[PATCH] No need to protect current->group_info in sys_getgroups(), in_group_p() and...
[deliverable/linux.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33
34 #include <linux/compat.h>
35 #include <linux/syscalls.h>
36 #include <linux/kprobes.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/unistd.h>
41
42 #ifndef SET_UNALIGN_CTL
43 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #endif
45 #ifndef GET_UNALIGN_CTL
46 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
47 #endif
48 #ifndef SET_FPEMU_CTL
49 # define SET_FPEMU_CTL(a,b) (-EINVAL)
50 #endif
51 #ifndef GET_FPEMU_CTL
52 # define GET_FPEMU_CTL(a,b) (-EINVAL)
53 #endif
54 #ifndef SET_FPEXC_CTL
55 # define SET_FPEXC_CTL(a,b) (-EINVAL)
56 #endif
57 #ifndef GET_FPEXC_CTL
58 # define GET_FPEXC_CTL(a,b) (-EINVAL)
59 #endif
60
61 /*
62 * this is where the system-wide overflow UID and GID are defined, for
63 * architectures that now have 32-bit UID/GID but didn't in the past
64 */
65
66 int overflowuid = DEFAULT_OVERFLOWUID;
67 int overflowgid = DEFAULT_OVERFLOWGID;
68
69 #ifdef CONFIG_UID16
70 EXPORT_SYMBOL(overflowuid);
71 EXPORT_SYMBOL(overflowgid);
72 #endif
73
74 /*
75 * the same as above, but for filesystems which can only store a 16-bit
76 * UID and GID. as such, this is needed on all architectures
77 */
78
79 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
80 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
81
82 EXPORT_SYMBOL(fs_overflowuid);
83 EXPORT_SYMBOL(fs_overflowgid);
84
85 /*
86 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
87 */
88
89 int C_A_D = 1;
90 int cad_pid = 1;
91
92 /*
93 * Notifier list for kernel code which wants to be called
94 * at shutdown. This is used to stop any idling DMA operations
95 * and the like.
96 */
97
98 static struct notifier_block *reboot_notifier_list;
99 static DEFINE_RWLOCK(notifier_lock);
100
101 /**
102 * notifier_chain_register - Add notifier to a notifier chain
103 * @list: Pointer to root list pointer
104 * @n: New entry in notifier chain
105 *
106 * Adds a notifier to a notifier chain.
107 *
108 * Currently always returns zero.
109 */
110
111 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
112 {
113 write_lock(&notifier_lock);
114 while(*list)
115 {
116 if(n->priority > (*list)->priority)
117 break;
118 list= &((*list)->next);
119 }
120 n->next = *list;
121 *list=n;
122 write_unlock(&notifier_lock);
123 return 0;
124 }
125
126 EXPORT_SYMBOL(notifier_chain_register);
127
128 /**
129 * notifier_chain_unregister - Remove notifier from a notifier chain
130 * @nl: Pointer to root list pointer
131 * @n: New entry in notifier chain
132 *
133 * Removes a notifier from a notifier chain.
134 *
135 * Returns zero on success, or %-ENOENT on failure.
136 */
137
138 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
139 {
140 write_lock(&notifier_lock);
141 while((*nl)!=NULL)
142 {
143 if((*nl)==n)
144 {
145 *nl=n->next;
146 write_unlock(&notifier_lock);
147 return 0;
148 }
149 nl=&((*nl)->next);
150 }
151 write_unlock(&notifier_lock);
152 return -ENOENT;
153 }
154
155 EXPORT_SYMBOL(notifier_chain_unregister);
156
157 /**
158 * notifier_call_chain - Call functions in a notifier chain
159 * @n: Pointer to root pointer of notifier chain
160 * @val: Value passed unmodified to notifier function
161 * @v: Pointer passed unmodified to notifier function
162 *
163 * Calls each function in a notifier chain in turn.
164 *
165 * If the return value of the notifier can be and'd
166 * with %NOTIFY_STOP_MASK, then notifier_call_chain
167 * will return immediately, with the return value of
168 * the notifier function which halted execution.
169 * Otherwise, the return value is the return value
170 * of the last notifier function called.
171 */
172
173 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
174 {
175 int ret=NOTIFY_DONE;
176 struct notifier_block *nb = *n;
177
178 while(nb)
179 {
180 ret=nb->notifier_call(nb,val,v);
181 if(ret&NOTIFY_STOP_MASK)
182 {
183 return ret;
184 }
185 nb=nb->next;
186 }
187 return ret;
188 }
189
190 EXPORT_SYMBOL(notifier_call_chain);
191
192 /**
193 * register_reboot_notifier - Register function to be called at reboot time
194 * @nb: Info about notifier function to be called
195 *
196 * Registers a function with the list of functions
197 * to be called at reboot time.
198 *
199 * Currently always returns zero, as notifier_chain_register
200 * always returns zero.
201 */
202
203 int register_reboot_notifier(struct notifier_block * nb)
204 {
205 return notifier_chain_register(&reboot_notifier_list, nb);
206 }
207
208 EXPORT_SYMBOL(register_reboot_notifier);
209
210 /**
211 * unregister_reboot_notifier - Unregister previously registered reboot notifier
212 * @nb: Hook to be unregistered
213 *
214 * Unregisters a previously registered reboot
215 * notifier function.
216 *
217 * Returns zero on success, or %-ENOENT on failure.
218 */
219
220 int unregister_reboot_notifier(struct notifier_block * nb)
221 {
222 return notifier_chain_unregister(&reboot_notifier_list, nb);
223 }
224
225 EXPORT_SYMBOL(unregister_reboot_notifier);
226
227 static int set_one_prio(struct task_struct *p, int niceval, int error)
228 {
229 int no_nice;
230
231 if (p->uid != current->euid &&
232 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
233 error = -EPERM;
234 goto out;
235 }
236 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
237 error = -EACCES;
238 goto out;
239 }
240 no_nice = security_task_setnice(p, niceval);
241 if (no_nice) {
242 error = no_nice;
243 goto out;
244 }
245 if (error == -ESRCH)
246 error = 0;
247 set_user_nice(p, niceval);
248 out:
249 return error;
250 }
251
252 asmlinkage long sys_setpriority(int which, int who, int niceval)
253 {
254 struct task_struct *g, *p;
255 struct user_struct *user;
256 int error = -EINVAL;
257
258 if (which > 2 || which < 0)
259 goto out;
260
261 /* normalize: avoid signed division (rounding problems) */
262 error = -ESRCH;
263 if (niceval < -20)
264 niceval = -20;
265 if (niceval > 19)
266 niceval = 19;
267
268 read_lock(&tasklist_lock);
269 switch (which) {
270 case PRIO_PROCESS:
271 if (!who)
272 who = current->pid;
273 p = find_task_by_pid(who);
274 if (p)
275 error = set_one_prio(p, niceval, error);
276 break;
277 case PRIO_PGRP:
278 if (!who)
279 who = process_group(current);
280 do_each_task_pid(who, PIDTYPE_PGID, p) {
281 error = set_one_prio(p, niceval, error);
282 } while_each_task_pid(who, PIDTYPE_PGID, p);
283 break;
284 case PRIO_USER:
285 user = current->user;
286 if (!who)
287 who = current->uid;
288 else
289 if ((who != current->uid) && !(user = find_user(who)))
290 goto out_unlock; /* No processes for this user */
291
292 do_each_thread(g, p)
293 if (p->uid == who)
294 error = set_one_prio(p, niceval, error);
295 while_each_thread(g, p);
296 if (who != current->uid)
297 free_uid(user); /* For find_user() */
298 break;
299 }
300 out_unlock:
301 read_unlock(&tasklist_lock);
302 out:
303 return error;
304 }
305
306 /*
307 * Ugh. To avoid negative return values, "getpriority()" will
308 * not return the normal nice-value, but a negated value that
309 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
310 * to stay compatible.
311 */
312 asmlinkage long sys_getpriority(int which, int who)
313 {
314 struct task_struct *g, *p;
315 struct user_struct *user;
316 long niceval, retval = -ESRCH;
317
318 if (which > 2 || which < 0)
319 return -EINVAL;
320
321 read_lock(&tasklist_lock);
322 switch (which) {
323 case PRIO_PROCESS:
324 if (!who)
325 who = current->pid;
326 p = find_task_by_pid(who);
327 if (p) {
328 niceval = 20 - task_nice(p);
329 if (niceval > retval)
330 retval = niceval;
331 }
332 break;
333 case PRIO_PGRP:
334 if (!who)
335 who = process_group(current);
336 do_each_task_pid(who, PIDTYPE_PGID, p) {
337 niceval = 20 - task_nice(p);
338 if (niceval > retval)
339 retval = niceval;
340 } while_each_task_pid(who, PIDTYPE_PGID, p);
341 break;
342 case PRIO_USER:
343 user = current->user;
344 if (!who)
345 who = current->uid;
346 else
347 if ((who != current->uid) && !(user = find_user(who)))
348 goto out_unlock; /* No processes for this user */
349
350 do_each_thread(g, p)
351 if (p->uid == who) {
352 niceval = 20 - task_nice(p);
353 if (niceval > retval)
354 retval = niceval;
355 }
356 while_each_thread(g, p);
357 if (who != current->uid)
358 free_uid(user); /* for find_user() */
359 break;
360 }
361 out_unlock:
362 read_unlock(&tasklist_lock);
363
364 return retval;
365 }
366
367 /**
368 * emergency_restart - reboot the system
369 *
370 * Without shutting down any hardware or taking any locks
371 * reboot the system. This is called when we know we are in
372 * trouble so this is our best effort to reboot. This is
373 * safe to call in interrupt context.
374 */
375 void emergency_restart(void)
376 {
377 machine_emergency_restart();
378 }
379 EXPORT_SYMBOL_GPL(emergency_restart);
380
381 void kernel_restart_prepare(char *cmd)
382 {
383 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
384 system_state = SYSTEM_RESTART;
385 device_shutdown();
386 }
387
388 /**
389 * kernel_restart - reboot the system
390 * @cmd: pointer to buffer containing command to execute for restart
391 * or %NULL
392 *
393 * Shutdown everything and perform a clean reboot.
394 * This is not safe to call in interrupt context.
395 */
396 void kernel_restart(char *cmd)
397 {
398 kernel_restart_prepare(cmd);
399 if (!cmd) {
400 printk(KERN_EMERG "Restarting system.\n");
401 } else {
402 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
403 }
404 printk(".\n");
405 machine_restart(cmd);
406 }
407 EXPORT_SYMBOL_GPL(kernel_restart);
408
409 /**
410 * kernel_kexec - reboot the system
411 *
412 * Move into place and start executing a preloaded standalone
413 * executable. If nothing was preloaded return an error.
414 */
415 void kernel_kexec(void)
416 {
417 #ifdef CONFIG_KEXEC
418 struct kimage *image;
419 image = xchg(&kexec_image, NULL);
420 if (!image) {
421 return;
422 }
423 kernel_restart_prepare(NULL);
424 printk(KERN_EMERG "Starting new kernel\n");
425 machine_shutdown();
426 machine_kexec(image);
427 #endif
428 }
429 EXPORT_SYMBOL_GPL(kernel_kexec);
430
431 void kernel_shutdown_prepare(enum system_states state)
432 {
433 notifier_call_chain(&reboot_notifier_list,
434 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
435 system_state = state;
436 device_shutdown();
437 }
438 /**
439 * kernel_halt - halt the system
440 *
441 * Shutdown everything and perform a clean system halt.
442 */
443 void kernel_halt(void)
444 {
445 kernel_shutdown_prepare(SYSTEM_HALT);
446 printk(KERN_EMERG "System halted.\n");
447 machine_halt();
448 }
449
450 EXPORT_SYMBOL_GPL(kernel_halt);
451
452 /**
453 * kernel_power_off - power_off the system
454 *
455 * Shutdown everything and perform a clean system power_off.
456 */
457 void kernel_power_off(void)
458 {
459 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
460 printk(KERN_EMERG "Power down.\n");
461 machine_power_off();
462 }
463 EXPORT_SYMBOL_GPL(kernel_power_off);
464 /*
465 * Reboot system call: for obvious reasons only root may call it,
466 * and even root needs to set up some magic numbers in the registers
467 * so that some mistake won't make this reboot the whole machine.
468 * You can also set the meaning of the ctrl-alt-del-key here.
469 *
470 * reboot doesn't sync: do that yourself before calling this.
471 */
472 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
473 {
474 char buffer[256];
475
476 /* We only trust the superuser with rebooting the system. */
477 if (!capable(CAP_SYS_BOOT))
478 return -EPERM;
479
480 /* For safety, we require "magic" arguments. */
481 if (magic1 != LINUX_REBOOT_MAGIC1 ||
482 (magic2 != LINUX_REBOOT_MAGIC2 &&
483 magic2 != LINUX_REBOOT_MAGIC2A &&
484 magic2 != LINUX_REBOOT_MAGIC2B &&
485 magic2 != LINUX_REBOOT_MAGIC2C))
486 return -EINVAL;
487
488 /* Instead of trying to make the power_off code look like
489 * halt when pm_power_off is not set do it the easy way.
490 */
491 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
492 cmd = LINUX_REBOOT_CMD_HALT;
493
494 lock_kernel();
495 switch (cmd) {
496 case LINUX_REBOOT_CMD_RESTART:
497 kernel_restart(NULL);
498 break;
499
500 case LINUX_REBOOT_CMD_CAD_ON:
501 C_A_D = 1;
502 break;
503
504 case LINUX_REBOOT_CMD_CAD_OFF:
505 C_A_D = 0;
506 break;
507
508 case LINUX_REBOOT_CMD_HALT:
509 kernel_halt();
510 unlock_kernel();
511 do_exit(0);
512 break;
513
514 case LINUX_REBOOT_CMD_POWER_OFF:
515 kernel_power_off();
516 unlock_kernel();
517 do_exit(0);
518 break;
519
520 case LINUX_REBOOT_CMD_RESTART2:
521 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
522 unlock_kernel();
523 return -EFAULT;
524 }
525 buffer[sizeof(buffer) - 1] = '\0';
526
527 kernel_restart(buffer);
528 break;
529
530 case LINUX_REBOOT_CMD_KEXEC:
531 kernel_kexec();
532 unlock_kernel();
533 return -EINVAL;
534
535 #ifdef CONFIG_SOFTWARE_SUSPEND
536 case LINUX_REBOOT_CMD_SW_SUSPEND:
537 {
538 int ret = software_suspend();
539 unlock_kernel();
540 return ret;
541 }
542 #endif
543
544 default:
545 unlock_kernel();
546 return -EINVAL;
547 }
548 unlock_kernel();
549 return 0;
550 }
551
552 static void deferred_cad(void *dummy)
553 {
554 kernel_restart(NULL);
555 }
556
557 /*
558 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
559 * As it's called within an interrupt, it may NOT sync: the only choice
560 * is whether to reboot at once, or just ignore the ctrl-alt-del.
561 */
562 void ctrl_alt_del(void)
563 {
564 static DECLARE_WORK(cad_work, deferred_cad, NULL);
565
566 if (C_A_D)
567 schedule_work(&cad_work);
568 else
569 kill_proc(cad_pid, SIGINT, 1);
570 }
571
572
573 /*
574 * Unprivileged users may change the real gid to the effective gid
575 * or vice versa. (BSD-style)
576 *
577 * If you set the real gid at all, or set the effective gid to a value not
578 * equal to the real gid, then the saved gid is set to the new effective gid.
579 *
580 * This makes it possible for a setgid program to completely drop its
581 * privileges, which is often a useful assertion to make when you are doing
582 * a security audit over a program.
583 *
584 * The general idea is that a program which uses just setregid() will be
585 * 100% compatible with BSD. A program which uses just setgid() will be
586 * 100% compatible with POSIX with saved IDs.
587 *
588 * SMP: There are not races, the GIDs are checked only by filesystem
589 * operations (as far as semantic preservation is concerned).
590 */
591 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
592 {
593 int old_rgid = current->gid;
594 int old_egid = current->egid;
595 int new_rgid = old_rgid;
596 int new_egid = old_egid;
597 int retval;
598
599 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
600 if (retval)
601 return retval;
602
603 if (rgid != (gid_t) -1) {
604 if ((old_rgid == rgid) ||
605 (current->egid==rgid) ||
606 capable(CAP_SETGID))
607 new_rgid = rgid;
608 else
609 return -EPERM;
610 }
611 if (egid != (gid_t) -1) {
612 if ((old_rgid == egid) ||
613 (current->egid == egid) ||
614 (current->sgid == egid) ||
615 capable(CAP_SETGID))
616 new_egid = egid;
617 else {
618 return -EPERM;
619 }
620 }
621 if (new_egid != old_egid)
622 {
623 current->mm->dumpable = suid_dumpable;
624 smp_wmb();
625 }
626 if (rgid != (gid_t) -1 ||
627 (egid != (gid_t) -1 && egid != old_rgid))
628 current->sgid = new_egid;
629 current->fsgid = new_egid;
630 current->egid = new_egid;
631 current->gid = new_rgid;
632 key_fsgid_changed(current);
633 proc_id_connector(current, PROC_EVENT_GID);
634 return 0;
635 }
636
637 /*
638 * setgid() is implemented like SysV w/ SAVED_IDS
639 *
640 * SMP: Same implicit races as above.
641 */
642 asmlinkage long sys_setgid(gid_t gid)
643 {
644 int old_egid = current->egid;
645 int retval;
646
647 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
648 if (retval)
649 return retval;
650
651 if (capable(CAP_SETGID))
652 {
653 if(old_egid != gid)
654 {
655 current->mm->dumpable = suid_dumpable;
656 smp_wmb();
657 }
658 current->gid = current->egid = current->sgid = current->fsgid = gid;
659 }
660 else if ((gid == current->gid) || (gid == current->sgid))
661 {
662 if(old_egid != gid)
663 {
664 current->mm->dumpable = suid_dumpable;
665 smp_wmb();
666 }
667 current->egid = current->fsgid = gid;
668 }
669 else
670 return -EPERM;
671
672 key_fsgid_changed(current);
673 proc_id_connector(current, PROC_EVENT_GID);
674 return 0;
675 }
676
677 static int set_user(uid_t new_ruid, int dumpclear)
678 {
679 struct user_struct *new_user;
680
681 new_user = alloc_uid(new_ruid);
682 if (!new_user)
683 return -EAGAIN;
684
685 if (atomic_read(&new_user->processes) >=
686 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
687 new_user != &root_user) {
688 free_uid(new_user);
689 return -EAGAIN;
690 }
691
692 switch_uid(new_user);
693
694 if(dumpclear)
695 {
696 current->mm->dumpable = suid_dumpable;
697 smp_wmb();
698 }
699 current->uid = new_ruid;
700 return 0;
701 }
702
703 /*
704 * Unprivileged users may change the real uid to the effective uid
705 * or vice versa. (BSD-style)
706 *
707 * If you set the real uid at all, or set the effective uid to a value not
708 * equal to the real uid, then the saved uid is set to the new effective uid.
709 *
710 * This makes it possible for a setuid program to completely drop its
711 * privileges, which is often a useful assertion to make when you are doing
712 * a security audit over a program.
713 *
714 * The general idea is that a program which uses just setreuid() will be
715 * 100% compatible with BSD. A program which uses just setuid() will be
716 * 100% compatible with POSIX with saved IDs.
717 */
718 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
719 {
720 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
721 int retval;
722
723 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
724 if (retval)
725 return retval;
726
727 new_ruid = old_ruid = current->uid;
728 new_euid = old_euid = current->euid;
729 old_suid = current->suid;
730
731 if (ruid != (uid_t) -1) {
732 new_ruid = ruid;
733 if ((old_ruid != ruid) &&
734 (current->euid != ruid) &&
735 !capable(CAP_SETUID))
736 return -EPERM;
737 }
738
739 if (euid != (uid_t) -1) {
740 new_euid = euid;
741 if ((old_ruid != euid) &&
742 (current->euid != euid) &&
743 (current->suid != euid) &&
744 !capable(CAP_SETUID))
745 return -EPERM;
746 }
747
748 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
749 return -EAGAIN;
750
751 if (new_euid != old_euid)
752 {
753 current->mm->dumpable = suid_dumpable;
754 smp_wmb();
755 }
756 current->fsuid = current->euid = new_euid;
757 if (ruid != (uid_t) -1 ||
758 (euid != (uid_t) -1 && euid != old_ruid))
759 current->suid = current->euid;
760 current->fsuid = current->euid;
761
762 key_fsuid_changed(current);
763 proc_id_connector(current, PROC_EVENT_UID);
764
765 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
766 }
767
768
769
770 /*
771 * setuid() is implemented like SysV with SAVED_IDS
772 *
773 * Note that SAVED_ID's is deficient in that a setuid root program
774 * like sendmail, for example, cannot set its uid to be a normal
775 * user and then switch back, because if you're root, setuid() sets
776 * the saved uid too. If you don't like this, blame the bright people
777 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
778 * will allow a root program to temporarily drop privileges and be able to
779 * regain them by swapping the real and effective uid.
780 */
781 asmlinkage long sys_setuid(uid_t uid)
782 {
783 int old_euid = current->euid;
784 int old_ruid, old_suid, new_ruid, new_suid;
785 int retval;
786
787 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
788 if (retval)
789 return retval;
790
791 old_ruid = new_ruid = current->uid;
792 old_suid = current->suid;
793 new_suid = old_suid;
794
795 if (capable(CAP_SETUID)) {
796 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
797 return -EAGAIN;
798 new_suid = uid;
799 } else if ((uid != current->uid) && (uid != new_suid))
800 return -EPERM;
801
802 if (old_euid != uid)
803 {
804 current->mm->dumpable = suid_dumpable;
805 smp_wmb();
806 }
807 current->fsuid = current->euid = uid;
808 current->suid = new_suid;
809
810 key_fsuid_changed(current);
811 proc_id_connector(current, PROC_EVENT_UID);
812
813 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
814 }
815
816
817 /*
818 * This function implements a generic ability to update ruid, euid,
819 * and suid. This allows you to implement the 4.4 compatible seteuid().
820 */
821 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
822 {
823 int old_ruid = current->uid;
824 int old_euid = current->euid;
825 int old_suid = current->suid;
826 int retval;
827
828 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
829 if (retval)
830 return retval;
831
832 if (!capable(CAP_SETUID)) {
833 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
834 (ruid != current->euid) && (ruid != current->suid))
835 return -EPERM;
836 if ((euid != (uid_t) -1) && (euid != current->uid) &&
837 (euid != current->euid) && (euid != current->suid))
838 return -EPERM;
839 if ((suid != (uid_t) -1) && (suid != current->uid) &&
840 (suid != current->euid) && (suid != current->suid))
841 return -EPERM;
842 }
843 if (ruid != (uid_t) -1) {
844 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
845 return -EAGAIN;
846 }
847 if (euid != (uid_t) -1) {
848 if (euid != current->euid)
849 {
850 current->mm->dumpable = suid_dumpable;
851 smp_wmb();
852 }
853 current->euid = euid;
854 }
855 current->fsuid = current->euid;
856 if (suid != (uid_t) -1)
857 current->suid = suid;
858
859 key_fsuid_changed(current);
860 proc_id_connector(current, PROC_EVENT_UID);
861
862 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
863 }
864
865 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
866 {
867 int retval;
868
869 if (!(retval = put_user(current->uid, ruid)) &&
870 !(retval = put_user(current->euid, euid)))
871 retval = put_user(current->suid, suid);
872
873 return retval;
874 }
875
876 /*
877 * Same as above, but for rgid, egid, sgid.
878 */
879 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
880 {
881 int retval;
882
883 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
884 if (retval)
885 return retval;
886
887 if (!capable(CAP_SETGID)) {
888 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
889 (rgid != current->egid) && (rgid != current->sgid))
890 return -EPERM;
891 if ((egid != (gid_t) -1) && (egid != current->gid) &&
892 (egid != current->egid) && (egid != current->sgid))
893 return -EPERM;
894 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
895 (sgid != current->egid) && (sgid != current->sgid))
896 return -EPERM;
897 }
898 if (egid != (gid_t) -1) {
899 if (egid != current->egid)
900 {
901 current->mm->dumpable = suid_dumpable;
902 smp_wmb();
903 }
904 current->egid = egid;
905 }
906 current->fsgid = current->egid;
907 if (rgid != (gid_t) -1)
908 current->gid = rgid;
909 if (sgid != (gid_t) -1)
910 current->sgid = sgid;
911
912 key_fsgid_changed(current);
913 proc_id_connector(current, PROC_EVENT_GID);
914 return 0;
915 }
916
917 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
918 {
919 int retval;
920
921 if (!(retval = put_user(current->gid, rgid)) &&
922 !(retval = put_user(current->egid, egid)))
923 retval = put_user(current->sgid, sgid);
924
925 return retval;
926 }
927
928
929 /*
930 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
931 * is used for "access()" and for the NFS daemon (letting nfsd stay at
932 * whatever uid it wants to). It normally shadows "euid", except when
933 * explicitly set by setfsuid() or for access..
934 */
935 asmlinkage long sys_setfsuid(uid_t uid)
936 {
937 int old_fsuid;
938
939 old_fsuid = current->fsuid;
940 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
941 return old_fsuid;
942
943 if (uid == current->uid || uid == current->euid ||
944 uid == current->suid || uid == current->fsuid ||
945 capable(CAP_SETUID))
946 {
947 if (uid != old_fsuid)
948 {
949 current->mm->dumpable = suid_dumpable;
950 smp_wmb();
951 }
952 current->fsuid = uid;
953 }
954
955 key_fsuid_changed(current);
956 proc_id_connector(current, PROC_EVENT_UID);
957
958 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
959
960 return old_fsuid;
961 }
962
963 /*
964 * Samma på svenska..
965 */
966 asmlinkage long sys_setfsgid(gid_t gid)
967 {
968 int old_fsgid;
969
970 old_fsgid = current->fsgid;
971 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
972 return old_fsgid;
973
974 if (gid == current->gid || gid == current->egid ||
975 gid == current->sgid || gid == current->fsgid ||
976 capable(CAP_SETGID))
977 {
978 if (gid != old_fsgid)
979 {
980 current->mm->dumpable = suid_dumpable;
981 smp_wmb();
982 }
983 current->fsgid = gid;
984 key_fsgid_changed(current);
985 proc_id_connector(current, PROC_EVENT_GID);
986 }
987 return old_fsgid;
988 }
989
990 asmlinkage long sys_times(struct tms __user * tbuf)
991 {
992 /*
993 * In the SMP world we might just be unlucky and have one of
994 * the times increment as we use it. Since the value is an
995 * atomically safe type this is just fine. Conceptually its
996 * as if the syscall took an instant longer to occur.
997 */
998 if (tbuf) {
999 struct tms tmp;
1000 cputime_t utime, stime, cutime, cstime;
1001
1002 #ifdef CONFIG_SMP
1003 if (thread_group_empty(current)) {
1004 /*
1005 * Single thread case without the use of any locks.
1006 *
1007 * We may race with release_task if two threads are
1008 * executing. However, release task first adds up the
1009 * counters (__exit_signal) before removing the task
1010 * from the process tasklist (__unhash_process).
1011 * __exit_signal also acquires and releases the
1012 * siglock which results in the proper memory ordering
1013 * so that the list modifications are always visible
1014 * after the counters have been updated.
1015 *
1016 * If the counters have been updated by the second thread
1017 * but the thread has not yet been removed from the list
1018 * then the other branch will be executing which will
1019 * block on tasklist_lock until the exit handling of the
1020 * other task is finished.
1021 *
1022 * This also implies that the sighand->siglock cannot
1023 * be held by another processor. So we can also
1024 * skip acquiring that lock.
1025 */
1026 utime = cputime_add(current->signal->utime, current->utime);
1027 stime = cputime_add(current->signal->utime, current->stime);
1028 cutime = current->signal->cutime;
1029 cstime = current->signal->cstime;
1030 } else
1031 #endif
1032 {
1033
1034 /* Process with multiple threads */
1035 struct task_struct *tsk = current;
1036 struct task_struct *t;
1037
1038 read_lock(&tasklist_lock);
1039 utime = tsk->signal->utime;
1040 stime = tsk->signal->stime;
1041 t = tsk;
1042 do {
1043 utime = cputime_add(utime, t->utime);
1044 stime = cputime_add(stime, t->stime);
1045 t = next_thread(t);
1046 } while (t != tsk);
1047
1048 /*
1049 * While we have tasklist_lock read-locked, no dying thread
1050 * can be updating current->signal->[us]time. Instead,
1051 * we got their counts included in the live thread loop.
1052 * However, another thread can come in right now and
1053 * do a wait call that updates current->signal->c[us]time.
1054 * To make sure we always see that pair updated atomically,
1055 * we take the siglock around fetching them.
1056 */
1057 spin_lock_irq(&tsk->sighand->siglock);
1058 cutime = tsk->signal->cutime;
1059 cstime = tsk->signal->cstime;
1060 spin_unlock_irq(&tsk->sighand->siglock);
1061 read_unlock(&tasklist_lock);
1062 }
1063 tmp.tms_utime = cputime_to_clock_t(utime);
1064 tmp.tms_stime = cputime_to_clock_t(stime);
1065 tmp.tms_cutime = cputime_to_clock_t(cutime);
1066 tmp.tms_cstime = cputime_to_clock_t(cstime);
1067 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1068 return -EFAULT;
1069 }
1070 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1071 }
1072
1073 /*
1074 * This needs some heavy checking ...
1075 * I just haven't the stomach for it. I also don't fully
1076 * understand sessions/pgrp etc. Let somebody who does explain it.
1077 *
1078 * OK, I think I have the protection semantics right.... this is really
1079 * only important on a multi-user system anyway, to make sure one user
1080 * can't send a signal to a process owned by another. -TYT, 12/12/91
1081 *
1082 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1083 * LBT 04.03.94
1084 */
1085
1086 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1087 {
1088 struct task_struct *p;
1089 struct task_struct *group_leader = current->group_leader;
1090 int err = -EINVAL;
1091
1092 if (!pid)
1093 pid = group_leader->pid;
1094 if (!pgid)
1095 pgid = pid;
1096 if (pgid < 0)
1097 return -EINVAL;
1098
1099 /* From this point forward we keep holding onto the tasklist lock
1100 * so that our parent does not change from under us. -DaveM
1101 */
1102 write_lock_irq(&tasklist_lock);
1103
1104 err = -ESRCH;
1105 p = find_task_by_pid(pid);
1106 if (!p)
1107 goto out;
1108
1109 err = -EINVAL;
1110 if (!thread_group_leader(p))
1111 goto out;
1112
1113 if (p->real_parent == group_leader) {
1114 err = -EPERM;
1115 if (p->signal->session != group_leader->signal->session)
1116 goto out;
1117 err = -EACCES;
1118 if (p->did_exec)
1119 goto out;
1120 } else {
1121 err = -ESRCH;
1122 if (p != group_leader)
1123 goto out;
1124 }
1125
1126 err = -EPERM;
1127 if (p->signal->leader)
1128 goto out;
1129
1130 if (pgid != pid) {
1131 struct task_struct *p;
1132
1133 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1134 if (p->signal->session == group_leader->signal->session)
1135 goto ok_pgid;
1136 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1137 goto out;
1138 }
1139
1140 ok_pgid:
1141 err = security_task_setpgid(p, pgid);
1142 if (err)
1143 goto out;
1144
1145 if (process_group(p) != pgid) {
1146 detach_pid(p, PIDTYPE_PGID);
1147 p->signal->pgrp = pgid;
1148 attach_pid(p, PIDTYPE_PGID, pgid);
1149 }
1150
1151 err = 0;
1152 out:
1153 /* All paths lead to here, thus we are safe. -DaveM */
1154 write_unlock_irq(&tasklist_lock);
1155 return err;
1156 }
1157
1158 asmlinkage long sys_getpgid(pid_t pid)
1159 {
1160 if (!pid) {
1161 return process_group(current);
1162 } else {
1163 int retval;
1164 struct task_struct *p;
1165
1166 read_lock(&tasklist_lock);
1167 p = find_task_by_pid(pid);
1168
1169 retval = -ESRCH;
1170 if (p) {
1171 retval = security_task_getpgid(p);
1172 if (!retval)
1173 retval = process_group(p);
1174 }
1175 read_unlock(&tasklist_lock);
1176 return retval;
1177 }
1178 }
1179
1180 #ifdef __ARCH_WANT_SYS_GETPGRP
1181
1182 asmlinkage long sys_getpgrp(void)
1183 {
1184 /* SMP - assuming writes are word atomic this is fine */
1185 return process_group(current);
1186 }
1187
1188 #endif
1189
1190 asmlinkage long sys_getsid(pid_t pid)
1191 {
1192 if (!pid) {
1193 return current->signal->session;
1194 } else {
1195 int retval;
1196 struct task_struct *p;
1197
1198 read_lock(&tasklist_lock);
1199 p = find_task_by_pid(pid);
1200
1201 retval = -ESRCH;
1202 if(p) {
1203 retval = security_task_getsid(p);
1204 if (!retval)
1205 retval = p->signal->session;
1206 }
1207 read_unlock(&tasklist_lock);
1208 return retval;
1209 }
1210 }
1211
1212 asmlinkage long sys_setsid(void)
1213 {
1214 struct task_struct *group_leader = current->group_leader;
1215 struct pid *pid;
1216 int err = -EPERM;
1217
1218 mutex_lock(&tty_mutex);
1219 write_lock_irq(&tasklist_lock);
1220
1221 pid = find_pid(PIDTYPE_PGID, group_leader->pid);
1222 if (pid)
1223 goto out;
1224
1225 group_leader->signal->leader = 1;
1226 __set_special_pids(group_leader->pid, group_leader->pid);
1227 group_leader->signal->tty = NULL;
1228 group_leader->signal->tty_old_pgrp = 0;
1229 err = process_group(group_leader);
1230 out:
1231 write_unlock_irq(&tasklist_lock);
1232 mutex_unlock(&tty_mutex);
1233 return err;
1234 }
1235
1236 /*
1237 * Supplementary group IDs
1238 */
1239
1240 /* init to 2 - one for init_task, one to ensure it is never freed */
1241 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1242
1243 struct group_info *groups_alloc(int gidsetsize)
1244 {
1245 struct group_info *group_info;
1246 int nblocks;
1247 int i;
1248
1249 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1250 /* Make sure we always allocate at least one indirect block pointer */
1251 nblocks = nblocks ? : 1;
1252 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1253 if (!group_info)
1254 return NULL;
1255 group_info->ngroups = gidsetsize;
1256 group_info->nblocks = nblocks;
1257 atomic_set(&group_info->usage, 1);
1258
1259 if (gidsetsize <= NGROUPS_SMALL) {
1260 group_info->blocks[0] = group_info->small_block;
1261 } else {
1262 for (i = 0; i < nblocks; i++) {
1263 gid_t *b;
1264 b = (void *)__get_free_page(GFP_USER);
1265 if (!b)
1266 goto out_undo_partial_alloc;
1267 group_info->blocks[i] = b;
1268 }
1269 }
1270 return group_info;
1271
1272 out_undo_partial_alloc:
1273 while (--i >= 0) {
1274 free_page((unsigned long)group_info->blocks[i]);
1275 }
1276 kfree(group_info);
1277 return NULL;
1278 }
1279
1280 EXPORT_SYMBOL(groups_alloc);
1281
1282 void groups_free(struct group_info *group_info)
1283 {
1284 if (group_info->blocks[0] != group_info->small_block) {
1285 int i;
1286 for (i = 0; i < group_info->nblocks; i++)
1287 free_page((unsigned long)group_info->blocks[i]);
1288 }
1289 kfree(group_info);
1290 }
1291
1292 EXPORT_SYMBOL(groups_free);
1293
1294 /* export the group_info to a user-space array */
1295 static int groups_to_user(gid_t __user *grouplist,
1296 struct group_info *group_info)
1297 {
1298 int i;
1299 int count = group_info->ngroups;
1300
1301 for (i = 0; i < group_info->nblocks; i++) {
1302 int cp_count = min(NGROUPS_PER_BLOCK, count);
1303 int off = i * NGROUPS_PER_BLOCK;
1304 int len = cp_count * sizeof(*grouplist);
1305
1306 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1307 return -EFAULT;
1308
1309 count -= cp_count;
1310 }
1311 return 0;
1312 }
1313
1314 /* fill a group_info from a user-space array - it must be allocated already */
1315 static int groups_from_user(struct group_info *group_info,
1316 gid_t __user *grouplist)
1317 {
1318 int i;
1319 int count = group_info->ngroups;
1320
1321 for (i = 0; i < group_info->nblocks; i++) {
1322 int cp_count = min(NGROUPS_PER_BLOCK, count);
1323 int off = i * NGROUPS_PER_BLOCK;
1324 int len = cp_count * sizeof(*grouplist);
1325
1326 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1327 return -EFAULT;
1328
1329 count -= cp_count;
1330 }
1331 return 0;
1332 }
1333
1334 /* a simple Shell sort */
1335 static void groups_sort(struct group_info *group_info)
1336 {
1337 int base, max, stride;
1338 int gidsetsize = group_info->ngroups;
1339
1340 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1341 ; /* nothing */
1342 stride /= 3;
1343
1344 while (stride) {
1345 max = gidsetsize - stride;
1346 for (base = 0; base < max; base++) {
1347 int left = base;
1348 int right = left + stride;
1349 gid_t tmp = GROUP_AT(group_info, right);
1350
1351 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1352 GROUP_AT(group_info, right) =
1353 GROUP_AT(group_info, left);
1354 right = left;
1355 left -= stride;
1356 }
1357 GROUP_AT(group_info, right) = tmp;
1358 }
1359 stride /= 3;
1360 }
1361 }
1362
1363 /* a simple bsearch */
1364 int groups_search(struct group_info *group_info, gid_t grp)
1365 {
1366 int left, right;
1367
1368 if (!group_info)
1369 return 0;
1370
1371 left = 0;
1372 right = group_info->ngroups;
1373 while (left < right) {
1374 int mid = (left+right)/2;
1375 int cmp = grp - GROUP_AT(group_info, mid);
1376 if (cmp > 0)
1377 left = mid + 1;
1378 else if (cmp < 0)
1379 right = mid;
1380 else
1381 return 1;
1382 }
1383 return 0;
1384 }
1385
1386 /* validate and set current->group_info */
1387 int set_current_groups(struct group_info *group_info)
1388 {
1389 int retval;
1390 struct group_info *old_info;
1391
1392 retval = security_task_setgroups(group_info);
1393 if (retval)
1394 return retval;
1395
1396 groups_sort(group_info);
1397 get_group_info(group_info);
1398
1399 task_lock(current);
1400 old_info = current->group_info;
1401 current->group_info = group_info;
1402 task_unlock(current);
1403
1404 put_group_info(old_info);
1405
1406 return 0;
1407 }
1408
1409 EXPORT_SYMBOL(set_current_groups);
1410
1411 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1412 {
1413 int i = 0;
1414
1415 /*
1416 * SMP: Nobody else can change our grouplist. Thus we are
1417 * safe.
1418 */
1419
1420 if (gidsetsize < 0)
1421 return -EINVAL;
1422
1423 /* no need to grab task_lock here; it cannot change */
1424 i = current->group_info->ngroups;
1425 if (gidsetsize) {
1426 if (i > gidsetsize) {
1427 i = -EINVAL;
1428 goto out;
1429 }
1430 if (groups_to_user(grouplist, current->group_info)) {
1431 i = -EFAULT;
1432 goto out;
1433 }
1434 }
1435 out:
1436 return i;
1437 }
1438
1439 /*
1440 * SMP: Our groups are copy-on-write. We can set them safely
1441 * without another task interfering.
1442 */
1443
1444 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1445 {
1446 struct group_info *group_info;
1447 int retval;
1448
1449 if (!capable(CAP_SETGID))
1450 return -EPERM;
1451 if ((unsigned)gidsetsize > NGROUPS_MAX)
1452 return -EINVAL;
1453
1454 group_info = groups_alloc(gidsetsize);
1455 if (!group_info)
1456 return -ENOMEM;
1457 retval = groups_from_user(group_info, grouplist);
1458 if (retval) {
1459 put_group_info(group_info);
1460 return retval;
1461 }
1462
1463 retval = set_current_groups(group_info);
1464 put_group_info(group_info);
1465
1466 return retval;
1467 }
1468
1469 /*
1470 * Check whether we're fsgid/egid or in the supplemental group..
1471 */
1472 int in_group_p(gid_t grp)
1473 {
1474 int retval = 1;
1475 if (grp != current->fsgid) {
1476 retval = groups_search(current->group_info, grp);
1477 }
1478 return retval;
1479 }
1480
1481 EXPORT_SYMBOL(in_group_p);
1482
1483 int in_egroup_p(gid_t grp)
1484 {
1485 int retval = 1;
1486 if (grp != current->egid) {
1487 retval = groups_search(current->group_info, grp);
1488 }
1489 return retval;
1490 }
1491
1492 EXPORT_SYMBOL(in_egroup_p);
1493
1494 DECLARE_RWSEM(uts_sem);
1495
1496 EXPORT_SYMBOL(uts_sem);
1497
1498 asmlinkage long sys_newuname(struct new_utsname __user * name)
1499 {
1500 int errno = 0;
1501
1502 down_read(&uts_sem);
1503 if (copy_to_user(name,&system_utsname,sizeof *name))
1504 errno = -EFAULT;
1505 up_read(&uts_sem);
1506 return errno;
1507 }
1508
1509 asmlinkage long sys_sethostname(char __user *name, int len)
1510 {
1511 int errno;
1512 char tmp[__NEW_UTS_LEN];
1513
1514 if (!capable(CAP_SYS_ADMIN))
1515 return -EPERM;
1516 if (len < 0 || len > __NEW_UTS_LEN)
1517 return -EINVAL;
1518 down_write(&uts_sem);
1519 errno = -EFAULT;
1520 if (!copy_from_user(tmp, name, len)) {
1521 memcpy(system_utsname.nodename, tmp, len);
1522 system_utsname.nodename[len] = 0;
1523 errno = 0;
1524 }
1525 up_write(&uts_sem);
1526 return errno;
1527 }
1528
1529 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1530
1531 asmlinkage long sys_gethostname(char __user *name, int len)
1532 {
1533 int i, errno;
1534
1535 if (len < 0)
1536 return -EINVAL;
1537 down_read(&uts_sem);
1538 i = 1 + strlen(system_utsname.nodename);
1539 if (i > len)
1540 i = len;
1541 errno = 0;
1542 if (copy_to_user(name, system_utsname.nodename, i))
1543 errno = -EFAULT;
1544 up_read(&uts_sem);
1545 return errno;
1546 }
1547
1548 #endif
1549
1550 /*
1551 * Only setdomainname; getdomainname can be implemented by calling
1552 * uname()
1553 */
1554 asmlinkage long sys_setdomainname(char __user *name, int len)
1555 {
1556 int errno;
1557 char tmp[__NEW_UTS_LEN];
1558
1559 if (!capable(CAP_SYS_ADMIN))
1560 return -EPERM;
1561 if (len < 0 || len > __NEW_UTS_LEN)
1562 return -EINVAL;
1563
1564 down_write(&uts_sem);
1565 errno = -EFAULT;
1566 if (!copy_from_user(tmp, name, len)) {
1567 memcpy(system_utsname.domainname, tmp, len);
1568 system_utsname.domainname[len] = 0;
1569 errno = 0;
1570 }
1571 up_write(&uts_sem);
1572 return errno;
1573 }
1574
1575 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1576 {
1577 if (resource >= RLIM_NLIMITS)
1578 return -EINVAL;
1579 else {
1580 struct rlimit value;
1581 task_lock(current->group_leader);
1582 value = current->signal->rlim[resource];
1583 task_unlock(current->group_leader);
1584 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1585 }
1586 }
1587
1588 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1589
1590 /*
1591 * Back compatibility for getrlimit. Needed for some apps.
1592 */
1593
1594 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1595 {
1596 struct rlimit x;
1597 if (resource >= RLIM_NLIMITS)
1598 return -EINVAL;
1599
1600 task_lock(current->group_leader);
1601 x = current->signal->rlim[resource];
1602 task_unlock(current->group_leader);
1603 if(x.rlim_cur > 0x7FFFFFFF)
1604 x.rlim_cur = 0x7FFFFFFF;
1605 if(x.rlim_max > 0x7FFFFFFF)
1606 x.rlim_max = 0x7FFFFFFF;
1607 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1608 }
1609
1610 #endif
1611
1612 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1613 {
1614 struct rlimit new_rlim, *old_rlim;
1615 unsigned long it_prof_secs;
1616 int retval;
1617
1618 if (resource >= RLIM_NLIMITS)
1619 return -EINVAL;
1620 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1621 return -EFAULT;
1622 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1623 return -EINVAL;
1624 old_rlim = current->signal->rlim + resource;
1625 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1626 !capable(CAP_SYS_RESOURCE))
1627 return -EPERM;
1628 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1629 return -EPERM;
1630
1631 retval = security_task_setrlimit(resource, &new_rlim);
1632 if (retval)
1633 return retval;
1634
1635 task_lock(current->group_leader);
1636 *old_rlim = new_rlim;
1637 task_unlock(current->group_leader);
1638
1639 if (resource != RLIMIT_CPU)
1640 goto out;
1641
1642 /*
1643 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1644 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1645 * very long-standing error, and fixing it now risks breakage of
1646 * applications, so we live with it
1647 */
1648 if (new_rlim.rlim_cur == RLIM_INFINITY)
1649 goto out;
1650
1651 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1652 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1653 unsigned long rlim_cur = new_rlim.rlim_cur;
1654 cputime_t cputime;
1655
1656 if (rlim_cur == 0) {
1657 /*
1658 * The caller is asking for an immediate RLIMIT_CPU
1659 * expiry. But we use the zero value to mean "it was
1660 * never set". So let's cheat and make it one second
1661 * instead
1662 */
1663 rlim_cur = 1;
1664 }
1665 cputime = secs_to_cputime(rlim_cur);
1666 read_lock(&tasklist_lock);
1667 spin_lock_irq(&current->sighand->siglock);
1668 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1669 spin_unlock_irq(&current->sighand->siglock);
1670 read_unlock(&tasklist_lock);
1671 }
1672 out:
1673 return 0;
1674 }
1675
1676 /*
1677 * It would make sense to put struct rusage in the task_struct,
1678 * except that would make the task_struct be *really big*. After
1679 * task_struct gets moved into malloc'ed memory, it would
1680 * make sense to do this. It will make moving the rest of the information
1681 * a lot simpler! (Which we're not doing right now because we're not
1682 * measuring them yet).
1683 *
1684 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1685 * races with threads incrementing their own counters. But since word
1686 * reads are atomic, we either get new values or old values and we don't
1687 * care which for the sums. We always take the siglock to protect reading
1688 * the c* fields from p->signal from races with exit.c updating those
1689 * fields when reaping, so a sample either gets all the additions of a
1690 * given child after it's reaped, or none so this sample is before reaping.
1691 *
1692 * tasklist_lock locking optimisation:
1693 * If we are current and single threaded, we do not need to take the tasklist
1694 * lock or the siglock. No one else can take our signal_struct away,
1695 * no one else can reap the children to update signal->c* counters, and
1696 * no one else can race with the signal-> fields.
1697 * If we do not take the tasklist_lock, the signal-> fields could be read
1698 * out of order while another thread was just exiting. So we place a
1699 * read memory barrier when we avoid the lock. On the writer side,
1700 * write memory barrier is implied in __exit_signal as __exit_signal releases
1701 * the siglock spinlock after updating the signal-> fields.
1702 *
1703 * We don't really need the siglock when we access the non c* fields
1704 * of the signal_struct (for RUSAGE_SELF) even in multithreaded
1705 * case, since we take the tasklist lock for read and the non c* signal->
1706 * fields are updated only in __exit_signal, which is called with
1707 * tasklist_lock taken for write, hence these two threads cannot execute
1708 * concurrently.
1709 *
1710 */
1711
1712 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1713 {
1714 struct task_struct *t;
1715 unsigned long flags;
1716 cputime_t utime, stime;
1717 int need_lock = 0;
1718
1719 memset((char *) r, 0, sizeof *r);
1720 utime = stime = cputime_zero;
1721
1722 if (p != current || !thread_group_empty(p))
1723 need_lock = 1;
1724
1725 if (need_lock) {
1726 read_lock(&tasklist_lock);
1727 if (unlikely(!p->signal)) {
1728 read_unlock(&tasklist_lock);
1729 return;
1730 }
1731 } else
1732 /* See locking comments above */
1733 smp_rmb();
1734
1735 switch (who) {
1736 case RUSAGE_BOTH:
1737 case RUSAGE_CHILDREN:
1738 spin_lock_irqsave(&p->sighand->siglock, flags);
1739 utime = p->signal->cutime;
1740 stime = p->signal->cstime;
1741 r->ru_nvcsw = p->signal->cnvcsw;
1742 r->ru_nivcsw = p->signal->cnivcsw;
1743 r->ru_minflt = p->signal->cmin_flt;
1744 r->ru_majflt = p->signal->cmaj_flt;
1745 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1746
1747 if (who == RUSAGE_CHILDREN)
1748 break;
1749
1750 case RUSAGE_SELF:
1751 utime = cputime_add(utime, p->signal->utime);
1752 stime = cputime_add(stime, p->signal->stime);
1753 r->ru_nvcsw += p->signal->nvcsw;
1754 r->ru_nivcsw += p->signal->nivcsw;
1755 r->ru_minflt += p->signal->min_flt;
1756 r->ru_majflt += p->signal->maj_flt;
1757 t = p;
1758 do {
1759 utime = cputime_add(utime, t->utime);
1760 stime = cputime_add(stime, t->stime);
1761 r->ru_nvcsw += t->nvcsw;
1762 r->ru_nivcsw += t->nivcsw;
1763 r->ru_minflt += t->min_flt;
1764 r->ru_majflt += t->maj_flt;
1765 t = next_thread(t);
1766 } while (t != p);
1767 break;
1768
1769 default:
1770 BUG();
1771 }
1772
1773 if (need_lock)
1774 read_unlock(&tasklist_lock);
1775 cputime_to_timeval(utime, &r->ru_utime);
1776 cputime_to_timeval(stime, &r->ru_stime);
1777 }
1778
1779 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1780 {
1781 struct rusage r;
1782 k_getrusage(p, who, &r);
1783 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1784 }
1785
1786 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1787 {
1788 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1789 return -EINVAL;
1790 return getrusage(current, who, ru);
1791 }
1792
1793 asmlinkage long sys_umask(int mask)
1794 {
1795 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1796 return mask;
1797 }
1798
1799 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1800 unsigned long arg4, unsigned long arg5)
1801 {
1802 long error;
1803
1804 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1805 if (error)
1806 return error;
1807
1808 switch (option) {
1809 case PR_SET_PDEATHSIG:
1810 if (!valid_signal(arg2)) {
1811 error = -EINVAL;
1812 break;
1813 }
1814 current->pdeath_signal = arg2;
1815 break;
1816 case PR_GET_PDEATHSIG:
1817 error = put_user(current->pdeath_signal, (int __user *)arg2);
1818 break;
1819 case PR_GET_DUMPABLE:
1820 error = current->mm->dumpable;
1821 break;
1822 case PR_SET_DUMPABLE:
1823 if (arg2 < 0 || arg2 > 2) {
1824 error = -EINVAL;
1825 break;
1826 }
1827 current->mm->dumpable = arg2;
1828 break;
1829
1830 case PR_SET_UNALIGN:
1831 error = SET_UNALIGN_CTL(current, arg2);
1832 break;
1833 case PR_GET_UNALIGN:
1834 error = GET_UNALIGN_CTL(current, arg2);
1835 break;
1836 case PR_SET_FPEMU:
1837 error = SET_FPEMU_CTL(current, arg2);
1838 break;
1839 case PR_GET_FPEMU:
1840 error = GET_FPEMU_CTL(current, arg2);
1841 break;
1842 case PR_SET_FPEXC:
1843 error = SET_FPEXC_CTL(current, arg2);
1844 break;
1845 case PR_GET_FPEXC:
1846 error = GET_FPEXC_CTL(current, arg2);
1847 break;
1848 case PR_GET_TIMING:
1849 error = PR_TIMING_STATISTICAL;
1850 break;
1851 case PR_SET_TIMING:
1852 if (arg2 == PR_TIMING_STATISTICAL)
1853 error = 0;
1854 else
1855 error = -EINVAL;
1856 break;
1857
1858 case PR_GET_KEEPCAPS:
1859 if (current->keep_capabilities)
1860 error = 1;
1861 break;
1862 case PR_SET_KEEPCAPS:
1863 if (arg2 != 0 && arg2 != 1) {
1864 error = -EINVAL;
1865 break;
1866 }
1867 current->keep_capabilities = arg2;
1868 break;
1869 case PR_SET_NAME: {
1870 struct task_struct *me = current;
1871 unsigned char ncomm[sizeof(me->comm)];
1872
1873 ncomm[sizeof(me->comm)-1] = 0;
1874 if (strncpy_from_user(ncomm, (char __user *)arg2,
1875 sizeof(me->comm)-1) < 0)
1876 return -EFAULT;
1877 set_task_comm(me, ncomm);
1878 return 0;
1879 }
1880 case PR_GET_NAME: {
1881 struct task_struct *me = current;
1882 unsigned char tcomm[sizeof(me->comm)];
1883
1884 get_task_comm(tcomm, me);
1885 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1886 return -EFAULT;
1887 return 0;
1888 }
1889 default:
1890 error = -EINVAL;
1891 break;
1892 }
1893 return error;
1894 }
This page took 0.078828 seconds and 5 git commands to generate.