ITIMER_REAL: convert to use struct pid
[deliverable/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66
67 /*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95 }
96
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113 }
114
115 /*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123 }
124
125 void recalc_sigpending(void)
126 {
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130 }
131
132 /* Given the mask, find the first available signal that should be serviced. */
133
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165 }
166
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169 {
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192 }
193
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201 }
202
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213 }
214
215 /*
216 * Flush all pending signals for a task.
217 */
218 void flush_signals(struct task_struct *t)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228
229 void ignore_signals(struct task_struct *t)
230 {
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237 }
238
239 /*
240 * Flush all handlers for a task.
241 */
242
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255 }
256
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266
267
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287
288 /* Notify the system that blocking has ended. */
289
290 void
291 unblock_all_signals(void)
292 {
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343 }
344
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347 {
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365 }
366
367 /*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439 }
440
441 /*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470 }
471
472 /*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498 }
499 /*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521 }
522
523 /*
524 * Bad permissions for sending the signal
525 */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528 {
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547 }
548
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552 /*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658 }
659
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
662 {
663 struct sigqueue * q = NULL;
664 int ret = 0;
665
666 /*
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
669 */
670 signalfd_notify(t, sig);
671
672 /*
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
675 */
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
678
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
686
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
710 }
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 /*
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
716 */
717 return -EAGAIN;
718 }
719
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
723 }
724
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727
728 int print_fatal_signals;
729
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
734
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
737 {
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
741
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
744 }
745 }
746 #endif
747 printk("\n");
748 show_regs(regs);
749 }
750
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 get_option (&str, &print_fatal_signals);
754
755 return 1;
756 }
757
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 int ret = 0;
764
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
767
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
771
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
777
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
783 }
784
785 /*
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
788 *
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
792 *
793 * We don't want to have recursive SIGSEGV's etc, for example.
794 */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
801
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
811 }
812 }
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
815
816 return ret;
817 }
818
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824
825 /*
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
832 */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
844 }
845
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 struct task_struct *t;
850
851 /*
852 * Now find a thread we can wake up to take the signal off the queue.
853 *
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
856 */
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
860 /*
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
863 */
864 return;
865 else {
866 /*
867 * Otherwise try to find a suitable thread.
868 */
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
873
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
877 /*
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
881 */
882 return;
883 }
884 p->signal->curr_target = t;
885 }
886
887 /*
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
890 */
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 /*
895 * This signal will be fatal to the whole group.
896 */
897 if (!sig_kernel_coredump(sig)) {
898 /*
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
903 */
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
913 }
914 }
915
916 /*
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
919 */
920 signal_wake_up(t, sig == SIGKILL);
921 return;
922 }
923
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 int ret = 0;
928
929 assert_spin_locked(&p->sighand->siglock);
930 handle_stop_signal(sig, p);
931
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p, sig))
934 return ret;
935
936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 /* This is a non-RT signal and we already have one queued. */
938 return ret;
939
940 /*
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
944 */
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 if (unlikely(ret))
947 return ret;
948
949 __group_complete_signal(sig, p);
950 return 0;
951 }
952
953 /*
954 * Nuke all other threads in the group.
955 */
956 void zap_other_threads(struct task_struct *p)
957 {
958 struct task_struct *t;
959
960 p->signal->group_stop_count = 0;
961
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
963 /*
964 * Don't bother with already dead threads
965 */
966 if (t->exit_state)
967 continue;
968
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
972 }
973 }
974
975 int fastcall __fatal_signal_pending(struct task_struct *tsk)
976 {
977 return sigismember(&tsk->pending.signal, SIGKILL);
978 }
979 EXPORT_SYMBOL(__fatal_signal_pending);
980
981 /*
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
983 */
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
985 {
986 struct sighand_struct *sighand;
987
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
992
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
997 }
998
999 return sighand;
1000 }
1001
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1003 {
1004 unsigned long flags;
1005 int ret;
1006
1007 ret = check_kill_permission(sig, info, p);
1008
1009 if (!ret && sig) {
1010 ret = -ESRCH;
1011 if (lock_task_sighand(p, &flags)) {
1012 ret = __group_send_sig_info(sig, info, p);
1013 unlock_task_sighand(p, &flags);
1014 }
1015 }
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1023 */
1024
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1026 {
1027 struct task_struct *p = NULL;
1028 int retval, success;
1029
1030 success = 0;
1031 retval = -ESRCH;
1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 int err = group_send_sig_info(sig, info, p);
1034 success |= !err;
1035 retval = err;
1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 return success ? 0 : retval;
1038 }
1039
1040 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1041 {
1042 int retval;
1043
1044 read_lock(&tasklist_lock);
1045 retval = __kill_pgrp_info(sig, info, pgrp);
1046 read_unlock(&tasklist_lock);
1047
1048 return retval;
1049 }
1050
1051 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1052 {
1053 int error = -ESRCH;
1054 struct task_struct *p;
1055
1056 rcu_read_lock();
1057 if (unlikely(sig_needs_tasklist(sig)))
1058 read_lock(&tasklist_lock);
1059
1060 retry:
1061 p = pid_task(pid, PIDTYPE_PID);
1062 if (p) {
1063 error = group_send_sig_info(sig, info, p);
1064 if (unlikely(error == -ESRCH))
1065 /*
1066 * The task was unhashed in between, try again.
1067 * If it is dead, pid_task() will return NULL,
1068 * if we race with de_thread() it will find the
1069 * new leader.
1070 */
1071 goto retry;
1072 }
1073
1074 if (unlikely(sig_needs_tasklist(sig)))
1075 read_unlock(&tasklist_lock);
1076 rcu_read_unlock();
1077 return error;
1078 }
1079
1080 int
1081 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1082 {
1083 int error;
1084 rcu_read_lock();
1085 error = kill_pid_info(sig, info, find_vpid(pid));
1086 rcu_read_unlock();
1087 return error;
1088 }
1089
1090 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1091 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1092 uid_t uid, uid_t euid, u32 secid)
1093 {
1094 int ret = -EINVAL;
1095 struct task_struct *p;
1096
1097 if (!valid_signal(sig))
1098 return ret;
1099
1100 read_lock(&tasklist_lock);
1101 p = pid_task(pid, PIDTYPE_PID);
1102 if (!p) {
1103 ret = -ESRCH;
1104 goto out_unlock;
1105 }
1106 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1107 && (euid != p->suid) && (euid != p->uid)
1108 && (uid != p->suid) && (uid != p->uid)) {
1109 ret = -EPERM;
1110 goto out_unlock;
1111 }
1112 ret = security_task_kill(p, info, sig, secid);
1113 if (ret)
1114 goto out_unlock;
1115 if (sig && p->sighand) {
1116 unsigned long flags;
1117 spin_lock_irqsave(&p->sighand->siglock, flags);
1118 ret = __group_send_sig_info(sig, info, p);
1119 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1120 }
1121 out_unlock:
1122 read_unlock(&tasklist_lock);
1123 return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1126
1127 /*
1128 * kill_something_info() interprets pid in interesting ways just like kill(2).
1129 *
1130 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1131 * is probably wrong. Should make it like BSD or SYSV.
1132 */
1133
1134 static int kill_something_info(int sig, struct siginfo *info, int pid)
1135 {
1136 int ret;
1137 rcu_read_lock();
1138 if (!pid) {
1139 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1140 } else if (pid == -1) {
1141 int retval = 0, count = 0;
1142 struct task_struct * p;
1143
1144 read_lock(&tasklist_lock);
1145 for_each_process(p) {
1146 if (p->pid > 1 && !same_thread_group(p, current)) {
1147 int err = group_send_sig_info(sig, info, p);
1148 ++count;
1149 if (err != -EPERM)
1150 retval = err;
1151 }
1152 }
1153 read_unlock(&tasklist_lock);
1154 ret = count ? retval : -ESRCH;
1155 } else if (pid < 0) {
1156 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1157 } else {
1158 ret = kill_pid_info(sig, info, find_vpid(pid));
1159 }
1160 rcu_read_unlock();
1161 return ret;
1162 }
1163
1164 /*
1165 * These are for backward compatibility with the rest of the kernel source.
1166 */
1167
1168 /*
1169 * These two are the most common entry points. They send a signal
1170 * just to the specific thread.
1171 */
1172 int
1173 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1174 {
1175 int ret;
1176 unsigned long flags;
1177
1178 /*
1179 * Make sure legacy kernel users don't send in bad values
1180 * (normal paths check this in check_kill_permission).
1181 */
1182 if (!valid_signal(sig))
1183 return -EINVAL;
1184
1185 /*
1186 * We need the tasklist lock even for the specific
1187 * thread case (when we don't need to follow the group
1188 * lists) in order to avoid races with "p->sighand"
1189 * going away or changing from under us.
1190 */
1191 read_lock(&tasklist_lock);
1192 spin_lock_irqsave(&p->sighand->siglock, flags);
1193 ret = specific_send_sig_info(sig, info, p);
1194 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1195 read_unlock(&tasklist_lock);
1196 return ret;
1197 }
1198
1199 #define __si_special(priv) \
1200 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1201
1202 int
1203 send_sig(int sig, struct task_struct *p, int priv)
1204 {
1205 return send_sig_info(sig, __si_special(priv), p);
1206 }
1207
1208 void
1209 force_sig(int sig, struct task_struct *p)
1210 {
1211 force_sig_info(sig, SEND_SIG_PRIV, p);
1212 }
1213
1214 /*
1215 * When things go south during signal handling, we
1216 * will force a SIGSEGV. And if the signal that caused
1217 * the problem was already a SIGSEGV, we'll want to
1218 * make sure we don't even try to deliver the signal..
1219 */
1220 int
1221 force_sigsegv(int sig, struct task_struct *p)
1222 {
1223 if (sig == SIGSEGV) {
1224 unsigned long flags;
1225 spin_lock_irqsave(&p->sighand->siglock, flags);
1226 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1227 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1228 }
1229 force_sig(SIGSEGV, p);
1230 return 0;
1231 }
1232
1233 int kill_pgrp(struct pid *pid, int sig, int priv)
1234 {
1235 return kill_pgrp_info(sig, __si_special(priv), pid);
1236 }
1237 EXPORT_SYMBOL(kill_pgrp);
1238
1239 int kill_pid(struct pid *pid, int sig, int priv)
1240 {
1241 return kill_pid_info(sig, __si_special(priv), pid);
1242 }
1243 EXPORT_SYMBOL(kill_pid);
1244
1245 int
1246 kill_proc(pid_t pid, int sig, int priv)
1247 {
1248 int ret;
1249
1250 rcu_read_lock();
1251 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1252 rcu_read_unlock();
1253 return ret;
1254 }
1255
1256 /*
1257 * These functions support sending signals using preallocated sigqueue
1258 * structures. This is needed "because realtime applications cannot
1259 * afford to lose notifications of asynchronous events, like timer
1260 * expirations or I/O completions". In the case of Posix Timers
1261 * we allocate the sigqueue structure from the timer_create. If this
1262 * allocation fails we are able to report the failure to the application
1263 * with an EAGAIN error.
1264 */
1265
1266 struct sigqueue *sigqueue_alloc(void)
1267 {
1268 struct sigqueue *q;
1269
1270 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1271 q->flags |= SIGQUEUE_PREALLOC;
1272 return(q);
1273 }
1274
1275 void sigqueue_free(struct sigqueue *q)
1276 {
1277 unsigned long flags;
1278 spinlock_t *lock = &current->sighand->siglock;
1279
1280 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1281 /*
1282 * If the signal is still pending remove it from the
1283 * pending queue. We must hold ->siglock while testing
1284 * q->list to serialize with collect_signal().
1285 */
1286 spin_lock_irqsave(lock, flags);
1287 if (!list_empty(&q->list))
1288 list_del_init(&q->list);
1289 spin_unlock_irqrestore(lock, flags);
1290
1291 q->flags &= ~SIGQUEUE_PREALLOC;
1292 __sigqueue_free(q);
1293 }
1294
1295 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1296 {
1297 unsigned long flags;
1298 int ret = 0;
1299
1300 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1301
1302 /*
1303 * The rcu based delayed sighand destroy makes it possible to
1304 * run this without tasklist lock held. The task struct itself
1305 * cannot go away as create_timer did get_task_struct().
1306 *
1307 * We return -1, when the task is marked exiting, so
1308 * posix_timer_event can redirect it to the group leader
1309 */
1310 rcu_read_lock();
1311
1312 if (!likely(lock_task_sighand(p, &flags))) {
1313 ret = -1;
1314 goto out_err;
1315 }
1316
1317 if (unlikely(!list_empty(&q->list))) {
1318 /*
1319 * If an SI_TIMER entry is already queue just increment
1320 * the overrun count.
1321 */
1322 BUG_ON(q->info.si_code != SI_TIMER);
1323 q->info.si_overrun++;
1324 goto out;
1325 }
1326 /* Short-circuit ignored signals. */
1327 if (sig_ignored(p, sig)) {
1328 ret = 1;
1329 goto out;
1330 }
1331 /*
1332 * Deliver the signal to listening signalfds. This must be called
1333 * with the sighand lock held.
1334 */
1335 signalfd_notify(p, sig);
1336
1337 list_add_tail(&q->list, &p->pending.list);
1338 sigaddset(&p->pending.signal, sig);
1339 if (!sigismember(&p->blocked, sig))
1340 signal_wake_up(p, sig == SIGKILL);
1341
1342 out:
1343 unlock_task_sighand(p, &flags);
1344 out_err:
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 int
1351 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1352 {
1353 unsigned long flags;
1354 int ret = 0;
1355
1356 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1357
1358 read_lock(&tasklist_lock);
1359 /* Since it_lock is held, p->sighand cannot be NULL. */
1360 spin_lock_irqsave(&p->sighand->siglock, flags);
1361 handle_stop_signal(sig, p);
1362
1363 /* Short-circuit ignored signals. */
1364 if (sig_ignored(p, sig)) {
1365 ret = 1;
1366 goto out;
1367 }
1368
1369 if (unlikely(!list_empty(&q->list))) {
1370 /*
1371 * If an SI_TIMER entry is already queue just increment
1372 * the overrun count. Other uses should not try to
1373 * send the signal multiple times.
1374 */
1375 BUG_ON(q->info.si_code != SI_TIMER);
1376 q->info.si_overrun++;
1377 goto out;
1378 }
1379 /*
1380 * Deliver the signal to listening signalfds. This must be called
1381 * with the sighand lock held.
1382 */
1383 signalfd_notify(p, sig);
1384
1385 /*
1386 * Put this signal on the shared-pending queue.
1387 * We always use the shared queue for process-wide signals,
1388 * to avoid several races.
1389 */
1390 list_add_tail(&q->list, &p->signal->shared_pending.list);
1391 sigaddset(&p->signal->shared_pending.signal, sig);
1392
1393 __group_complete_signal(sig, p);
1394 out:
1395 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1396 read_unlock(&tasklist_lock);
1397 return ret;
1398 }
1399
1400 /*
1401 * Wake up any threads in the parent blocked in wait* syscalls.
1402 */
1403 static inline void __wake_up_parent(struct task_struct *p,
1404 struct task_struct *parent)
1405 {
1406 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1407 }
1408
1409 /*
1410 * Let a parent know about the death of a child.
1411 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1412 */
1413
1414 void do_notify_parent(struct task_struct *tsk, int sig)
1415 {
1416 struct siginfo info;
1417 unsigned long flags;
1418 struct sighand_struct *psig;
1419
1420 BUG_ON(sig == -1);
1421
1422 /* do_notify_parent_cldstop should have been called instead. */
1423 BUG_ON(task_is_stopped_or_traced(tsk));
1424
1425 BUG_ON(!tsk->ptrace &&
1426 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1427
1428 info.si_signo = sig;
1429 info.si_errno = 0;
1430 /*
1431 * we are under tasklist_lock here so our parent is tied to
1432 * us and cannot exit and release its namespace.
1433 *
1434 * the only it can is to switch its nsproxy with sys_unshare,
1435 * bu uncharing pid namespaces is not allowed, so we'll always
1436 * see relevant namespace
1437 *
1438 * write_lock() currently calls preempt_disable() which is the
1439 * same as rcu_read_lock(), but according to Oleg, this is not
1440 * correct to rely on this
1441 */
1442 rcu_read_lock();
1443 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1444 rcu_read_unlock();
1445
1446 info.si_uid = tsk->uid;
1447
1448 /* FIXME: find out whether or not this is supposed to be c*time. */
1449 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1450 tsk->signal->utime));
1451 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1452 tsk->signal->stime));
1453
1454 info.si_status = tsk->exit_code & 0x7f;
1455 if (tsk->exit_code & 0x80)
1456 info.si_code = CLD_DUMPED;
1457 else if (tsk->exit_code & 0x7f)
1458 info.si_code = CLD_KILLED;
1459 else {
1460 info.si_code = CLD_EXITED;
1461 info.si_status = tsk->exit_code >> 8;
1462 }
1463
1464 psig = tsk->parent->sighand;
1465 spin_lock_irqsave(&psig->siglock, flags);
1466 if (!tsk->ptrace && sig == SIGCHLD &&
1467 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1468 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1469 /*
1470 * We are exiting and our parent doesn't care. POSIX.1
1471 * defines special semantics for setting SIGCHLD to SIG_IGN
1472 * or setting the SA_NOCLDWAIT flag: we should be reaped
1473 * automatically and not left for our parent's wait4 call.
1474 * Rather than having the parent do it as a magic kind of
1475 * signal handler, we just set this to tell do_exit that we
1476 * can be cleaned up without becoming a zombie. Note that
1477 * we still call __wake_up_parent in this case, because a
1478 * blocked sys_wait4 might now return -ECHILD.
1479 *
1480 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1481 * is implementation-defined: we do (if you don't want
1482 * it, just use SIG_IGN instead).
1483 */
1484 tsk->exit_signal = -1;
1485 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1486 sig = 0;
1487 }
1488 if (valid_signal(sig) && sig > 0)
1489 __group_send_sig_info(sig, &info, tsk->parent);
1490 __wake_up_parent(tsk, tsk->parent);
1491 spin_unlock_irqrestore(&psig->siglock, flags);
1492 }
1493
1494 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1495 {
1496 struct siginfo info;
1497 unsigned long flags;
1498 struct task_struct *parent;
1499 struct sighand_struct *sighand;
1500
1501 if (tsk->ptrace & PT_PTRACED)
1502 parent = tsk->parent;
1503 else {
1504 tsk = tsk->group_leader;
1505 parent = tsk->real_parent;
1506 }
1507
1508 info.si_signo = SIGCHLD;
1509 info.si_errno = 0;
1510 /*
1511 * see comment in do_notify_parent() abot the following 3 lines
1512 */
1513 rcu_read_lock();
1514 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1515 rcu_read_unlock();
1516
1517 info.si_uid = tsk->uid;
1518
1519 /* FIXME: find out whether or not this is supposed to be c*time. */
1520 info.si_utime = cputime_to_jiffies(tsk->utime);
1521 info.si_stime = cputime_to_jiffies(tsk->stime);
1522
1523 info.si_code = why;
1524 switch (why) {
1525 case CLD_CONTINUED:
1526 info.si_status = SIGCONT;
1527 break;
1528 case CLD_STOPPED:
1529 info.si_status = tsk->signal->group_exit_code & 0x7f;
1530 break;
1531 case CLD_TRAPPED:
1532 info.si_status = tsk->exit_code & 0x7f;
1533 break;
1534 default:
1535 BUG();
1536 }
1537
1538 sighand = parent->sighand;
1539 spin_lock_irqsave(&sighand->siglock, flags);
1540 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1541 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1542 __group_send_sig_info(SIGCHLD, &info, parent);
1543 /*
1544 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1545 */
1546 __wake_up_parent(tsk, parent);
1547 spin_unlock_irqrestore(&sighand->siglock, flags);
1548 }
1549
1550 static inline int may_ptrace_stop(void)
1551 {
1552 if (!likely(current->ptrace & PT_PTRACED))
1553 return 0;
1554 /*
1555 * Are we in the middle of do_coredump?
1556 * If so and our tracer is also part of the coredump stopping
1557 * is a deadlock situation, and pointless because our tracer
1558 * is dead so don't allow us to stop.
1559 * If SIGKILL was already sent before the caller unlocked
1560 * ->siglock we must see ->core_waiters != 0. Otherwise it
1561 * is safe to enter schedule().
1562 */
1563 if (unlikely(current->mm->core_waiters) &&
1564 unlikely(current->mm == current->parent->mm))
1565 return 0;
1566
1567 return 1;
1568 }
1569
1570 /*
1571 * Return nonzero if there is a SIGKILL that should be waking us up.
1572 * Called with the siglock held.
1573 */
1574 static int sigkill_pending(struct task_struct *tsk)
1575 {
1576 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1577 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1578 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1579 }
1580
1581 /*
1582 * This must be called with current->sighand->siglock held.
1583 *
1584 * This should be the path for all ptrace stops.
1585 * We always set current->last_siginfo while stopped here.
1586 * That makes it a way to test a stopped process for
1587 * being ptrace-stopped vs being job-control-stopped.
1588 *
1589 * If we actually decide not to stop at all because the tracer
1590 * is gone, we keep current->exit_code unless clear_code.
1591 */
1592 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1593 {
1594 int killed = 0;
1595
1596 if (arch_ptrace_stop_needed(exit_code, info)) {
1597 /*
1598 * The arch code has something special to do before a
1599 * ptrace stop. This is allowed to block, e.g. for faults
1600 * on user stack pages. We can't keep the siglock while
1601 * calling arch_ptrace_stop, so we must release it now.
1602 * To preserve proper semantics, we must do this before
1603 * any signal bookkeeping like checking group_stop_count.
1604 * Meanwhile, a SIGKILL could come in before we retake the
1605 * siglock. That must prevent us from sleeping in TASK_TRACED.
1606 * So after regaining the lock, we must check for SIGKILL.
1607 */
1608 spin_unlock_irq(&current->sighand->siglock);
1609 arch_ptrace_stop(exit_code, info);
1610 spin_lock_irq(&current->sighand->siglock);
1611 killed = sigkill_pending(current);
1612 }
1613
1614 /*
1615 * If there is a group stop in progress,
1616 * we must participate in the bookkeeping.
1617 */
1618 if (current->signal->group_stop_count > 0)
1619 --current->signal->group_stop_count;
1620
1621 current->last_siginfo = info;
1622 current->exit_code = exit_code;
1623
1624 /* Let the debugger run. */
1625 __set_current_state(TASK_TRACED);
1626 spin_unlock_irq(&current->sighand->siglock);
1627 try_to_freeze();
1628 read_lock(&tasklist_lock);
1629 if (!unlikely(killed) && may_ptrace_stop()) {
1630 do_notify_parent_cldstop(current, CLD_TRAPPED);
1631 read_unlock(&tasklist_lock);
1632 schedule();
1633 } else {
1634 /*
1635 * By the time we got the lock, our tracer went away.
1636 * Don't drop the lock yet, another tracer may come.
1637 */
1638 __set_current_state(TASK_RUNNING);
1639 if (clear_code)
1640 current->exit_code = 0;
1641 read_unlock(&tasklist_lock);
1642 }
1643
1644 /*
1645 * We are back. Now reacquire the siglock before touching
1646 * last_siginfo, so that we are sure to have synchronized with
1647 * any signal-sending on another CPU that wants to examine it.
1648 */
1649 spin_lock_irq(&current->sighand->siglock);
1650 current->last_siginfo = NULL;
1651
1652 /*
1653 * Queued signals ignored us while we were stopped for tracing.
1654 * So check for any that we should take before resuming user mode.
1655 * This sets TIF_SIGPENDING, but never clears it.
1656 */
1657 recalc_sigpending_tsk(current);
1658 }
1659
1660 void ptrace_notify(int exit_code)
1661 {
1662 siginfo_t info;
1663
1664 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1665
1666 memset(&info, 0, sizeof info);
1667 info.si_signo = SIGTRAP;
1668 info.si_code = exit_code;
1669 info.si_pid = task_pid_vnr(current);
1670 info.si_uid = current->uid;
1671
1672 /* Let the debugger run. */
1673 spin_lock_irq(&current->sighand->siglock);
1674 ptrace_stop(exit_code, 1, &info);
1675 spin_unlock_irq(&current->sighand->siglock);
1676 }
1677
1678 static void
1679 finish_stop(int stop_count)
1680 {
1681 /*
1682 * If there are no other threads in the group, or if there is
1683 * a group stop in progress and we are the last to stop,
1684 * report to the parent. When ptraced, every thread reports itself.
1685 */
1686 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1687 read_lock(&tasklist_lock);
1688 do_notify_parent_cldstop(current, CLD_STOPPED);
1689 read_unlock(&tasklist_lock);
1690 }
1691
1692 do {
1693 schedule();
1694 } while (try_to_freeze());
1695 /*
1696 * Now we don't run again until continued.
1697 */
1698 current->exit_code = 0;
1699 }
1700
1701 /*
1702 * This performs the stopping for SIGSTOP and other stop signals.
1703 * We have to stop all threads in the thread group.
1704 * Returns nonzero if we've actually stopped and released the siglock.
1705 * Returns zero if we didn't stop and still hold the siglock.
1706 */
1707 static int do_signal_stop(int signr)
1708 {
1709 struct signal_struct *sig = current->signal;
1710 int stop_count;
1711
1712 if (sig->group_stop_count > 0) {
1713 /*
1714 * There is a group stop in progress. We don't need to
1715 * start another one.
1716 */
1717 stop_count = --sig->group_stop_count;
1718 } else {
1719 struct task_struct *t;
1720
1721 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1722 unlikely(sig->group_exit_task))
1723 return 0;
1724 /*
1725 * There is no group stop already in progress.
1726 * We must initiate one now.
1727 */
1728 sig->group_exit_code = signr;
1729
1730 stop_count = 0;
1731 for (t = next_thread(current); t != current; t = next_thread(t))
1732 /*
1733 * Setting state to TASK_STOPPED for a group
1734 * stop is always done with the siglock held,
1735 * so this check has no races.
1736 */
1737 if (!(t->flags & PF_EXITING) &&
1738 !task_is_stopped_or_traced(t)) {
1739 stop_count++;
1740 signal_wake_up(t, 0);
1741 }
1742 sig->group_stop_count = stop_count;
1743 }
1744
1745 if (stop_count == 0)
1746 sig->flags = SIGNAL_STOP_STOPPED;
1747 current->exit_code = sig->group_exit_code;
1748 __set_current_state(TASK_STOPPED);
1749
1750 spin_unlock_irq(&current->sighand->siglock);
1751 finish_stop(stop_count);
1752 return 1;
1753 }
1754
1755 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1756 struct pt_regs *regs, void *cookie)
1757 {
1758 sigset_t *mask = &current->blocked;
1759 int signr = 0;
1760
1761 try_to_freeze();
1762
1763 relock:
1764 spin_lock_irq(&current->sighand->siglock);
1765 for (;;) {
1766 struct k_sigaction *ka;
1767
1768 if (unlikely(current->signal->group_stop_count > 0) &&
1769 do_signal_stop(0))
1770 goto relock;
1771
1772 signr = dequeue_signal(current, mask, info);
1773
1774 if (!signr)
1775 break; /* will return 0 */
1776
1777 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1778 ptrace_signal_deliver(regs, cookie);
1779
1780 /* Let the debugger run. */
1781 ptrace_stop(signr, 0, info);
1782
1783 /* We're back. Did the debugger cancel the sig? */
1784 signr = current->exit_code;
1785 if (signr == 0)
1786 continue;
1787
1788 current->exit_code = 0;
1789
1790 /* Update the siginfo structure if the signal has
1791 changed. If the debugger wanted something
1792 specific in the siginfo structure then it should
1793 have updated *info via PTRACE_SETSIGINFO. */
1794 if (signr != info->si_signo) {
1795 info->si_signo = signr;
1796 info->si_errno = 0;
1797 info->si_code = SI_USER;
1798 info->si_pid = task_pid_vnr(current->parent);
1799 info->si_uid = current->parent->uid;
1800 }
1801
1802 /* If the (new) signal is now blocked, requeue it. */
1803 if (sigismember(&current->blocked, signr)) {
1804 specific_send_sig_info(signr, info, current);
1805 continue;
1806 }
1807 }
1808
1809 ka = &current->sighand->action[signr-1];
1810 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1811 continue;
1812 if (ka->sa.sa_handler != SIG_DFL) {
1813 /* Run the handler. */
1814 *return_ka = *ka;
1815
1816 if (ka->sa.sa_flags & SA_ONESHOT)
1817 ka->sa.sa_handler = SIG_DFL;
1818
1819 break; /* will return non-zero "signr" value */
1820 }
1821
1822 /*
1823 * Now we are doing the default action for this signal.
1824 */
1825 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1826 continue;
1827
1828 /*
1829 * Global init gets no signals it doesn't want.
1830 */
1831 if (is_global_init(current))
1832 continue;
1833
1834 if (sig_kernel_stop(signr)) {
1835 /*
1836 * The default action is to stop all threads in
1837 * the thread group. The job control signals
1838 * do nothing in an orphaned pgrp, but SIGSTOP
1839 * always works. Note that siglock needs to be
1840 * dropped during the call to is_orphaned_pgrp()
1841 * because of lock ordering with tasklist_lock.
1842 * This allows an intervening SIGCONT to be posted.
1843 * We need to check for that and bail out if necessary.
1844 */
1845 if (signr != SIGSTOP) {
1846 spin_unlock_irq(&current->sighand->siglock);
1847
1848 /* signals can be posted during this window */
1849
1850 if (is_current_pgrp_orphaned())
1851 goto relock;
1852
1853 spin_lock_irq(&current->sighand->siglock);
1854 }
1855
1856 if (likely(do_signal_stop(signr))) {
1857 /* It released the siglock. */
1858 goto relock;
1859 }
1860
1861 /*
1862 * We didn't actually stop, due to a race
1863 * with SIGCONT or something like that.
1864 */
1865 continue;
1866 }
1867
1868 spin_unlock_irq(&current->sighand->siglock);
1869
1870 /*
1871 * Anything else is fatal, maybe with a core dump.
1872 */
1873 current->flags |= PF_SIGNALED;
1874 if ((signr != SIGKILL) && print_fatal_signals)
1875 print_fatal_signal(regs, signr);
1876 if (sig_kernel_coredump(signr)) {
1877 /*
1878 * If it was able to dump core, this kills all
1879 * other threads in the group and synchronizes with
1880 * their demise. If we lost the race with another
1881 * thread getting here, it set group_exit_code
1882 * first and our do_group_exit call below will use
1883 * that value and ignore the one we pass it.
1884 */
1885 do_coredump((long)signr, signr, regs);
1886 }
1887
1888 /*
1889 * Death signals, no core dump.
1890 */
1891 do_group_exit(signr);
1892 /* NOTREACHED */
1893 }
1894 spin_unlock_irq(&current->sighand->siglock);
1895 return signr;
1896 }
1897
1898 void exit_signals(struct task_struct *tsk)
1899 {
1900 int group_stop = 0;
1901 struct task_struct *t;
1902
1903 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1904 tsk->flags |= PF_EXITING;
1905 return;
1906 }
1907
1908 spin_lock_irq(&tsk->sighand->siglock);
1909 /*
1910 * From now this task is not visible for group-wide signals,
1911 * see wants_signal(), do_signal_stop().
1912 */
1913 tsk->flags |= PF_EXITING;
1914 if (!signal_pending(tsk))
1915 goto out;
1916
1917 /* It could be that __group_complete_signal() choose us to
1918 * notify about group-wide signal. Another thread should be
1919 * woken now to take the signal since we will not.
1920 */
1921 for (t = tsk; (t = next_thread(t)) != tsk; )
1922 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1923 recalc_sigpending_and_wake(t);
1924
1925 if (unlikely(tsk->signal->group_stop_count) &&
1926 !--tsk->signal->group_stop_count) {
1927 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1928 group_stop = 1;
1929 }
1930 out:
1931 spin_unlock_irq(&tsk->sighand->siglock);
1932
1933 if (unlikely(group_stop)) {
1934 read_lock(&tasklist_lock);
1935 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1936 read_unlock(&tasklist_lock);
1937 }
1938 }
1939
1940 EXPORT_SYMBOL(recalc_sigpending);
1941 EXPORT_SYMBOL_GPL(dequeue_signal);
1942 EXPORT_SYMBOL(flush_signals);
1943 EXPORT_SYMBOL(force_sig);
1944 EXPORT_SYMBOL(kill_proc);
1945 EXPORT_SYMBOL(ptrace_notify);
1946 EXPORT_SYMBOL(send_sig);
1947 EXPORT_SYMBOL(send_sig_info);
1948 EXPORT_SYMBOL(sigprocmask);
1949 EXPORT_SYMBOL(block_all_signals);
1950 EXPORT_SYMBOL(unblock_all_signals);
1951
1952
1953 /*
1954 * System call entry points.
1955 */
1956
1957 asmlinkage long sys_restart_syscall(void)
1958 {
1959 struct restart_block *restart = &current_thread_info()->restart_block;
1960 return restart->fn(restart);
1961 }
1962
1963 long do_no_restart_syscall(struct restart_block *param)
1964 {
1965 return -EINTR;
1966 }
1967
1968 /*
1969 * We don't need to get the kernel lock - this is all local to this
1970 * particular thread.. (and that's good, because this is _heavily_
1971 * used by various programs)
1972 */
1973
1974 /*
1975 * This is also useful for kernel threads that want to temporarily
1976 * (or permanently) block certain signals.
1977 *
1978 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1979 * interface happily blocks "unblockable" signals like SIGKILL
1980 * and friends.
1981 */
1982 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1983 {
1984 int error;
1985
1986 spin_lock_irq(&current->sighand->siglock);
1987 if (oldset)
1988 *oldset = current->blocked;
1989
1990 error = 0;
1991 switch (how) {
1992 case SIG_BLOCK:
1993 sigorsets(&current->blocked, &current->blocked, set);
1994 break;
1995 case SIG_UNBLOCK:
1996 signandsets(&current->blocked, &current->blocked, set);
1997 break;
1998 case SIG_SETMASK:
1999 current->blocked = *set;
2000 break;
2001 default:
2002 error = -EINVAL;
2003 }
2004 recalc_sigpending();
2005 spin_unlock_irq(&current->sighand->siglock);
2006
2007 return error;
2008 }
2009
2010 asmlinkage long
2011 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2012 {
2013 int error = -EINVAL;
2014 sigset_t old_set, new_set;
2015
2016 /* XXX: Don't preclude handling different sized sigset_t's. */
2017 if (sigsetsize != sizeof(sigset_t))
2018 goto out;
2019
2020 if (set) {
2021 error = -EFAULT;
2022 if (copy_from_user(&new_set, set, sizeof(*set)))
2023 goto out;
2024 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2025
2026 error = sigprocmask(how, &new_set, &old_set);
2027 if (error)
2028 goto out;
2029 if (oset)
2030 goto set_old;
2031 } else if (oset) {
2032 spin_lock_irq(&current->sighand->siglock);
2033 old_set = current->blocked;
2034 spin_unlock_irq(&current->sighand->siglock);
2035
2036 set_old:
2037 error = -EFAULT;
2038 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2039 goto out;
2040 }
2041 error = 0;
2042 out:
2043 return error;
2044 }
2045
2046 long do_sigpending(void __user *set, unsigned long sigsetsize)
2047 {
2048 long error = -EINVAL;
2049 sigset_t pending;
2050
2051 if (sigsetsize > sizeof(sigset_t))
2052 goto out;
2053
2054 spin_lock_irq(&current->sighand->siglock);
2055 sigorsets(&pending, &current->pending.signal,
2056 &current->signal->shared_pending.signal);
2057 spin_unlock_irq(&current->sighand->siglock);
2058
2059 /* Outside the lock because only this thread touches it. */
2060 sigandsets(&pending, &current->blocked, &pending);
2061
2062 error = -EFAULT;
2063 if (!copy_to_user(set, &pending, sigsetsize))
2064 error = 0;
2065
2066 out:
2067 return error;
2068 }
2069
2070 asmlinkage long
2071 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2072 {
2073 return do_sigpending(set, sigsetsize);
2074 }
2075
2076 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2077
2078 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2079 {
2080 int err;
2081
2082 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2083 return -EFAULT;
2084 if (from->si_code < 0)
2085 return __copy_to_user(to, from, sizeof(siginfo_t))
2086 ? -EFAULT : 0;
2087 /*
2088 * If you change siginfo_t structure, please be sure
2089 * this code is fixed accordingly.
2090 * Please remember to update the signalfd_copyinfo() function
2091 * inside fs/signalfd.c too, in case siginfo_t changes.
2092 * It should never copy any pad contained in the structure
2093 * to avoid security leaks, but must copy the generic
2094 * 3 ints plus the relevant union member.
2095 */
2096 err = __put_user(from->si_signo, &to->si_signo);
2097 err |= __put_user(from->si_errno, &to->si_errno);
2098 err |= __put_user((short)from->si_code, &to->si_code);
2099 switch (from->si_code & __SI_MASK) {
2100 case __SI_KILL:
2101 err |= __put_user(from->si_pid, &to->si_pid);
2102 err |= __put_user(from->si_uid, &to->si_uid);
2103 break;
2104 case __SI_TIMER:
2105 err |= __put_user(from->si_tid, &to->si_tid);
2106 err |= __put_user(from->si_overrun, &to->si_overrun);
2107 err |= __put_user(from->si_ptr, &to->si_ptr);
2108 break;
2109 case __SI_POLL:
2110 err |= __put_user(from->si_band, &to->si_band);
2111 err |= __put_user(from->si_fd, &to->si_fd);
2112 break;
2113 case __SI_FAULT:
2114 err |= __put_user(from->si_addr, &to->si_addr);
2115 #ifdef __ARCH_SI_TRAPNO
2116 err |= __put_user(from->si_trapno, &to->si_trapno);
2117 #endif
2118 break;
2119 case __SI_CHLD:
2120 err |= __put_user(from->si_pid, &to->si_pid);
2121 err |= __put_user(from->si_uid, &to->si_uid);
2122 err |= __put_user(from->si_status, &to->si_status);
2123 err |= __put_user(from->si_utime, &to->si_utime);
2124 err |= __put_user(from->si_stime, &to->si_stime);
2125 break;
2126 case __SI_RT: /* This is not generated by the kernel as of now. */
2127 case __SI_MESGQ: /* But this is */
2128 err |= __put_user(from->si_pid, &to->si_pid);
2129 err |= __put_user(from->si_uid, &to->si_uid);
2130 err |= __put_user(from->si_ptr, &to->si_ptr);
2131 break;
2132 default: /* this is just in case for now ... */
2133 err |= __put_user(from->si_pid, &to->si_pid);
2134 err |= __put_user(from->si_uid, &to->si_uid);
2135 break;
2136 }
2137 return err;
2138 }
2139
2140 #endif
2141
2142 asmlinkage long
2143 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2144 siginfo_t __user *uinfo,
2145 const struct timespec __user *uts,
2146 size_t sigsetsize)
2147 {
2148 int ret, sig;
2149 sigset_t these;
2150 struct timespec ts;
2151 siginfo_t info;
2152 long timeout = 0;
2153
2154 /* XXX: Don't preclude handling different sized sigset_t's. */
2155 if (sigsetsize != sizeof(sigset_t))
2156 return -EINVAL;
2157
2158 if (copy_from_user(&these, uthese, sizeof(these)))
2159 return -EFAULT;
2160
2161 /*
2162 * Invert the set of allowed signals to get those we
2163 * want to block.
2164 */
2165 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2166 signotset(&these);
2167
2168 if (uts) {
2169 if (copy_from_user(&ts, uts, sizeof(ts)))
2170 return -EFAULT;
2171 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2172 || ts.tv_sec < 0)
2173 return -EINVAL;
2174 }
2175
2176 spin_lock_irq(&current->sighand->siglock);
2177 sig = dequeue_signal(current, &these, &info);
2178 if (!sig) {
2179 timeout = MAX_SCHEDULE_TIMEOUT;
2180 if (uts)
2181 timeout = (timespec_to_jiffies(&ts)
2182 + (ts.tv_sec || ts.tv_nsec));
2183
2184 if (timeout) {
2185 /* None ready -- temporarily unblock those we're
2186 * interested while we are sleeping in so that we'll
2187 * be awakened when they arrive. */
2188 current->real_blocked = current->blocked;
2189 sigandsets(&current->blocked, &current->blocked, &these);
2190 recalc_sigpending();
2191 spin_unlock_irq(&current->sighand->siglock);
2192
2193 timeout = schedule_timeout_interruptible(timeout);
2194
2195 spin_lock_irq(&current->sighand->siglock);
2196 sig = dequeue_signal(current, &these, &info);
2197 current->blocked = current->real_blocked;
2198 siginitset(&current->real_blocked, 0);
2199 recalc_sigpending();
2200 }
2201 }
2202 spin_unlock_irq(&current->sighand->siglock);
2203
2204 if (sig) {
2205 ret = sig;
2206 if (uinfo) {
2207 if (copy_siginfo_to_user(uinfo, &info))
2208 ret = -EFAULT;
2209 }
2210 } else {
2211 ret = -EAGAIN;
2212 if (timeout)
2213 ret = -EINTR;
2214 }
2215
2216 return ret;
2217 }
2218
2219 asmlinkage long
2220 sys_kill(int pid, int sig)
2221 {
2222 struct siginfo info;
2223
2224 info.si_signo = sig;
2225 info.si_errno = 0;
2226 info.si_code = SI_USER;
2227 info.si_pid = task_tgid_vnr(current);
2228 info.si_uid = current->uid;
2229
2230 return kill_something_info(sig, &info, pid);
2231 }
2232
2233 static int do_tkill(int tgid, int pid, int sig)
2234 {
2235 int error;
2236 struct siginfo info;
2237 struct task_struct *p;
2238
2239 error = -ESRCH;
2240 info.si_signo = sig;
2241 info.si_errno = 0;
2242 info.si_code = SI_TKILL;
2243 info.si_pid = task_tgid_vnr(current);
2244 info.si_uid = current->uid;
2245
2246 read_lock(&tasklist_lock);
2247 p = find_task_by_vpid(pid);
2248 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2249 error = check_kill_permission(sig, &info, p);
2250 /*
2251 * The null signal is a permissions and process existence
2252 * probe. No signal is actually delivered.
2253 */
2254 if (!error && sig && p->sighand) {
2255 spin_lock_irq(&p->sighand->siglock);
2256 handle_stop_signal(sig, p);
2257 error = specific_send_sig_info(sig, &info, p);
2258 spin_unlock_irq(&p->sighand->siglock);
2259 }
2260 }
2261 read_unlock(&tasklist_lock);
2262
2263 return error;
2264 }
2265
2266 /**
2267 * sys_tgkill - send signal to one specific thread
2268 * @tgid: the thread group ID of the thread
2269 * @pid: the PID of the thread
2270 * @sig: signal to be sent
2271 *
2272 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2273 * exists but it's not belonging to the target process anymore. This
2274 * method solves the problem of threads exiting and PIDs getting reused.
2275 */
2276 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2277 {
2278 /* This is only valid for single tasks */
2279 if (pid <= 0 || tgid <= 0)
2280 return -EINVAL;
2281
2282 return do_tkill(tgid, pid, sig);
2283 }
2284
2285 /*
2286 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2287 */
2288 asmlinkage long
2289 sys_tkill(int pid, int sig)
2290 {
2291 /* This is only valid for single tasks */
2292 if (pid <= 0)
2293 return -EINVAL;
2294
2295 return do_tkill(0, pid, sig);
2296 }
2297
2298 asmlinkage long
2299 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2300 {
2301 siginfo_t info;
2302
2303 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2304 return -EFAULT;
2305
2306 /* Not even root can pretend to send signals from the kernel.
2307 Nor can they impersonate a kill(), which adds source info. */
2308 if (info.si_code >= 0)
2309 return -EPERM;
2310 info.si_signo = sig;
2311
2312 /* POSIX.1b doesn't mention process groups. */
2313 return kill_proc_info(sig, &info, pid);
2314 }
2315
2316 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2317 {
2318 struct k_sigaction *k;
2319 sigset_t mask;
2320
2321 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2322 return -EINVAL;
2323
2324 k = &current->sighand->action[sig-1];
2325
2326 spin_lock_irq(&current->sighand->siglock);
2327 if (oact)
2328 *oact = *k;
2329
2330 if (act) {
2331 sigdelsetmask(&act->sa.sa_mask,
2332 sigmask(SIGKILL) | sigmask(SIGSTOP));
2333 *k = *act;
2334 /*
2335 * POSIX 3.3.1.3:
2336 * "Setting a signal action to SIG_IGN for a signal that is
2337 * pending shall cause the pending signal to be discarded,
2338 * whether or not it is blocked."
2339 *
2340 * "Setting a signal action to SIG_DFL for a signal that is
2341 * pending and whose default action is to ignore the signal
2342 * (for example, SIGCHLD), shall cause the pending signal to
2343 * be discarded, whether or not it is blocked"
2344 */
2345 if (act->sa.sa_handler == SIG_IGN ||
2346 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2347 struct task_struct *t = current;
2348 sigemptyset(&mask);
2349 sigaddset(&mask, sig);
2350 rm_from_queue_full(&mask, &t->signal->shared_pending);
2351 do {
2352 rm_from_queue_full(&mask, &t->pending);
2353 t = next_thread(t);
2354 } while (t != current);
2355 }
2356 }
2357
2358 spin_unlock_irq(&current->sighand->siglock);
2359 return 0;
2360 }
2361
2362 int
2363 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2364 {
2365 stack_t oss;
2366 int error;
2367
2368 if (uoss) {
2369 oss.ss_sp = (void __user *) current->sas_ss_sp;
2370 oss.ss_size = current->sas_ss_size;
2371 oss.ss_flags = sas_ss_flags(sp);
2372 }
2373
2374 if (uss) {
2375 void __user *ss_sp;
2376 size_t ss_size;
2377 int ss_flags;
2378
2379 error = -EFAULT;
2380 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2381 || __get_user(ss_sp, &uss->ss_sp)
2382 || __get_user(ss_flags, &uss->ss_flags)
2383 || __get_user(ss_size, &uss->ss_size))
2384 goto out;
2385
2386 error = -EPERM;
2387 if (on_sig_stack(sp))
2388 goto out;
2389
2390 error = -EINVAL;
2391 /*
2392 *
2393 * Note - this code used to test ss_flags incorrectly
2394 * old code may have been written using ss_flags==0
2395 * to mean ss_flags==SS_ONSTACK (as this was the only
2396 * way that worked) - this fix preserves that older
2397 * mechanism
2398 */
2399 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2400 goto out;
2401
2402 if (ss_flags == SS_DISABLE) {
2403 ss_size = 0;
2404 ss_sp = NULL;
2405 } else {
2406 error = -ENOMEM;
2407 if (ss_size < MINSIGSTKSZ)
2408 goto out;
2409 }
2410
2411 current->sas_ss_sp = (unsigned long) ss_sp;
2412 current->sas_ss_size = ss_size;
2413 }
2414
2415 if (uoss) {
2416 error = -EFAULT;
2417 if (copy_to_user(uoss, &oss, sizeof(oss)))
2418 goto out;
2419 }
2420
2421 error = 0;
2422 out:
2423 return error;
2424 }
2425
2426 #ifdef __ARCH_WANT_SYS_SIGPENDING
2427
2428 asmlinkage long
2429 sys_sigpending(old_sigset_t __user *set)
2430 {
2431 return do_sigpending(set, sizeof(*set));
2432 }
2433
2434 #endif
2435
2436 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2437 /* Some platforms have their own version with special arguments others
2438 support only sys_rt_sigprocmask. */
2439
2440 asmlinkage long
2441 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2442 {
2443 int error;
2444 old_sigset_t old_set, new_set;
2445
2446 if (set) {
2447 error = -EFAULT;
2448 if (copy_from_user(&new_set, set, sizeof(*set)))
2449 goto out;
2450 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2451
2452 spin_lock_irq(&current->sighand->siglock);
2453 old_set = current->blocked.sig[0];
2454
2455 error = 0;
2456 switch (how) {
2457 default:
2458 error = -EINVAL;
2459 break;
2460 case SIG_BLOCK:
2461 sigaddsetmask(&current->blocked, new_set);
2462 break;
2463 case SIG_UNBLOCK:
2464 sigdelsetmask(&current->blocked, new_set);
2465 break;
2466 case SIG_SETMASK:
2467 current->blocked.sig[0] = new_set;
2468 break;
2469 }
2470
2471 recalc_sigpending();
2472 spin_unlock_irq(&current->sighand->siglock);
2473 if (error)
2474 goto out;
2475 if (oset)
2476 goto set_old;
2477 } else if (oset) {
2478 old_set = current->blocked.sig[0];
2479 set_old:
2480 error = -EFAULT;
2481 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2482 goto out;
2483 }
2484 error = 0;
2485 out:
2486 return error;
2487 }
2488 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2489
2490 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2491 asmlinkage long
2492 sys_rt_sigaction(int sig,
2493 const struct sigaction __user *act,
2494 struct sigaction __user *oact,
2495 size_t sigsetsize)
2496 {
2497 struct k_sigaction new_sa, old_sa;
2498 int ret = -EINVAL;
2499
2500 /* XXX: Don't preclude handling different sized sigset_t's. */
2501 if (sigsetsize != sizeof(sigset_t))
2502 goto out;
2503
2504 if (act) {
2505 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2506 return -EFAULT;
2507 }
2508
2509 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2510
2511 if (!ret && oact) {
2512 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2513 return -EFAULT;
2514 }
2515 out:
2516 return ret;
2517 }
2518 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2519
2520 #ifdef __ARCH_WANT_SYS_SGETMASK
2521
2522 /*
2523 * For backwards compatibility. Functionality superseded by sigprocmask.
2524 */
2525 asmlinkage long
2526 sys_sgetmask(void)
2527 {
2528 /* SMP safe */
2529 return current->blocked.sig[0];
2530 }
2531
2532 asmlinkage long
2533 sys_ssetmask(int newmask)
2534 {
2535 int old;
2536
2537 spin_lock_irq(&current->sighand->siglock);
2538 old = current->blocked.sig[0];
2539
2540 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2541 sigmask(SIGSTOP)));
2542 recalc_sigpending();
2543 spin_unlock_irq(&current->sighand->siglock);
2544
2545 return old;
2546 }
2547 #endif /* __ARCH_WANT_SGETMASK */
2548
2549 #ifdef __ARCH_WANT_SYS_SIGNAL
2550 /*
2551 * For backwards compatibility. Functionality superseded by sigaction.
2552 */
2553 asmlinkage unsigned long
2554 sys_signal(int sig, __sighandler_t handler)
2555 {
2556 struct k_sigaction new_sa, old_sa;
2557 int ret;
2558
2559 new_sa.sa.sa_handler = handler;
2560 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2561 sigemptyset(&new_sa.sa.sa_mask);
2562
2563 ret = do_sigaction(sig, &new_sa, &old_sa);
2564
2565 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2566 }
2567 #endif /* __ARCH_WANT_SYS_SIGNAL */
2568
2569 #ifdef __ARCH_WANT_SYS_PAUSE
2570
2571 asmlinkage long
2572 sys_pause(void)
2573 {
2574 current->state = TASK_INTERRUPTIBLE;
2575 schedule();
2576 return -ERESTARTNOHAND;
2577 }
2578
2579 #endif
2580
2581 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2582 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2583 {
2584 sigset_t newset;
2585
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 return -EINVAL;
2589
2590 if (copy_from_user(&newset, unewset, sizeof(newset)))
2591 return -EFAULT;
2592 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2593
2594 spin_lock_irq(&current->sighand->siglock);
2595 current->saved_sigmask = current->blocked;
2596 current->blocked = newset;
2597 recalc_sigpending();
2598 spin_unlock_irq(&current->sighand->siglock);
2599
2600 current->state = TASK_INTERRUPTIBLE;
2601 schedule();
2602 set_thread_flag(TIF_RESTORE_SIGMASK);
2603 return -ERESTARTNOHAND;
2604 }
2605 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2606
2607 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2608 {
2609 return NULL;
2610 }
2611
2612 void __init signals_init(void)
2613 {
2614 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2615 }
This page took 0.081516 seconds and 6 git commands to generate.