shm: add memfd_create() syscall
[deliverable/linux.git] / kernel / time / clocksource.c
1 /*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26 #include <linux/device.h>
27 #include <linux/clocksource.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33
34 #include "tick-internal.h"
35 #include "timekeeping_internal.h"
36
37 void timecounter_init(struct timecounter *tc,
38 const struct cyclecounter *cc,
39 u64 start_tstamp)
40 {
41 tc->cc = cc;
42 tc->cycle_last = cc->read(cc);
43 tc->nsec = start_tstamp;
44 }
45 EXPORT_SYMBOL_GPL(timecounter_init);
46
47 /**
48 * timecounter_read_delta - get nanoseconds since last call of this function
49 * @tc: Pointer to time counter
50 *
51 * When the underlying cycle counter runs over, this will be handled
52 * correctly as long as it does not run over more than once between
53 * calls.
54 *
55 * The first call to this function for a new time counter initializes
56 * the time tracking and returns an undefined result.
57 */
58 static u64 timecounter_read_delta(struct timecounter *tc)
59 {
60 cycle_t cycle_now, cycle_delta;
61 u64 ns_offset;
62
63 /* read cycle counter: */
64 cycle_now = tc->cc->read(tc->cc);
65
66 /* calculate the delta since the last timecounter_read_delta(): */
67 cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
68
69 /* convert to nanoseconds: */
70 ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
71
72 /* update time stamp of timecounter_read_delta() call: */
73 tc->cycle_last = cycle_now;
74
75 return ns_offset;
76 }
77
78 u64 timecounter_read(struct timecounter *tc)
79 {
80 u64 nsec;
81
82 /* increment time by nanoseconds since last call */
83 nsec = timecounter_read_delta(tc);
84 nsec += tc->nsec;
85 tc->nsec = nsec;
86
87 return nsec;
88 }
89 EXPORT_SYMBOL_GPL(timecounter_read);
90
91 u64 timecounter_cyc2time(struct timecounter *tc,
92 cycle_t cycle_tstamp)
93 {
94 u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
95 u64 nsec;
96
97 /*
98 * Instead of always treating cycle_tstamp as more recent
99 * than tc->cycle_last, detect when it is too far in the
100 * future and treat it as old time stamp instead.
101 */
102 if (cycle_delta > tc->cc->mask / 2) {
103 cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
104 nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
105 } else {
106 nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
107 }
108
109 return nsec;
110 }
111 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
112
113 /**
114 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
115 * @mult: pointer to mult variable
116 * @shift: pointer to shift variable
117 * @from: frequency to convert from
118 * @to: frequency to convert to
119 * @maxsec: guaranteed runtime conversion range in seconds
120 *
121 * The function evaluates the shift/mult pair for the scaled math
122 * operations of clocksources and clockevents.
123 *
124 * @to and @from are frequency values in HZ. For clock sources @to is
125 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
126 * event @to is the counter frequency and @from is NSEC_PER_SEC.
127 *
128 * The @maxsec conversion range argument controls the time frame in
129 * seconds which must be covered by the runtime conversion with the
130 * calculated mult and shift factors. This guarantees that no 64bit
131 * overflow happens when the input value of the conversion is
132 * multiplied with the calculated mult factor. Larger ranges may
133 * reduce the conversion accuracy by chosing smaller mult and shift
134 * factors.
135 */
136 void
137 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
138 {
139 u64 tmp;
140 u32 sft, sftacc= 32;
141
142 /*
143 * Calculate the shift factor which is limiting the conversion
144 * range:
145 */
146 tmp = ((u64)maxsec * from) >> 32;
147 while (tmp) {
148 tmp >>=1;
149 sftacc--;
150 }
151
152 /*
153 * Find the conversion shift/mult pair which has the best
154 * accuracy and fits the maxsec conversion range:
155 */
156 for (sft = 32; sft > 0; sft--) {
157 tmp = (u64) to << sft;
158 tmp += from / 2;
159 do_div(tmp, from);
160 if ((tmp >> sftacc) == 0)
161 break;
162 }
163 *mult = tmp;
164 *shift = sft;
165 }
166
167 /*[Clocksource internal variables]---------
168 * curr_clocksource:
169 * currently selected clocksource.
170 * clocksource_list:
171 * linked list with the registered clocksources
172 * clocksource_mutex:
173 * protects manipulations to curr_clocksource and the clocksource_list
174 * override_name:
175 * Name of the user-specified clocksource.
176 */
177 static struct clocksource *curr_clocksource;
178 static LIST_HEAD(clocksource_list);
179 static DEFINE_MUTEX(clocksource_mutex);
180 static char override_name[CS_NAME_LEN];
181 static int finished_booting;
182
183 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
184 static void clocksource_watchdog_work(struct work_struct *work);
185 static void clocksource_select(void);
186
187 static LIST_HEAD(watchdog_list);
188 static struct clocksource *watchdog;
189 static struct timer_list watchdog_timer;
190 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
191 static DEFINE_SPINLOCK(watchdog_lock);
192 static int watchdog_running;
193 static atomic_t watchdog_reset_pending;
194
195 static int clocksource_watchdog_kthread(void *data);
196 static void __clocksource_change_rating(struct clocksource *cs, int rating);
197
198 /*
199 * Interval: 0.5sec Threshold: 0.0625s
200 */
201 #define WATCHDOG_INTERVAL (HZ >> 1)
202 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
203
204 static void clocksource_watchdog_work(struct work_struct *work)
205 {
206 /*
207 * If kthread_run fails the next watchdog scan over the
208 * watchdog_list will find the unstable clock again.
209 */
210 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
211 }
212
213 static void __clocksource_unstable(struct clocksource *cs)
214 {
215 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
216 cs->flags |= CLOCK_SOURCE_UNSTABLE;
217 if (finished_booting)
218 schedule_work(&watchdog_work);
219 }
220
221 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
222 {
223 printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
224 cs->name, delta);
225 __clocksource_unstable(cs);
226 }
227
228 /**
229 * clocksource_mark_unstable - mark clocksource unstable via watchdog
230 * @cs: clocksource to be marked unstable
231 *
232 * This function is called instead of clocksource_change_rating from
233 * cpu hotplug code to avoid a deadlock between the clocksource mutex
234 * and the cpu hotplug mutex. It defers the update of the clocksource
235 * to the watchdog thread.
236 */
237 void clocksource_mark_unstable(struct clocksource *cs)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(&watchdog_lock, flags);
242 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
243 if (list_empty(&cs->wd_list))
244 list_add(&cs->wd_list, &watchdog_list);
245 __clocksource_unstable(cs);
246 }
247 spin_unlock_irqrestore(&watchdog_lock, flags);
248 }
249
250 static void clocksource_watchdog(unsigned long data)
251 {
252 struct clocksource *cs;
253 cycle_t csnow, wdnow, delta;
254 int64_t wd_nsec, cs_nsec;
255 int next_cpu, reset_pending;
256
257 spin_lock(&watchdog_lock);
258 if (!watchdog_running)
259 goto out;
260
261 reset_pending = atomic_read(&watchdog_reset_pending);
262
263 list_for_each_entry(cs, &watchdog_list, wd_list) {
264
265 /* Clocksource already marked unstable? */
266 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
267 if (finished_booting)
268 schedule_work(&watchdog_work);
269 continue;
270 }
271
272 local_irq_disable();
273 csnow = cs->read(cs);
274 wdnow = watchdog->read(watchdog);
275 local_irq_enable();
276
277 /* Clocksource initialized ? */
278 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
279 atomic_read(&watchdog_reset_pending)) {
280 cs->flags |= CLOCK_SOURCE_WATCHDOG;
281 cs->wd_last = wdnow;
282 cs->cs_last = csnow;
283 continue;
284 }
285
286 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
287 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
288 watchdog->shift);
289
290 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
291 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
292 cs->cs_last = csnow;
293 cs->wd_last = wdnow;
294
295 if (atomic_read(&watchdog_reset_pending))
296 continue;
297
298 /* Check the deviation from the watchdog clocksource. */
299 if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
300 clocksource_unstable(cs, cs_nsec - wd_nsec);
301 continue;
302 }
303
304 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
305 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
306 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
307 /* Mark it valid for high-res. */
308 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
309
310 /*
311 * clocksource_done_booting() will sort it if
312 * finished_booting is not set yet.
313 */
314 if (!finished_booting)
315 continue;
316
317 /*
318 * If this is not the current clocksource let
319 * the watchdog thread reselect it. Due to the
320 * change to high res this clocksource might
321 * be preferred now. If it is the current
322 * clocksource let the tick code know about
323 * that change.
324 */
325 if (cs != curr_clocksource) {
326 cs->flags |= CLOCK_SOURCE_RESELECT;
327 schedule_work(&watchdog_work);
328 } else {
329 tick_clock_notify();
330 }
331 }
332 }
333
334 /*
335 * We only clear the watchdog_reset_pending, when we did a
336 * full cycle through all clocksources.
337 */
338 if (reset_pending)
339 atomic_dec(&watchdog_reset_pending);
340
341 /*
342 * Cycle through CPUs to check if the CPUs stay synchronized
343 * to each other.
344 */
345 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
346 if (next_cpu >= nr_cpu_ids)
347 next_cpu = cpumask_first(cpu_online_mask);
348 watchdog_timer.expires += WATCHDOG_INTERVAL;
349 add_timer_on(&watchdog_timer, next_cpu);
350 out:
351 spin_unlock(&watchdog_lock);
352 }
353
354 static inline void clocksource_start_watchdog(void)
355 {
356 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
357 return;
358 init_timer(&watchdog_timer);
359 watchdog_timer.function = clocksource_watchdog;
360 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
361 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
362 watchdog_running = 1;
363 }
364
365 static inline void clocksource_stop_watchdog(void)
366 {
367 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
368 return;
369 del_timer(&watchdog_timer);
370 watchdog_running = 0;
371 }
372
373 static inline void clocksource_reset_watchdog(void)
374 {
375 struct clocksource *cs;
376
377 list_for_each_entry(cs, &watchdog_list, wd_list)
378 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
379 }
380
381 static void clocksource_resume_watchdog(void)
382 {
383 atomic_inc(&watchdog_reset_pending);
384 }
385
386 static void clocksource_enqueue_watchdog(struct clocksource *cs)
387 {
388 unsigned long flags;
389
390 spin_lock_irqsave(&watchdog_lock, flags);
391 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
392 /* cs is a clocksource to be watched. */
393 list_add(&cs->wd_list, &watchdog_list);
394 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
395 } else {
396 /* cs is a watchdog. */
397 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
398 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
399 /* Pick the best watchdog. */
400 if (!watchdog || cs->rating > watchdog->rating) {
401 watchdog = cs;
402 /* Reset watchdog cycles */
403 clocksource_reset_watchdog();
404 }
405 }
406 /* Check if the watchdog timer needs to be started. */
407 clocksource_start_watchdog();
408 spin_unlock_irqrestore(&watchdog_lock, flags);
409 }
410
411 static void clocksource_dequeue_watchdog(struct clocksource *cs)
412 {
413 unsigned long flags;
414
415 spin_lock_irqsave(&watchdog_lock, flags);
416 if (cs != watchdog) {
417 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
418 /* cs is a watched clocksource. */
419 list_del_init(&cs->wd_list);
420 /* Check if the watchdog timer needs to be stopped. */
421 clocksource_stop_watchdog();
422 }
423 }
424 spin_unlock_irqrestore(&watchdog_lock, flags);
425 }
426
427 static int __clocksource_watchdog_kthread(void)
428 {
429 struct clocksource *cs, *tmp;
430 unsigned long flags;
431 LIST_HEAD(unstable);
432 int select = 0;
433
434 spin_lock_irqsave(&watchdog_lock, flags);
435 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
436 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
437 list_del_init(&cs->wd_list);
438 list_add(&cs->wd_list, &unstable);
439 select = 1;
440 }
441 if (cs->flags & CLOCK_SOURCE_RESELECT) {
442 cs->flags &= ~CLOCK_SOURCE_RESELECT;
443 select = 1;
444 }
445 }
446 /* Check if the watchdog timer needs to be stopped. */
447 clocksource_stop_watchdog();
448 spin_unlock_irqrestore(&watchdog_lock, flags);
449
450 /* Needs to be done outside of watchdog lock */
451 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
452 list_del_init(&cs->wd_list);
453 __clocksource_change_rating(cs, 0);
454 }
455 return select;
456 }
457
458 static int clocksource_watchdog_kthread(void *data)
459 {
460 mutex_lock(&clocksource_mutex);
461 if (__clocksource_watchdog_kthread())
462 clocksource_select();
463 mutex_unlock(&clocksource_mutex);
464 return 0;
465 }
466
467 static bool clocksource_is_watchdog(struct clocksource *cs)
468 {
469 return cs == watchdog;
470 }
471
472 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
473
474 static void clocksource_enqueue_watchdog(struct clocksource *cs)
475 {
476 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
477 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
478 }
479
480 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
481 static inline void clocksource_resume_watchdog(void) { }
482 static inline int __clocksource_watchdog_kthread(void) { return 0; }
483 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
484 void clocksource_mark_unstable(struct clocksource *cs) { }
485
486 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
487
488 /**
489 * clocksource_suspend - suspend the clocksource(s)
490 */
491 void clocksource_suspend(void)
492 {
493 struct clocksource *cs;
494
495 list_for_each_entry_reverse(cs, &clocksource_list, list)
496 if (cs->suspend)
497 cs->suspend(cs);
498 }
499
500 /**
501 * clocksource_resume - resume the clocksource(s)
502 */
503 void clocksource_resume(void)
504 {
505 struct clocksource *cs;
506
507 list_for_each_entry(cs, &clocksource_list, list)
508 if (cs->resume)
509 cs->resume(cs);
510
511 clocksource_resume_watchdog();
512 }
513
514 /**
515 * clocksource_touch_watchdog - Update watchdog
516 *
517 * Update the watchdog after exception contexts such as kgdb so as not
518 * to incorrectly trip the watchdog. This might fail when the kernel
519 * was stopped in code which holds watchdog_lock.
520 */
521 void clocksource_touch_watchdog(void)
522 {
523 clocksource_resume_watchdog();
524 }
525
526 /**
527 * clocksource_max_adjustment- Returns max adjustment amount
528 * @cs: Pointer to clocksource
529 *
530 */
531 static u32 clocksource_max_adjustment(struct clocksource *cs)
532 {
533 u64 ret;
534 /*
535 * We won't try to correct for more than 11% adjustments (110,000 ppm),
536 */
537 ret = (u64)cs->mult * 11;
538 do_div(ret,100);
539 return (u32)ret;
540 }
541
542 /**
543 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
544 * @mult: cycle to nanosecond multiplier
545 * @shift: cycle to nanosecond divisor (power of two)
546 * @maxadj: maximum adjustment value to mult (~11%)
547 * @mask: bitmask for two's complement subtraction of non 64 bit counters
548 */
549 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
550 {
551 u64 max_nsecs, max_cycles;
552
553 /*
554 * Calculate the maximum number of cycles that we can pass to the
555 * cyc2ns function without overflowing a 64-bit signed result. The
556 * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
557 * which is equivalent to the below.
558 * max_cycles < (2^63)/(mult + maxadj)
559 * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
560 * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
561 * max_cycles < 2^(63 - log2(mult + maxadj))
562 * max_cycles < 1 << (63 - log2(mult + maxadj))
563 * Please note that we add 1 to the result of the log2 to account for
564 * any rounding errors, ensure the above inequality is satisfied and
565 * no overflow will occur.
566 */
567 max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
568
569 /*
570 * The actual maximum number of cycles we can defer the clocksource is
571 * determined by the minimum of max_cycles and mask.
572 * Note: Here we subtract the maxadj to make sure we don't sleep for
573 * too long if there's a large negative adjustment.
574 */
575 max_cycles = min(max_cycles, mask);
576 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
577
578 return max_nsecs;
579 }
580
581 /**
582 * clocksource_max_deferment - Returns max time the clocksource can be deferred
583 * @cs: Pointer to clocksource
584 *
585 */
586 static u64 clocksource_max_deferment(struct clocksource *cs)
587 {
588 u64 max_nsecs;
589
590 max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
591 cs->mask);
592 /*
593 * To ensure that the clocksource does not wrap whilst we are idle,
594 * limit the time the clocksource can be deferred by 12.5%. Please
595 * note a margin of 12.5% is used because this can be computed with
596 * a shift, versus say 10% which would require division.
597 */
598 return max_nsecs - (max_nsecs >> 3);
599 }
600
601 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
602
603 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
604 {
605 struct clocksource *cs;
606
607 if (!finished_booting || list_empty(&clocksource_list))
608 return NULL;
609
610 /*
611 * We pick the clocksource with the highest rating. If oneshot
612 * mode is active, we pick the highres valid clocksource with
613 * the best rating.
614 */
615 list_for_each_entry(cs, &clocksource_list, list) {
616 if (skipcur && cs == curr_clocksource)
617 continue;
618 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
619 continue;
620 return cs;
621 }
622 return NULL;
623 }
624
625 static void __clocksource_select(bool skipcur)
626 {
627 bool oneshot = tick_oneshot_mode_active();
628 struct clocksource *best, *cs;
629
630 /* Find the best suitable clocksource */
631 best = clocksource_find_best(oneshot, skipcur);
632 if (!best)
633 return;
634
635 /* Check for the override clocksource. */
636 list_for_each_entry(cs, &clocksource_list, list) {
637 if (skipcur && cs == curr_clocksource)
638 continue;
639 if (strcmp(cs->name, override_name) != 0)
640 continue;
641 /*
642 * Check to make sure we don't switch to a non-highres
643 * capable clocksource if the tick code is in oneshot
644 * mode (highres or nohz)
645 */
646 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
647 /* Override clocksource cannot be used. */
648 printk(KERN_WARNING "Override clocksource %s is not "
649 "HRT compatible. Cannot switch while in "
650 "HRT/NOHZ mode\n", cs->name);
651 override_name[0] = 0;
652 } else
653 /* Override clocksource can be used. */
654 best = cs;
655 break;
656 }
657
658 if (curr_clocksource != best && !timekeeping_notify(best)) {
659 pr_info("Switched to clocksource %s\n", best->name);
660 curr_clocksource = best;
661 }
662 }
663
664 /**
665 * clocksource_select - Select the best clocksource available
666 *
667 * Private function. Must hold clocksource_mutex when called.
668 *
669 * Select the clocksource with the best rating, or the clocksource,
670 * which is selected by userspace override.
671 */
672 static void clocksource_select(void)
673 {
674 return __clocksource_select(false);
675 }
676
677 static void clocksource_select_fallback(void)
678 {
679 return __clocksource_select(true);
680 }
681
682 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
683
684 static inline void clocksource_select(void) { }
685 static inline void clocksource_select_fallback(void) { }
686
687 #endif
688
689 /*
690 * clocksource_done_booting - Called near the end of core bootup
691 *
692 * Hack to avoid lots of clocksource churn at boot time.
693 * We use fs_initcall because we want this to start before
694 * device_initcall but after subsys_initcall.
695 */
696 static int __init clocksource_done_booting(void)
697 {
698 mutex_lock(&clocksource_mutex);
699 curr_clocksource = clocksource_default_clock();
700 finished_booting = 1;
701 /*
702 * Run the watchdog first to eliminate unstable clock sources
703 */
704 __clocksource_watchdog_kthread();
705 clocksource_select();
706 mutex_unlock(&clocksource_mutex);
707 return 0;
708 }
709 fs_initcall(clocksource_done_booting);
710
711 /*
712 * Enqueue the clocksource sorted by rating
713 */
714 static void clocksource_enqueue(struct clocksource *cs)
715 {
716 struct list_head *entry = &clocksource_list;
717 struct clocksource *tmp;
718
719 list_for_each_entry(tmp, &clocksource_list, list)
720 /* Keep track of the place, where to insert */
721 if (tmp->rating >= cs->rating)
722 entry = &tmp->list;
723 list_add(&cs->list, entry);
724 }
725
726 /**
727 * __clocksource_updatefreq_scale - Used update clocksource with new freq
728 * @cs: clocksource to be registered
729 * @scale: Scale factor multiplied against freq to get clocksource hz
730 * @freq: clocksource frequency (cycles per second) divided by scale
731 *
732 * This should only be called from the clocksource->enable() method.
733 *
734 * This *SHOULD NOT* be called directly! Please use the
735 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
736 */
737 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
738 {
739 u64 sec;
740 /*
741 * Calc the maximum number of seconds which we can run before
742 * wrapping around. For clocksources which have a mask > 32bit
743 * we need to limit the max sleep time to have a good
744 * conversion precision. 10 minutes is still a reasonable
745 * amount. That results in a shift value of 24 for a
746 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
747 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
748 * margin as we do in clocksource_max_deferment()
749 */
750 sec = (cs->mask - (cs->mask >> 3));
751 do_div(sec, freq);
752 do_div(sec, scale);
753 if (!sec)
754 sec = 1;
755 else if (sec > 600 && cs->mask > UINT_MAX)
756 sec = 600;
757
758 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
759 NSEC_PER_SEC / scale, sec * scale);
760
761 /*
762 * for clocksources that have large mults, to avoid overflow.
763 * Since mult may be adjusted by ntp, add an safety extra margin
764 *
765 */
766 cs->maxadj = clocksource_max_adjustment(cs);
767 while ((cs->mult + cs->maxadj < cs->mult)
768 || (cs->mult - cs->maxadj > cs->mult)) {
769 cs->mult >>= 1;
770 cs->shift--;
771 cs->maxadj = clocksource_max_adjustment(cs);
772 }
773
774 cs->max_idle_ns = clocksource_max_deferment(cs);
775 }
776 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
777
778 /**
779 * __clocksource_register_scale - Used to install new clocksources
780 * @cs: clocksource to be registered
781 * @scale: Scale factor multiplied against freq to get clocksource hz
782 * @freq: clocksource frequency (cycles per second) divided by scale
783 *
784 * Returns -EBUSY if registration fails, zero otherwise.
785 *
786 * This *SHOULD NOT* be called directly! Please use the
787 * clocksource_register_hz() or clocksource_register_khz helper functions.
788 */
789 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790 {
791
792 /* Initialize mult/shift and max_idle_ns */
793 __clocksource_updatefreq_scale(cs, scale, freq);
794
795 /* Add clocksource to the clcoksource list */
796 mutex_lock(&clocksource_mutex);
797 clocksource_enqueue(cs);
798 clocksource_enqueue_watchdog(cs);
799 clocksource_select();
800 mutex_unlock(&clocksource_mutex);
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
804
805
806 /**
807 * clocksource_register - Used to install new clocksources
808 * @cs: clocksource to be registered
809 *
810 * Returns -EBUSY if registration fails, zero otherwise.
811 */
812 int clocksource_register(struct clocksource *cs)
813 {
814 /* calculate max adjustment for given mult/shift */
815 cs->maxadj = clocksource_max_adjustment(cs);
816 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
817 "Clocksource %s might overflow on 11%% adjustment\n",
818 cs->name);
819
820 /* calculate max idle time permitted for this clocksource */
821 cs->max_idle_ns = clocksource_max_deferment(cs);
822
823 mutex_lock(&clocksource_mutex);
824 clocksource_enqueue(cs);
825 clocksource_enqueue_watchdog(cs);
826 clocksource_select();
827 mutex_unlock(&clocksource_mutex);
828 return 0;
829 }
830 EXPORT_SYMBOL(clocksource_register);
831
832 static void __clocksource_change_rating(struct clocksource *cs, int rating)
833 {
834 list_del(&cs->list);
835 cs->rating = rating;
836 clocksource_enqueue(cs);
837 }
838
839 /**
840 * clocksource_change_rating - Change the rating of a registered clocksource
841 * @cs: clocksource to be changed
842 * @rating: new rating
843 */
844 void clocksource_change_rating(struct clocksource *cs, int rating)
845 {
846 mutex_lock(&clocksource_mutex);
847 __clocksource_change_rating(cs, rating);
848 clocksource_select();
849 mutex_unlock(&clocksource_mutex);
850 }
851 EXPORT_SYMBOL(clocksource_change_rating);
852
853 /*
854 * Unbind clocksource @cs. Called with clocksource_mutex held
855 */
856 static int clocksource_unbind(struct clocksource *cs)
857 {
858 /*
859 * I really can't convince myself to support this on hardware
860 * designed by lobotomized monkeys.
861 */
862 if (clocksource_is_watchdog(cs))
863 return -EBUSY;
864
865 if (cs == curr_clocksource) {
866 /* Select and try to install a replacement clock source */
867 clocksource_select_fallback();
868 if (curr_clocksource == cs)
869 return -EBUSY;
870 }
871 clocksource_dequeue_watchdog(cs);
872 list_del_init(&cs->list);
873 return 0;
874 }
875
876 /**
877 * clocksource_unregister - remove a registered clocksource
878 * @cs: clocksource to be unregistered
879 */
880 int clocksource_unregister(struct clocksource *cs)
881 {
882 int ret = 0;
883
884 mutex_lock(&clocksource_mutex);
885 if (!list_empty(&cs->list))
886 ret = clocksource_unbind(cs);
887 mutex_unlock(&clocksource_mutex);
888 return ret;
889 }
890 EXPORT_SYMBOL(clocksource_unregister);
891
892 #ifdef CONFIG_SYSFS
893 /**
894 * sysfs_show_current_clocksources - sysfs interface for current clocksource
895 * @dev: unused
896 * @attr: unused
897 * @buf: char buffer to be filled with clocksource list
898 *
899 * Provides sysfs interface for listing current clocksource.
900 */
901 static ssize_t
902 sysfs_show_current_clocksources(struct device *dev,
903 struct device_attribute *attr, char *buf)
904 {
905 ssize_t count = 0;
906
907 mutex_lock(&clocksource_mutex);
908 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
909 mutex_unlock(&clocksource_mutex);
910
911 return count;
912 }
913
914 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
915 {
916 size_t ret = cnt;
917
918 /* strings from sysfs write are not 0 terminated! */
919 if (!cnt || cnt >= CS_NAME_LEN)
920 return -EINVAL;
921
922 /* strip of \n: */
923 if (buf[cnt-1] == '\n')
924 cnt--;
925 if (cnt > 0)
926 memcpy(dst, buf, cnt);
927 dst[cnt] = 0;
928 return ret;
929 }
930
931 /**
932 * sysfs_override_clocksource - interface for manually overriding clocksource
933 * @dev: unused
934 * @attr: unused
935 * @buf: name of override clocksource
936 * @count: length of buffer
937 *
938 * Takes input from sysfs interface for manually overriding the default
939 * clocksource selection.
940 */
941 static ssize_t sysfs_override_clocksource(struct device *dev,
942 struct device_attribute *attr,
943 const char *buf, size_t count)
944 {
945 ssize_t ret;
946
947 mutex_lock(&clocksource_mutex);
948
949 ret = sysfs_get_uname(buf, override_name, count);
950 if (ret >= 0)
951 clocksource_select();
952
953 mutex_unlock(&clocksource_mutex);
954
955 return ret;
956 }
957
958 /**
959 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
960 * @dev: unused
961 * @attr: unused
962 * @buf: unused
963 * @count: length of buffer
964 *
965 * Takes input from sysfs interface for manually unbinding a clocksource.
966 */
967 static ssize_t sysfs_unbind_clocksource(struct device *dev,
968 struct device_attribute *attr,
969 const char *buf, size_t count)
970 {
971 struct clocksource *cs;
972 char name[CS_NAME_LEN];
973 ssize_t ret;
974
975 ret = sysfs_get_uname(buf, name, count);
976 if (ret < 0)
977 return ret;
978
979 ret = -ENODEV;
980 mutex_lock(&clocksource_mutex);
981 list_for_each_entry(cs, &clocksource_list, list) {
982 if (strcmp(cs->name, name))
983 continue;
984 ret = clocksource_unbind(cs);
985 break;
986 }
987 mutex_unlock(&clocksource_mutex);
988
989 return ret ? ret : count;
990 }
991
992 /**
993 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
994 * @dev: unused
995 * @attr: unused
996 * @buf: char buffer to be filled with clocksource list
997 *
998 * Provides sysfs interface for listing registered clocksources
999 */
1000 static ssize_t
1001 sysfs_show_available_clocksources(struct device *dev,
1002 struct device_attribute *attr,
1003 char *buf)
1004 {
1005 struct clocksource *src;
1006 ssize_t count = 0;
1007
1008 mutex_lock(&clocksource_mutex);
1009 list_for_each_entry(src, &clocksource_list, list) {
1010 /*
1011 * Don't show non-HRES clocksource if the tick code is
1012 * in one shot mode (highres=on or nohz=on)
1013 */
1014 if (!tick_oneshot_mode_active() ||
1015 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1016 count += snprintf(buf + count,
1017 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1018 "%s ", src->name);
1019 }
1020 mutex_unlock(&clocksource_mutex);
1021
1022 count += snprintf(buf + count,
1023 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1024
1025 return count;
1026 }
1027
1028 /*
1029 * Sysfs setup bits:
1030 */
1031 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
1032 sysfs_override_clocksource);
1033
1034 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
1035
1036 static DEVICE_ATTR(available_clocksource, 0444,
1037 sysfs_show_available_clocksources, NULL);
1038
1039 static struct bus_type clocksource_subsys = {
1040 .name = "clocksource",
1041 .dev_name = "clocksource",
1042 };
1043
1044 static struct device device_clocksource = {
1045 .id = 0,
1046 .bus = &clocksource_subsys,
1047 };
1048
1049 static int __init init_clocksource_sysfs(void)
1050 {
1051 int error = subsys_system_register(&clocksource_subsys, NULL);
1052
1053 if (!error)
1054 error = device_register(&device_clocksource);
1055 if (!error)
1056 error = device_create_file(
1057 &device_clocksource,
1058 &dev_attr_current_clocksource);
1059 if (!error)
1060 error = device_create_file(&device_clocksource,
1061 &dev_attr_unbind_clocksource);
1062 if (!error)
1063 error = device_create_file(
1064 &device_clocksource,
1065 &dev_attr_available_clocksource);
1066 return error;
1067 }
1068
1069 device_initcall(init_clocksource_sysfs);
1070 #endif /* CONFIG_SYSFS */
1071
1072 /**
1073 * boot_override_clocksource - boot clock override
1074 * @str: override name
1075 *
1076 * Takes a clocksource= boot argument and uses it
1077 * as the clocksource override name.
1078 */
1079 static int __init boot_override_clocksource(char* str)
1080 {
1081 mutex_lock(&clocksource_mutex);
1082 if (str)
1083 strlcpy(override_name, str, sizeof(override_name));
1084 mutex_unlock(&clocksource_mutex);
1085 return 1;
1086 }
1087
1088 __setup("clocksource=", boot_override_clocksource);
1089
1090 /**
1091 * boot_override_clock - Compatibility layer for deprecated boot option
1092 * @str: override name
1093 *
1094 * DEPRECATED! Takes a clock= boot argument and uses it
1095 * as the clocksource override name
1096 */
1097 static int __init boot_override_clock(char* str)
1098 {
1099 if (!strcmp(str, "pmtmr")) {
1100 printk("Warning: clock=pmtmr is deprecated. "
1101 "Use clocksource=acpi_pm.\n");
1102 return boot_override_clocksource("acpi_pm");
1103 }
1104 printk("Warning! clock= boot option is deprecated. "
1105 "Use clocksource=xyz\n");
1106 return boot_override_clocksource(str);
1107 }
1108
1109 __setup("clock=", boot_override_clock);
This page took 0.161936 seconds and 5 git commands to generate.