ret, blocked, ignored;
805 struct k_sigaction *action;
806
807 spin_lock_irqsave(&t->sighand->siglock, flags);
808 action = &t->sighand->action[sig-1];
809 ignored = action->sa.sa_handler == SIG_IGN;
810 blocked = sigismember(&t->blocked, sig);
811 if (blocked || ignored) {
812 action->sa.sa_handler = SIG_DFL;
813 if (blocked) {
814 sigdelset(&t->blocked, sig);
815 recalc_sigpending_and_wake(t);
816 }
817 }
818 ret = specific_send_sig_info(sig, info, t);
819 spin_unlock_irqrestore(&t->sighand->siglock, flags);
820
821 return ret;
822 }
823
824 void
825 force_sig_specific(int sig, struct task_struct *t)
826 {
827 force_sig_info(sig, SEND_SIG_FORCED, t);
828 }
829
830 /*
831 * Test if P wants to take SIG. After we've checked all threads with this,
832 * it's equivalent to finding no threads not blocking SIG. Any threads not
833 * blocking SIG were ruled out because they are not running and already
834 * have pending signals. Such threads will dequeue from the shared queue
835 * as soon as they're available, so putting the signal on the shared queue
836 * will be equivalent to sending it to one such thread.
837 */
838 static inline int wants_signal(int sig, struct task_struct *p)
839 {
840 if (sigismember(&p->blocked, sig))
841 return 0;
842 if (p->flags & PF_EXITING)
843 return 0;
844 if (sig == SIGKILL)
845 return 1;
846 if (task_is_stopped_or_traced(p))
847 return 0;
848 return task_curr(p) || !signal_pending(p);
849 }
850
851 static void
852 __group_complete_signal(int sig, struct task_struct *p)
853 {
854 struct task_struct *t;
855
856 /*
857 * Now find a thread we can wake up to take the signal off the queue.
858 *
859 * If the main thread wants the signal, it gets first crack.
860 * Probably the least surprising to the average bear.
861 */
862 if (wants_signal(sig, p))
863 t = p;
864 else if (thread_group_empty(p))
865 /*
866 * There is just one thread and it does not need to be woken.
867 * It will dequeue unblocked signals before it runs again.
868 */
869 return;
870 else {
871 /*
872 * Otherwise try to find a suitable thread.
873 */
874 t = p->signal->curr_target;
875 if (t == NULL)
876 /* restart balancing at this thread */
877 t = p->signal->curr_target = p;
878
879 while (!wants_signal(sig, t)) {
880 t = next_thread(t);
881 if (t == p->signal->curr_target)
882 /*
883 * No thread needs to be woken.
884 * Any eligible threads will see
885 * the signal in the queue soon.
886 */
887 return;
888 }
889 p->signal->curr_target = t;
890 }
891
892 /*
893 * Found a killable thread. If the signal will be fatal,
894 * then start taking the whole group down immediately.
895 */
896 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
897 !sigismember(&t->real_blocked, sig) &&
898 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
899 /*
900 * This signal will be fatal to the whole group.
901 */
902 if (!sig_kernel_coredump(sig)) {
903 /*
904 * Start a group exit and wake everybody up.
905 * This way we don't have other threads
906 * running and doing things after a slower
907 * thread has the fatal signal pending.
908 */
909 p->signal->flags = SIGNAL_GROUP_EXIT;
910 p->signal->group_exit_code = sig;
911 p->signal->group_stop_count = 0;
912 t = p;
913 do {
914 sigaddset(&t->pending.signal, SIGKILL);
915 signal_wake_up(t, 1);
916 } while_each_thread(p, t);
917 return;
918 }
919 }
920
921 /*
922 * The signal is already in the shared-pending queue.
923 * Tell the chosen thread to wake up and dequeue it.
924 */
925 signal_wake_up(t, sig == SIGKILL);
926 return;
927 }
928
929 int
930 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
931 {
932 int ret;
933
934 assert_spin_locked(&p->sighand->siglock);
935 handle_stop_signal(sig, p);
936
937 /*
938 * Put this signal on the shared-pending queue, or fail with EAGAIN.
939 * We always use the shared queue for process-wide signals,
940 * to avoid several races.
941 */
942 ret = send_signal(sig, info, p, &p->signal->shared_pending);
943 if (ret <= 0)
944 return ret;
945
946 __group_complete_signal(sig, p);
947 return 0;
948 }
949
950 /*
951 * Nuke all other threads in the group.
952 */
953 void zap_other_threads(struct task_struct *p)
954 {
955 struct task_struct *t;
956
957 p->signal->group_stop_count = 0;
958
959 for (t = next_thread(p); t != p; t = next_thread(t)) {
960 /*
961 * Don't bother with already dead threads
962 */
963 if (t->exit_state)
964 continue;
965
966 /* SIGKILL will be handled before any pending SIGSTOP */
967 sigaddset(&t->pending.signal, SIGKILL);
968 signal_wake_up(t, 1);
969 }
970 }
971
972 int __fatal_signal_pending(struct task_struct *tsk)
973 {
974 return sigismember(&tsk->pending.signal, SIGKILL);
975 }
976 EXPORT_SYMBOL(__fatal_signal_pending);
977
978 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
979 {
980 struct sighand_struct *sighand;
981
982 rcu_read_lock();
983 for (;;) {
984 sighand = rcu_dereference(tsk->sighand);
985 if (unlikely(sighand == NULL))
986 break;
987
988 spin_lock_irqsave(&sighand->siglock, *flags);
989 if (likely(sighand == tsk->sighand))
990 break;
991 spin_unlock_irqrestore(&sighand->siglock, *flags);
992 }
993 rcu_read_unlock();
994
995 return sighand;
996 }
997
998 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
999 {
1000 unsigned long flags;
1001 int ret;
1002
1003 ret = check_kill_permission(sig, info, p);
1004
1005 if (!ret && sig) {
1006 ret = -ESRCH;
1007 if (lock_task_sighand(p, &flags)) {
1008 ret = __group_send_sig_info(sig, info, p);
1009 unlock_task_sighand(p, &flags);
1010 }
1011 }
1012
1013 return ret;
1014 }
1015
1016 /*
1017 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1018 * control characters do (^C, ^Z etc)
1019 */
1020
1021 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1022 {
1023 struct task_struct *p = NULL;
1024 int retval, success;
1025
1026 success = 0;
1027 retval = -ESRCH;
1028 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1029 int err = group_send_sig_info(sig, info, p);
1030 success |= !err;
1031 retval = err;
1032 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1033 return success ? 0 : retval;
1034 }
1035
1036 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1037 {
1038 int error = -ESRCH;
1039 struct task_struct *p;
1040
1041 rcu_read_lock();
1042 if (unlikely(sig_needs_tasklist(sig)))
1043 read_lock(&tasklist_lock);
1044
1045 retry:
1046 p = pid_task(pid, PIDTYPE_PID);
1047 if (p) {
1048 error = group_send_sig_info(sig, info, p);
1049 if (unlikely(error == -ESRCH))
1050 /*
1051 * The task was unhashed in between, try again.
1052 * If it is dead, pid_task() will return NULL,
1053 * if we race with de_thread() it will find the
1054 * new leader.
1055 */
1056 goto retry;
1057 }
1058
1059 if (unlikely(sig_needs_tasklist(sig)))
1060 read_unlock(&tasklist_lock);
1061 rcu_read_unlock();
1062 return error;
1063 }
1064
1065 int
1066 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1067 {
1068 int error;
1069 rcu_read_lock();
1070 error = kill_pid_info(sig, info, find_vpid(pid));
1071 rcu_read_unlock();
1072 return error;
1073 }
1074
1075 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1076 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1077 uid_t uid, uid_t euid, u32 secid)
1078 {
1079 int ret = -EINVAL;
1080 struct task_struct *p;
1081
1082 if (!valid_signal(sig))
1083 return ret;
1084
1085 read_lock(&tasklist_lock);
1086 p = pid_task(pid, PIDTYPE_PID);
1087 if (!p) {
1088 ret = -ESRCH;
1089 goto out_unlock;
1090 }
1091 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1092 && (euid != p->suid) && (euid != p->uid)
1093 && (uid != p->suid) && (uid != p->uid)) {
1094 ret = -EPERM;
1095 goto out_unlock;
1096 }
1097 ret = security_task_kill(p, info, sig, secid);
1098 if (ret)
1099 goto out_unlock;
1100 if (sig && p->sighand) {
1101 unsigned long flags;
1102 spin_lock_irqsave(&p->sighand->siglock, flags);
1103 ret = __group_send_sig_info(sig, info, p);
1104 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1105 }
1106 out_unlock:
1107 read_unlock(&tasklist_lock);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1111
1112 /*
1113 * kill_something_info() interprets pid in interesting ways just like kill(2).
1114 *
1115 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1116 * is probably wrong. Should make it like BSD or SYSV.
1117 */
1118
1119 static int kill_something_info(int sig, struct siginfo *info, int pid)
1120 {
1121 int ret;
1122
1123 if (pid > 0) {
1124 rcu_read_lock();
1125 ret = kill_pid_info(sig, info, find_vpid(pid));
1126 rcu_read_unlock();
1127 return ret;
1128 }
1129
1130 read_lock(&tasklist_lock);
1131 if (pid != -1) {
1132 ret = __kill_pgrp_info(sig, info,
1133 pid ? find_vpid(-pid) : task_pgrp(current));
1134 } else {
1135 int retval = 0, count = 0;
1136 struct task_struct * p;
1137
1138 for_each_process(p) {
1139 if (p->pid > 1 && !same_thread_group(p, current)) {
1140 int err = group_send_sig_info(sig, info, p);
1141 ++count;
1142 if (err != -EPERM)
1143 retval = err;
1144 }
1145 }
1146 ret = count ? retval : -ESRCH;
1147 }
1148 read_unlock(&tasklist_lock);
1149
1150 return ret;
1151 }
1152
1153 /*
1154 * These are for backward compatibility with the rest of the kernel source.
1155 */
1156
1157 /*
1158 * These two are the most common entry points. They send a signal
1159 * just to the specific thread.
1160 */
1161 int
1162 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1163 {
1164 int ret;
1165 unsigned long flags;
1166
1167 /*
1168 * Make sure legacy kernel users don't send in bad values
1169 * (normal paths check this in check_kill_permission).
1170 */
1171 if (!valid_signal(sig))
1172 return -EINVAL;
1173
1174 /*
1175 * We need the tasklist lock even for the specific
1176 * thread case (when we don't need to follow the group
1177 * lists) in order to avoid races with "p->sighand"
1178 * going away or changing from under us.
1179 */
1180 read_lock(&tasklist_lock);
1181 spin_lock_irqsave(&p->sighand->siglock, flags);
1182 ret = specific_send_sig_info(sig, info, p);
1183 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1184 read_unlock(&tasklist_lock);
1185 return ret;
1186 }
1187
1188 #define __si_special(priv) \
1189 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1190
1191 int
1192 send_sig(int sig, struct task_struct *p, int priv)
1193 {
1194 return send_sig_info(sig, __si_special(priv), p);
1195 }
1196
1197 void
1198 force_sig(int sig, struct task_struct *p)
1199 {
1200 force_sig_info(sig, SEND_SIG_PRIV, p);
1201 }
1202
1203 /*
1204 * When things go south during signal handling, we
1205 * will force a SIGSEGV. And if the signal that caused
1206 * the problem was already a SIGSEGV, we'll want to
1207 * make sure we don't even try to deliver the signal..
1208 */
1209 int
1210 force_sigsegv(int sig, struct task_struct *p)
1211 {
1212 if (sig == SIGSEGV) {
1213 unsigned long flags;
1214 spin_lock_irqsave(&p->sighand->siglock, flags);
1215 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1216 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1217 }
1218 force_sig(SIGSEGV, p);
1219 return 0;
1220 }
1221
1222 int kill_pgrp(struct pid *pid, int sig, int priv)
1223 {
1224 int ret;
1225
1226 read_lock(&tasklist_lock);
1227 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1228 read_unlock(&tasklist_lock);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(kill_pgrp);
1233
1234 int kill_pid(struct pid *pid, int sig, int priv)
1235 {
1236 return kill_pid_info(sig, __si_special(priv), pid);
1237 }
1238 EXPORT_SYMBOL(kill_pid);
1239
1240 int
1241 kill_proc(pid_t pid, int sig, int priv)
1242 {
1243 int ret;
1244
1245 rcu_read_lock();
1246 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1247 rcu_read_unlock();
1248 return ret;
1249 }
1250
1251 /*
1252 * These functions support sending signals using preallocated sigqueue
1253 * structures. This is needed "because realtime applications cannot
1254 * afford to lose notifications of asynchronous events, like timer
1255 * expirations or I/O completions". In the case of Posix Timers
1256 * we allocate the sigqueue structure from the timer_create. If this
1257 * allocation fails we are able to report the failure to the application
1258 * with an EAGAIN error.
1259 */
1260
1261 struct sigqueue *sigqueue_alloc(void)
1262 {
1263 struct sigqueue *q;
1264
1265 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1266 q->flags |= SIGQUEUE_PREALLOC;
1267 return(q);
1268 }
1269
1270 void sigqueue_free(struct sigqueue *q)
1271 {
1272 unsigned long flags;
1273 spinlock_t *lock = &current->sighand->siglock;
1274
1275 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1276 /*
1277 * If the signal is still pending remove it from the
1278 * pending queue. We must hold ->siglock while testing
1279 * q->list to serialize with collect_signal().
1280 */
1281 spin_lock_irqsave(lock, flags);
1282 if (!list_empty(&q->list))
1283 list_del_init(&q->list);
1284 spin_unlock_irqrestore(lock, flags);
1285
1286 q->flags &= ~SIGQUEUE_PREALLOC;
1287 __sigqueue_free(q);
1288 }
1289
1290 static int do_send_sigqueue(int sig, struct sigqueue *q, struct task_struct *t,
1291 struct sigpending *pending)
1292 {
1293 if (unlikely(!list_empty(&q->list))) {
1294 /*
1295 * If an SI_TIMER entry is already queue just increment
1296 * the overrun count.
1297 */
1298
1299 BUG_ON(q->info.si_code != SI_TIMER);
1300 q->info.si_overrun++;
1301 return 0;
1302 }
1303
1304 if (sig_ignored(t, sig))
1305 return 1;
1306
1307 signalfd_notify(t, sig);
1308 list_add_tail(&q->list, &pending->list);
1309 sigaddset(&pending->signal, sig);
1310 return 0;
1311 }
1312
1313 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1314 {
1315 unsigned long flags;
1316 int ret = -1;
1317
1318 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1319
1320 /*
1321 * The rcu based delayed sighand destroy makes it possible to
1322 * run this without tasklist lock held. The task struct itself
1323 * cannot go away as create_timer did get_task_struct().
1324 *
1325 * We return -1, when the task is marked exiting, so
1326 * posix_timer_event can redirect it to the group leader
1327 */
1328 rcu_read_lock();
1329
1330 if (!likely(lock_task_sighand(p, &flags)))
1331 goto out_err;
1332
1333 ret = do_send_sigqueue(sig, q, p, &p->pending);
1334
1335 if (!sigismember(&p->blocked, sig))
1336 signal_wake_up(p, sig == SIGKILL);
1337
1338 unlock_task_sighand(p, &flags);
1339 out_err:
1340 rcu_read_unlock();
1341
1342 return ret;
1343 }
1344
1345 int
1346 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1347 {
1348 unsigned long flags;
1349 int ret;
1350
1351 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1352
1353 read_lock(&tasklist_lock);
1354 /* Since it_lock is held, p->sighand cannot be NULL. */
1355 spin_lock_irqsave(&p->sighand->siglock, flags);
1356 handle_stop_signal(sig, p);
1357
1358 ret = do_send_sigqueue(sig, q, p, &p->signal->shared_pending);
1359
1360 __group_complete_signal(sig, p);
1361
1362 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1363 read_unlock(&tasklist_lock);
1364 return ret;
1365 }
1366
1367 /*
1368 * Wake up any threads in the parent blocked in wait* syscalls.
1369 */
1370 static inline void __wake_up_parent(struct task_struct *p,
1371 struct task_struct *parent)
1372 {
1373 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1374 }
1375
1376 /*
1377 * Let a parent know about the death of a child.
1378 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1379 */
1380
1381 void do_notify_parent(struct task_struct *tsk, int sig)
1382 {
1383 struct siginfo info;
1384 unsigned long flags;
1385 struct sighand_struct *psig;
1386
1387 BUG_ON(sig == -1);
1388
1389 /* do_notify_parent_cldstop should have been called instead. */
1390 BUG_ON(task_is_stopped_or_traced(tsk));
1391
1392 BUG_ON(!tsk->ptrace &&
1393 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1394
1395 info.si_signo = sig;
1396 info.si_errno = 0;
1397 /*
1398 * we are under tasklist_lock here so our parent is tied to
1399 * us and cannot exit and release its namespace.
1400 *
1401 * the only it can is to switch its nsproxy with sys_unshare,
1402 * bu uncharing pid namespaces is not allowed, so we'll always
1403 * see relevant namespace
1404 *
1405 * write_lock() currently calls preempt_disable() which is the
1406 * same as rcu_read_lock(), but according to Oleg, this is not
1407 * correct to rely on this
1408 */
1409 rcu_read_lock();
1410 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1411 rcu_read_unlock();
1412
1413 info.si_uid = tsk->uid;
1414
1415 /* FIXME: find out whether or not this is supposed to be c*time. */
1416 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1417 tsk->signal->utime));
1418 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1419 tsk->signal->stime));
1420
1421 info.si_status = tsk->exit_code & 0x7f;
1422 if (tsk->exit_code & 0x80)
1423 info.si_code = CLD_DUMPED;
1424 else if (tsk->exit_code & 0x7f)
1425 info.si_code = CLD_KILLED;
1426 else {
1427 info.si_code = CLD_EXITED;
1428 info.si_status = tsk->exit_code >> 8;
1429 }
1430
1431 psig = tsk->parent->sighand;
1432 spin_lock_irqsave(&psig->siglock, flags);
1433 if (!tsk->ptrace && sig == SIGCHLD &&
1434 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1435 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1436 /*
1437 * We are exiting and our parent doesn't care. POSIX.1
1438 * defines special semantics for setting SIGCHLD to SIG_IGN
1439 * or setting the SA_NOCLDWAIT flag: we should be reaped
1440 * automatically and not left for our parent's wait4 call.
1441 * Rather than having the parent do it as a magic kind of
1442 * signal handler, we just set this to tell do_exit that we
1443 * can be cleaned up without becoming a zombie. Note that
1444 * we still call __wake_up_parent in this case, because a
1445 * blocked sys_wait4 might now return -ECHILD.
1446 *
1447 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1448 * is implementation-defined: we do (if you don't want
1449 * it, just use SIG_IGN instead).
1450 */
1451 tsk->exit_signal = -1;
1452 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1453 sig = 0;
1454 }
1455 if (valid_signal(sig) && sig > 0)
1456 __group_send_sig_info(sig, &info, tsk->parent);
1457 __wake_up_parent(tsk, tsk->parent);
1458 spin_unlock_irqrestore(&psig->siglock, flags);
1459 }
1460
1461 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1462 {
1463 struct siginfo info;
1464 unsigned long flags;
1465 struct task_struct *parent;
1466 struct sighand_struct *sighand;
1467
1468 if (tsk->ptrace & PT_PTRACED)
1469 parent = tsk->parent;
1470 else {
1471 tsk = tsk->group_leader;
1472 parent = tsk->real_parent;
1473 }
1474
1475 info.si_signo = SIGCHLD;
1476 info.si_errno = 0;
1477 /*
1478 * see comment in do_notify_parent() abot the following 3 lines
1479 */
1480 rcu_read_lock();
1481 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1482 rcu_read_unlock();
1483
1484 info.si_uid = tsk->uid;
1485
1486 /* FIXME: find out whether or not this is supposed to be c*time. */
1487 info.si_utime = cputime_to_jiffies(tsk->utime);
1488 info.si_stime = cputime_to_jiffies(tsk->stime);
1489
1490 info.si_code = why;
1491 switch (why) {
1492 case CLD_CONTINUED:
1493 info.si_status = SIGCONT;
1494 break;
1495 case CLD_STOPPED:
1496 info.si_status = tsk->signal->group_exit_code & 0x7f;
1497 break;
1498 case CLD_TRAPPED:
1499 info.si_status = tsk->exit_code & 0x7f;
1500 break;
1501 default:
1502 BUG();
1503 }
1504
1505 sighand = parent->sighand;
1506 spin_lock_irqsave(&sighand->siglock, flags);
1507 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1508 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1509 __group_send_sig_info(SIGCHLD, &info, parent);
1510 /*
1511 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1512 */
1513 __wake_up_parent(tsk, parent);
1514 spin_unlock_irqrestore(&sighand->siglock, flags);
1515 }
1516
1517 static inline int may_ptrace_stop(void)
1518 {
1519 if (!likely(current->ptrace & PT_PTRACED))
1520 return 0;
1521 /*
1522 * Are we in the middle of do_coredump?
1523 * If so and our tracer is also part of the coredump stopping
1524 * is a deadlock situation, and pointless because our tracer
1525 * is dead so don't allow us to stop.
1526 * If SIGKILL was already sent before the caller unlocked
1527 * ->siglock we must see ->core_waiters != 0. Otherwise it
1528 * is safe to enter schedule().
1529 */
1530 if (unlikely(current->mm->core_waiters) &&
1531 unlikely(current->mm == current->parent->mm))
1532 return 0;
1533
1534 return 1;
1535 }
1536
1537 /*
1538 * Return nonzero if there is a SIGKILL that should be waking us up.
1539 * Called with the siglock held.
1540 */
1541 static int sigkill_pending(struct task_struct *tsk)
1542 {
1543 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1544 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1545 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1546 }
1547
1548 /*
1549 * This must be called with current->sighand->siglock held.
1550 *
1551 * This should be the path for all ptrace stops.
1552 * We always set current->last_siginfo while stopped here.
1553 * That makes it a way to test a stopped process for
1554 * being ptrace-stopped vs being job-control-stopped.
1555 *
1556 * If we actually decide not to stop at all because the tracer
1557 * is gone, we keep current->exit_code unless clear_code.
1558 */
1559 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1560 {
1561 int killed = 0;
1562
1563 if (arch_ptrace_stop_needed(exit_code, info)) {
1564 /*
1565 * The arch code has something special to do before a
1566 * ptrace stop. This is allowed to block, e.g. for faults
1567 * on user stack pages. We can't keep the siglock while
1568 * calling arch_ptrace_stop, so we must release it now.
1569 * To preserve proper semantics, we must do this before
1570 * any signal bookkeeping like checking group_stop_count.
1571 * Meanwhile, a SIGKILL could come in before we retake the
1572 * siglock. That must prevent us from sleeping in TASK_TRACED.
1573 * So after regaining the lock, we must check for SIGKILL.
1574 */
1575 spin_unlock_irq(&current->sighand->siglock);
1576 arch_ptrace_stop(exit_code, info);
1577 spin_lock_irq(&current->sighand->siglock);
1578 killed = sigkill_pending(current);
1579 }
1580
1581 /*
1582 * If there is a group stop in progress,
1583 * we must participate in the bookkeeping.
1584 */
1585 if (current->signal->group_stop_count > 0)
1586 --current->signal->group_stop_count;
1587
1588 current->last_siginfo = info;
1589 current->exit_code = exit_code;
1590
1591 /* Let the debugger run. */
1592 __set_current_state(TASK_TRACED);
1593 spin_unlock_irq(&current->sighand->siglock);
1594 read_lock(&tasklist_lock);
1595 if (!unlikely(killed) && may_ptrace_stop()) {
1596 do_notify_parent_cldstop(current, CLD_TRAPPED);
1597 read_unlock(&tasklist_lock);
1598 schedule();
1599 } else {
1600 /*
1601 * By the time we got the lock, our tracer went away.
1602 * Don't drop the lock yet, another tracer may come.
1603 */
1604 __set_current_state(TASK_RUNNING);
1605 if (clear_code)
1606 current->exit_code = 0;
1607 read_unlock(&tasklist_lock);
1608 }
1609
1610 /*
1611 * While in TASK_TRACED, we were considered "frozen enough".
1612 * Now that we woke up, it's crucial if we're supposed to be
1613 * frozen that we freeze now before running anything substantial.
1614 */
1615 try_to_freeze();
1616
1617 /*
1618 * We are back. Now reacquire the siglock before touching
1619 * last_siginfo, so that we are sure to have synchronized with
1620 * any signal-sending on another CPU that wants to examine it.
1621 */
1622 spin_lock_irq(&current->sighand->siglock);
1623 current->last_siginfo = NULL;
1624
1625 /*
1626 * Queued signals ignored us while we were stopped for tracing.
1627 * So check for any that we should take before resuming user mode.
1628 * This sets TIF_SIGPENDING, but never clears it.
1629 */
1630 recalc_sigpending_tsk(current);
1631 }
1632
1633 void ptrace_notify(int exit_code)
1634 {
1635 siginfo_t info;
1636
1637 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1638
1639 memset(&info, 0, sizeof info);
1640 info.si_signo = SIGTRAP;
1641 info.si_code = exit_code;
1642 info.si_pid = task_pid_vnr(current);
1643 info.si_uid = current->uid;
1644
1645 /* Let the debugger run. */
1646 spin_lock_irq(&current->sighand->siglock);
1647 ptrace_stop(exit_code, 1, &info);
1648 spin_unlock_irq(&current->sighand->siglock);
1649 }
1650
1651 static void
1652 finish_stop(int stop_count)
1653 {
1654 /*
1655 * If there are no other threads in the group, or if there is
1656 * a group stop in progress and we are the last to stop,
1657 * report to the parent. When ptraced, every thread reports itself.
1658 */
1659 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1660 read_lock(&tasklist_lock);
1661 do_notify_parent_cldstop(current, CLD_STOPPED);
1662 read_unlock(&tasklist_lock);
1663 }
1664
1665 do {
1666 schedule();
1667 } while (try_to_freeze());
1668 /*
1669 * Now we don't run again until continued.
1670 */
1671 current->exit_code = 0;
1672 }
1673
1674 /*
1675 * This performs the stopping for SIGSTOP and other stop signals.
1676 * We have to stop all threads in the thread group.
1677 * Returns nonzero if we've actually stopped and released the siglock.
1678 * Returns zero if we didn't stop and still hold the siglock.
1679 */
1680 static int do_signal_stop(int signr)
1681 {
1682 struct signal_struct *sig = current->signal;
1683 int stop_count;
1684
1685 if (sig->group_stop_count > 0) {
1686 /*
1687 * There is a group stop in progress. We don't need to
1688 * start another one.
1689 */
1690 stop_count = --sig->group_stop_count;
1691 } else {
1692 struct task_struct *t;
1693
1694 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1695 unlikely(signal_group_exit(sig)))
1696 return 0;
1697 /*
1698 * There is no group stop already in progress.
1699 * We must initiate one now.
1700 */
1701 sig->group_exit_code = signr;
1702
1703 stop_count = 0;
1704 for (t = next_thread(current); t != current; t = next_thread(t))
1705 /*
1706 * Setting state to TASK_STOPPED for a group
1707 * stop is always done with the siglock held,
1708 * so this check has no races.
1709 */
1710 if (!(t->flags & PF_EXITING) &&
1711 !task_is_stopped_or_traced(t)) {
1712 stop_count++;
1713 signal_wake_up(t, 0);
1714 }
1715 sig->group_stop_count = stop_count;
1716 }
1717
1718 if (stop_count == 0)
1719 sig->flags = SIGNAL_STOP_STOPPED;
1720 current->exit_code = sig->group_exit_code;
1721 __set_current_state(TASK_STOPPED);
1722
1723 spin_unlock_irq(&current->sighand->siglock);
1724 finish_stop(stop_count);
1725 return 1;
1726 }
1727
1728 static int ptrace_signal(int signr, siginfo_t *info,
1729 struct pt_regs *regs, void *cookie)
1730 {
1731 if (!(current->ptrace & PT_PTRACED))
1732 return signr;
1733
1734 ptrace_signal_deliver(regs, cookie);
1735
1736 /* Let the debugger run. */
1737 ptrace_stop(signr, 0, info);
1738
1739 /* We're back. Did the debugger cancel the sig? */
1740 signr = current->exit_code;
1741 if (signr == 0)
1742 return signr;
1743
1744 current->exit_code = 0;
1745
1746 /* Update the siginfo structure if the signal has
1747 changed. If the debugger wanted something
1748 specific in the siginfo structure then it should
1749 have updated *info via PTRACE_SETSIGINFO. */
1750 if (signr != info->si_signo) {
1751 info->si_signo = signr;
1752 info->si_errno = 0;
1753 info->si_code = SI_USER;
1754 info->si_pid = task_pid_vnr(current->parent);
1755 info->si_uid = current->parent->uid;
1756 }
1757
1758 /* If the (new) signal is now blocked, requeue it. */
1759 if (sigismember(&current->blocked, signr)) {
1760 specific_send_sig_info(signr, info, current);
1761 signr = 0;
1762 }
1763
1764 return signr;
1765 }
1766
1767 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1768 struct pt_regs *regs, void *cookie)
1769 {
1770 sigset_t *mask = &current->blocked;
1771 int signr = 0;
1772
1773 relock:
1774 /*
1775 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1776 * While in TASK_STOPPED, we were considered "frozen enough".
1777 * Now that we woke up, it's crucial if we're supposed to be
1778 * frozen that we freeze now before running anything substantial.
1779 */
1780 try_to_freeze();
1781
1782 spin_lock_irq(&current->sighand->siglock);
1783
1784 if (unlikely(current->signal->flags & SIGNAL_CLD_MASK)) {
1785 int why = (current->signal->flags & SIGNAL_STOP_CONTINUED)
1786 ? CLD_CONTINUED : CLD_STOPPED;
1787 current->signal->flags &= ~SIGNAL_CLD_MASK;
1788 spin_unlock_irq(&current->sighand->siglock);
1789
1790 read_lock(&tasklist_lock);
1791 do_notify_parent_cldstop(current->group_leader, why);
1792 read_unlock(&tasklist_lock);
1793 goto relock;
1794 }
1795
1796 for (;;) {
1797 struct k_sigaction *ka;
1798
1799 if (unlikely(current->signal->group_stop_count > 0) &&
1800 do_signal_stop(0))
1801 goto relock;
1802
1803 signr = dequeue_signal(current, mask, info);
1804
1805 if (!signr)
1806 break; /* will return 0 */
1807
1808 if (signr != SIGKILL) {
1809 signr = ptrace_signal(signr, info, regs, cookie);
1810 if (!signr)
1811 continue;
1812 }
1813
1814 ka = &current->sighand->action[signr-1];
1815 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1816 continue;
1817 if (ka->sa.sa_handler != SIG_DFL) {
1818 /* Run the handler. */
1819 *return_ka = *ka;
1820
1821 if (ka->sa.sa_flags & SA_ONESHOT)
1822 ka->sa.sa_handler = SIG_DFL;
1823
1824 break; /* will return non-zero "signr" value */
1825 }
1826
1827 /*
1828 * Now we are doing the default action for this signal.
1829 */
1830 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1831 continue;
1832
1833 /*
1834 * Global init gets no signals it doesn't want.
1835 */
1836 if (is_global_init(current))
1837 continue;
1838
1839 if (sig_kernel_stop(signr)) {
1840 /*
1841 * The default action is to stop all threads in
1842 * the thread group. The job control signals
1843 * do nothing in an orphaned pgrp, but SIGSTOP
1844 * always works. Note that siglock needs to be
1845 * dropped during the call to is_orphaned_pgrp()
1846 * because of lock ordering with tasklist_lock.
1847 * This allows an intervening SIGCONT to be posted.
1848 * We need to check for that and bail out if necessary.
1849 */
1850 if (signr != SIGSTOP) {
1851 spin_unlock_irq(&current->sighand->siglock);
1852
1853 /* signals can be posted during this window */
1854
1855 if (is_current_pgrp_orphaned())
1856 goto relock;
1857
1858 spin_lock_irq(&current->sighand->siglock);
1859 }
1860
1861 if (likely(do_signal_stop(signr))) {
1862 /* It released the siglock. */
1863 goto relock;
1864 }
1865
1866 /*
1867 * We didn't actually stop, due to a race
1868 * with SIGCONT or something like that.
1869 */
1870 continue;
1871 }
1872
1873 spin_unlock_irq(&current->sighand->siglock);
1874
1875 /*
1876 * Anything else is fatal, maybe with a core dump.
1877 */
1878 current->flags |= PF_SIGNALED;
1879 if ((signr != SIGKILL) && print_fatal_signals)
1880 print_fatal_signal(regs, signr);
1881 if (sig_kernel_coredump(signr)) {
1882 /*
1883 * If it was able to dump core, this kills all
1884 * other threads in the group and synchronizes with
1885 * their demise. If we lost the race with another
1886 * thread getting here, it set group_exit_code
1887 * first and our do_group_exit call below will use
1888 * that value and ignore the one we pass it.
1889 */
1890 do_coredump((long)signr, signr, regs);
1891 }
1892
1893 /*
1894 * Death signals, no core dump.
1895 */
1896 do_group_exit(signr);
1897 /* NOTREACHED */
1898 }
1899 spin_unlock_irq(&current->sighand->siglock);
1900 return signr;
1901 }
1902
1903 void exit_signals(struct task_struct *tsk)
1904 {
1905 int group_stop = 0;
1906 struct task_struct *t;
1907
1908 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1909 tsk->flags |= PF_EXITING;
1910 return;
1911 }
1912
1913 spin_lock_irq(&tsk->sighand->siglock);
1914 /*
1915 * From now this task is not visible for group-wide signals,
1916 * see wants_signal(), do_signal_stop().
1917 */
1918 tsk->flags |= PF_EXITING;
1919 if (!signal_pending(tsk))
1920 goto out;
1921
1922 /* It could be that __group_complete_signal() choose us to
1923 * notify about group-wide signal. Another thread should be
1924 * woken now to take the signal since we will not.
1925 */
1926 for (t = tsk; (t = next_thread(t)) != tsk; )
1927 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1928 recalc_sigpending_and_wake(t);
1929
1930 if (unlikely(tsk->signal->group_stop_count) &&
1931 !--tsk->signal->group_stop_count) {
1932 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1933 group_stop = 1;
1934 }
1935 out:
1936 spin_unlock_irq(&tsk->sighand->siglock);
1937
1938 if (unlikely(group_stop)) {
1939 read_lock(&tasklist_lock);
1940 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1941 read_unlock(&tasklist_lock);
1942 }
1943 }
1944
1945 EXPORT_SYMBOL(recalc_sigpending);
1946 EXPORT_SYMBOL_GPL(dequeue_signal);
1947 EXPORT_SYMBOL(flush_signals);
1948 EXPORT_SYMBOL(force_sig);
1949 EXPORT_SYMBOL(kill_proc);
1950 EXPORT_SYMBOL(ptrace_notify);
1951 EXPORT_SYMBOL(send_sig);
1952 EXPORT_SYMBOL(send_sig_info);
1953 EXPORT_SYMBOL(sigprocmask);
1954 EXPORT_SYMBOL(block_all_signals);
1955 EXPORT_SYMBOL(unblock_all_signals);
1956
1957
1958 /*
1959 * System call entry points.
1960 */
1961
1962 asmlinkage long sys_restart_syscall(void)
1963 {
1964 struct restart_block *restart = &current_thread_info()->restart_block;
1965 return restart->fn(restart);
1966 }
1967
1968 long do_no_restart_syscall(struct restart_block *param)
1969 {
1970 return -EINTR;
1971 }
1972
1973 /*
1974 * We don't need to get the kernel lock - this is all local to this
1975 * particular thread.. (and that's good, because this is _heavily_
1976 * used by various programs)
1977 */
1978
1979 /*
1980 * This is also useful for kernel threads that want to temporarily
1981 * (or permanently) block certain signals.
1982 *
1983 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1984 * interface happily blocks "unblockable" signals like SIGKILL
1985 * and friends.
1986 */
1987 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1988 {
1989 int error;
1990
1991 spin_lock_irq(&current->sighand->siglock);
1992 if (oldset)
1993 *oldset = current->blocked;
1994
1995 error = 0;
1996 switch (how) {
1997 case SIG_BLOCK:
1998 sigorsets(&current->blocked, &current->blocked, set);
1999 break;
2000 case SIG_UNBLOCK:
2001 signandsets(&current->blocked, &current->blocked, set);
2002 break;
2003 case SIG_SETMASK:
2004 current->blocked = *set;
2005 break;
2006 default:
2007 error = -EINVAL;
2008 }
2009 recalc_sigpending();
2010 spin_unlock_irq(&current->sighand->siglock);
2011
2012 return error;
2013 }
2014
2015 asmlinkage long
2016 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2017 {
2018 int error = -EINVAL;
2019 sigset_t old_set, new_set;
2020
2021 /* XXX: Don't preclude handling different sized sigset_t's. */
2022 if (sigsetsize != sizeof(sigset_t))
2023 goto out;
2024
2025 if (set) {
2026 error = -EFAULT;
2027 if (copy_from_user(&new_set, set, sizeof(*set)))
2028 goto out;
2029 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2030
2031 error = sigprocmask(how, &new_set, &old_set);
2032 if (error)
2033 goto out;
2034 if (oset)
2035 goto set_old;
2036 } else if (oset) {
2037 spin_lock_irq(&current->sighand->siglock);
2038 old_set = current->blocked;
2039 spin_unlock_irq(&current->sighand->siglock);
2040
2041 set_old:
2042 error = -EFAULT;
2043 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2044 goto out;
2045 }
2046 error = 0;
2047 out:
2048 return error;
2049 }
2050
2051 long do_sigpending(void __user *set, unsigned long sigsetsize)
2052 {
2053 long error = -EINVAL;
2054 sigset_t pending;
2055
2056 if (sigsetsize > sizeof(sigset_t))
2057 goto out;
2058
2059 spin_lock_irq(&current->sighand->siglock);
2060 sigorsets(&pending, &current->pending.signal,
2061 &current->signal->shared_pending.signal);
2062 spin_unlock_irq(&current->sighand->siglock);
2063
2064 /* Outside the lock because only this thread touches it. */
2065 sigandsets(&pending, &current->blocked, &pending);
2066
2067 error = -EFAULT;
2068 if (!copy_to_user(set, &pending, sigsetsize))
2069 error = 0;
2070
2071 out:
2072 return error;
2073 }
2074
2075 asmlinkage long
2076 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2077 {
2078 return do_sigpending(set, sigsetsize);
2079 }
2080
2081 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2082
2083 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2084 {
2085 int err;
2086
2087 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2088 return -EFAULT;
2089 if (from->si_code < 0)
2090 return __copy_to_user(to, from, sizeof(siginfo_t))
2091 ? -EFAULT : 0;
2092 /*
2093 * If you change siginfo_t structure, please be sure
2094 * this code is fixed accordingly.
2095 * Please remember to update the signalfd_copyinfo() function
2096 * inside fs/signalfd.c too, in case siginfo_t changes.
2097 * It should never copy any pad contained in the structure
2098 * to avoid security leaks, but must copy the generic
2099 * 3 ints plus the relevant union member.
2100 */
2101 err = __put_user(from->si_signo, &to->si_signo);
2102 err |= __put_user(from->si_errno, &to->si_errno);
2103 err |= __put_user((short)from->si_code, &to->si_code);
2104 switch (from->si_code & __SI_MASK) {
2105 case __SI_KILL:
2106 err |= __put_user(from->si_pid, &to->si_pid);
2107 err |= __put_user(from->si_uid, &to->si_uid);
2108 break;
2109 case __SI_TIMER:
2110 err |= __put_user(from->si_tid, &to->si_tid);
2111 err |= __put_user(from->si_overrun, &to->si_overrun);
2112 err |= __put_user(from->si_ptr, &to->si_ptr);
2113 break;
2114 case __SI_POLL:
2115 err |= __put_user(from->si_band, &to->si_band);
2116 err |= __put_user(from->si_fd, &to->si_fd);
2117 break;
2118 case __SI_FAULT:
2119 err |= __put_user(from->si_addr, &to->si_addr);
2120 #ifdef __ARCH_SI_TRAPNO
2121 err |= __put_user(from->si_trapno, &to->si_trapno);
2122 #endif
2123 break;
2124 case __SI_CHLD:
2125 err |= __put_user(from->si_pid, &to->si_pid);
2126 err |= __put_user(from->si_uid, &to->si_uid);
2127 err |= __put_user(from->si_status, &to->si_status);
2128 err |= __put_user(from->si_utime, &to->si_utime);
2129 err |= __put_user(from->si_stime, &to->si_stime);
2130 break;
2131 case __SI_RT: /* This is not generated by the kernel as of now. */
2132 case __SI_MESGQ: /* But this is */
2133 err |= __put_user(from->si_pid, &to->si_pid);
2134 err |= __put_user(from->si_uid, &to->si_uid);
2135 err |= __put_user(from->si_ptr, &to->si_ptr);
2136 break;
2137 default: /* this is just in case for now ... */
2138 err |= __put_user(from->si_pid, &to->si_pid);
2139 err |= __put_user(from->si_uid, &to->si_uid);
2140 break;
2141 }
2142 return err;
2143 }
2144
2145 #endif
2146
2147 asmlinkage long
2148 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2149 siginfo_t __user *uinfo,
2150 const struct timespec __user *uts,
2151 size_t sigsetsize)
2152 {
2153 int ret, sig;
2154 sigset_t these;
2155 struct timespec ts;
2156 siginfo_t info;
2157 long timeout = 0;
2158
2159 /* XXX: Don't preclude handling different sized sigset_t's. */
2160 if (sigsetsize != sizeof(sigset_t))
2161 return -EINVAL;
2162
2163 if (copy_from_user(&these, uthese, sizeof(these)))
2164 return -EFAULT;
2165
2166 /*
2167 * Invert the set of allowed signals to get those we
2168 * want to block.
2169 */
2170 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2171 signotset(&these);
2172
2173 if (uts) {
2174 if (copy_from_user(&ts, uts, sizeof(ts)))
2175 return -EFAULT;
2176 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2177 || ts.tv_sec < 0)
2178 return -EINVAL;
2179 }
2180
2181 spin_lock_irq(&current->sighand->siglock);
2182 sig = dequeue_signal(current, &these, &info);
2183 if (!sig) {
2184 timeout = MAX_SCHEDULE_TIMEOUT;
2185 if (uts)
2186 timeout = (timespec_to_jiffies(&ts)
2187 + (ts.tv_sec || ts.tv_nsec));
2188
2189 if (timeout) {
2190 /* None ready -- temporarily unblock those we're
2191 * interested while we are sleeping in so that we'll
2192 * be awakened when they arrive. */
2193 current->real_blocked = current->blocked;
2194 sigandsets(&current->blocked, &current->blocked, &these);
2195 recalc_sigpending();
2196 spin_unlock_irq(&current->sighand->siglock);
2197
2198 timeout = schedule_timeout_interruptible(timeout);
2199
2200 spin_lock_irq(&current->sighand->siglock);
2201 sig = dequeue_signal(current, &these, &info);
2202 current->blocked = current->real_blocked;
2203 siginitset(&current->real_blocked, 0);
2204 recalc_sigpending();
2205 }
2206 }
2207 spin_unlock_irq(&current->sighand->siglock);
2208
2209 if (sig) {
2210 ret = sig;
2211 if (uinfo) {
2212 if (copy_siginfo_to_user(uinfo, &info))
2213 ret = -EFAULT;
2214 }
2215 } else {
2216 ret = -EAGAIN;
2217 if (timeout)
2218 ret = -EINTR;
2219 }
2220
2221 return ret;
2222 }
2223
2224 asmlinkage long
2225 sys_kill(int pid, int sig)
2226 {
2227 struct siginfo info;
2228
2229 info.si_signo = sig;
2230 info.si_errno = 0;
2231 info.si_code = SI_USER;
2232 info.si_pid = task_tgid_vnr(current);
2233 info.si_uid = current->uid;
2234
2235 return kill_something_info(sig, &info, pid);
2236 }
2237
2238 static int do_tkill(int tgid, int pid, int sig)
2239 {
2240 int error;
2241 struct siginfo info;
2242 struct task_struct *p;
2243
2244 error = -ESRCH;
2245 info.si_signo = sig;
2246 info.si_errno = 0;
2247 info.si_code = SI_TKILL;
2248 info.si_pid = task_tgid_vnr(current);
2249 info.si_uid = current->uid;
2250
2251 read_lock(&tasklist_lock);
2252 p = find_task_by_vpid(pid);
2253 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2254 error = check_kill_permission(sig, &info, p);
2255 /*
2256 * The null signal is a permissions and process existence
2257 * probe. No signal is actually delivered.
2258 */
2259 if (!error && sig && p->sighand) {
2260 spin_lock_irq(&p->sighand->siglock);
2261 handle_stop_signal(sig, p);
2262 error = specific_send_sig_info(sig, &info, p);
2263 spin_unlock_irq(&p->sighand->siglock);
2264 }
2265 }
2266 read_unlock(&tasklist_lock);
2267
2268 return error;
2269 }
2270
2271 /**
2272 * sys_tgkill - send signal to one specific thread
2273 * @tgid: the thread group ID of the thread
2274 * @pid: the PID of the thread
2275 * @sig: signal to be sent
2276 *
2277 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2278 * exists but it's not belonging to the target process anymore. This
2279 * method solves the problem of threads exiting and PIDs getting reused.
2280 */
2281 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2282 {
2283 /* This is only valid for single tasks */
2284 if (pid <= 0 || tgid <= 0)
2285 return -EINVAL;
2286
2287 return do_tkill(tgid, pid, sig);
2288 }
2289
2290 /*
2291 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2292 */
2293 asmlinkage long
2294 sys_tkill(int pid, int sig)
2295 {
2296 /* This is only valid for single tasks */
2297 if (pid <= 0)
2298 return -EINVAL;
2299
2300 return do_tkill(0, pid, sig);
2301 }
2302
2303 asmlinkage long
2304 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2305 {
2306 siginfo_t info;
2307
2308 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2309 return -EFAULT;
2310
2311 /* Not even root can pretend to send signals from the kernel.
2312 Nor can they impersonate a kill(), which adds source info. */
2313 if (info.si_code >= 0)
2314 return -EPERM;
2315 info.si_signo = sig;
2316
2317 /* POSIX.1b doesn't mention process groups. */
2318 return kill_proc_info(sig, &info, pid);
2319 }
2320
2321 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2322 {
2323 struct task_struct *t = current;
2324 struct k_sigaction *k;
2325 sigset_t mask;
2326
2327 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2328 return -EINVAL;
2329
2330 k = &t->sighand->action[sig-1];
2331
2332 spin_lock_irq(&current->sighand->siglock);
2333 if (oact)
2334 *oact = *k;
2335
2336 if (act) {
2337 sigdelsetmask(&act->sa.sa_mask,
2338 sigmask(SIGKILL) | sigmask(SIGSTOP));
2339 *k = *act;
2340 /*
2341 * POSIX 3.3.1.3:
2342 * "Setting a signal action to SIG_IGN for a signal that is
2343 * pending shall cause the pending signal to be discarded,
2344 * whether or not it is blocked."
2345 *
2346 * "Setting a signal action to SIG_DFL for a signal that is
2347 * pending and whose default action is to ignore the signal
2348 * (for example, SIGCHLD), shall cause the pending signal to
2349 * be discarded, whether or not it is blocked"
2350 */
2351 if (__sig_ignored(t, sig)) {
2352 sigemptyset(&mask);
2353 sigaddset(&mask, sig);
2354 rm_from_queue_full(&mask, &t->signal->shared_pending);
2355 do {
2356 rm_from_queue_full(&mask, &t->pending);
2357 t = next_thread(t);
2358 } while (t != current);
2359 }
2360 }
2361
2362 spin_unlock_irq(&current->sighand->siglock);
2363 return 0;
2364 }
2365
2366 int
2367 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2368 {
2369 stack_t oss;
2370 int error;
2371
2372 if (uoss) {
2373 oss.ss_sp = (void __user *) current->sas_ss_sp;
2374 oss.ss_size = current->sas_ss_size;
2375 oss.ss_flags = sas_ss_flags(sp);
2376 }
2377
2378 if (uss) {
2379 void __user *ss_sp;
2380 size_t ss_size;
2381 int ss_flags;
2382
2383 error = -EFAULT;
2384 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2385 || __get_user(ss_sp, &uss->ss_sp)
2386 || __get_user(ss_flags, &uss->ss_flags)
2387 || __get_user(ss_size, &uss->ss_size))
2388 goto out;
2389
2390 error = -EPERM;
2391 if (on_sig_stack(sp))
2392 goto out;
2393
2394 error = -EINVAL;
2395 /*
2396 *
2397 * Note - this code used to test ss_flags incorrectly
2398 * old code may have been written using ss_flags==0
2399 * to mean ss_flags==SS_ONSTACK (as this was the only
2400 * way that worked) - this fix preserves that older
2401 * mechanism
2402 */
2403 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2404 goto out;
2405
2406 if (ss_flags == SS_DISABLE) {
2407 ss_size = 0;
2408 ss_sp = NULL;
2409 } else {
2410 error = -ENOMEM;
2411 if (ss_size < MINSIGSTKSZ)
2412 goto out;
2413 }
2414
2415 current->sas_ss_sp = (unsigned long) ss_sp;
2416 current->sas_ss_size = ss_size;
2417 }
2418
2419 if (uoss) {
2420 error = -EFAULT;
2421 if (copy_to_user(uoss, &oss, sizeof(oss)))
2422 goto out;
2423 }
2424
2425 error = 0;
2426 out:
2427 return error;
2428 }
2429
2430 #ifdef __ARCH_WANT_SYS_SIGPENDING
2431
2432 asmlinkage long
2433 sys_sigpending(old_sigset_t __user *set)
2434 {
2435 return do_sigpending(set, sizeof(*set));
2436 }
2437
2438 #endif
2439
2440 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2441 /* Some platforms have their own version with special arguments others
2442 support only sys_rt_sigprocmask. */
2443
2444 asmlinkage long
2445 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2446 {
2447 int error;
2448 old_sigset_t old_set, new_set;
2449
2450 if (set) {
2451 error = -EFAULT;
2452 if (copy_from_user(&new_set, set, sizeof(*set)))
2453 goto out;
2454 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2455
2456 spin_lock_irq(&current->sighand->siglock);
2457 old_set = current->blocked.sig[0];
2458
2459 error = 0;
2460 switch (how) {
2461 default:
2462 error = -EINVAL;
2463 break;
2464 case SIG_BLOCK:
2465 sigaddsetmask(&current->blocked, new_set);
2466 break;
2467 case SIG_UNBLOCK:
2468 sigdelsetmask(&current->blocked, new_set);
2469 break;
2470 case SIG_SETMASK:
2471 current->blocked.sig[0] = new_set;
2472 break;
2473 }
2474
2475 recalc_sigpending();
2476 spin_unlock_irq(&current->sighand->siglock);
2477 if (error)
2478 goto out;
2479 if (oset)
2480 goto set_old;
2481 } else if (oset) {
2482 old_set = current->blocked.sig[0];
2483 set_old:
2484 error = -EFAULT;
2485 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2486 goto out;
2487 }
2488 error = 0;
2489 out:
2490 return error;
2491 }
2492 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2493
2494 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2495 asmlinkage long
2496 sys_rt_sigaction(int sig,
2497 const struct sigaction __user *act,
2498 struct sigaction __user *oact,
2499 size_t sigsetsize)
2500 {
2501 struct k_sigaction new_sa, old_sa;
2502 int ret = -EINVAL;
2503
2504 /* XXX: Don't preclude handling different sized sigset_t's. */
2505 if (sigsetsize != sizeof(sigset_t))
2506 goto out;
2507
2508 if (act) {
2509 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2510 return -EFAULT;
2511 }
2512
2513 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2514
2515 if (!ret && oact) {
2516 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2517 return -EFAULT;
2518 }
2519 out:
2520 return ret;
2521 }
2522 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2523
2524 #ifdef __ARCH_WANT_SYS_SGETMASK
2525
2526 /*
2527 * For backwards compatibility. Functionality superseded by sigprocmask.
2528 */
2529 asmlinkage long
2530 sys_sgetmask(void)
2531 {
2532 /* SMP safe */
2533 return current->blocked.sig[0];
2534 }
2535
2536 asmlinkage long
2537 sys_ssetmask(int newmask)
2538 {
2539 int old;
2540
2541 spin_lock_irq(&current->sighand->siglock);
2542 old = current->blocked.sig[0];
2543
2544 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2545 sigmask(SIGSTOP)));
2546 recalc_sigpending();
2547 spin_unlock_irq(&current->sighand->siglock);
2548
2549 return old;
2550 }
2551 #endif /* __ARCH_WANT_SGETMASK */
2552
2553 #ifdef __ARCH_WANT_SYS_SIGNAL
2554 /*
2555 * For backwards compatibility. Functionality superseded by sigaction.
2556 */
2557 asmlinkage unsigned long
2558 sys_signal(int sig, __sighandler_t handler)
2559 {
2560 struct k_sigaction new_sa, old_sa;
2561 int ret;
2562
2563 new_sa.sa.sa_handler = handler;
2564 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2565 sigemptyset(&new_sa.sa.sa_mask);
2566
2567 ret = do_sigaction(sig, &new_sa, &old_sa);
2568
2569 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2570 }
2571 #endif /* __ARCH_WANT_SYS_SIGNAL */
2572
2573 #ifdef __ARCH_WANT_SYS_PAUSE
2574
2575 asmlinkage long
2576 sys_pause(void)
2577 {
2578 current->state = TASK_INTERRUPTIBLE;
2579 schedule();
2580 return -ERESTARTNOHAND;
2581 }
2582
2583 #endif
2584
2585 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2586 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2587 {
2588 sigset_t newset;
2589
2590 /* XXX: Don't preclude handling different sized sigset_t's. */
2591 if (sigsetsize != sizeof(sigset_t))
2592 return -EINVAL;
2593
2594 if (copy_from_user(&newset, unewset, sizeof(newset)))
2595 return -EFAULT;
2596 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2597
2598 spin_lock_irq(&current->sighand->siglock);
2599 current->saved_sigmask = current->blocked;
2600 current->blocked = newset;
2601 recalc_sigpending();
2602 spin_unlock_irq(&current->sighand->siglock);
2603
2604 current->state = TASK_INTERRUPTIBLE;
2605 schedule();
2606 set_thread_flag(TIF_RESTORE_SIGMASK);
2607 return -ERESTARTNOHAND;
2608 }
2609 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2610
2611 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2612 {
2613 return NULL;
2614 }
2615
2616 void __init signals_init(void)
2617 {
2618 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2619 }
This page took 0.107331 seconds and 6 git commands to generate.