hrtimer: Avoid locking in hrtimer_cancel() if timer not active
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .clock_base =
71 {
72 {
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
75 .get_time = &ktime_get,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 },
82 {
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
85 .get_time = &ktime_get_boottime,
86 },
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 },
92 }
93 };
94
95 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
100 };
101
102 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103 {
104 return hrtimer_clock_to_base_table[clock_id];
105 }
106
107 /*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111 #ifdef CONFIG_SMP
112
113 /*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
125 static
126 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
128 {
129 struct hrtimer_clock_base *base;
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 }
140 cpu_relax();
141 }
142 }
143
144 /*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151 static int
152 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153 {
154 #ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162 #else
163 return 0;
164 #endif
165 }
166
167 /*
168 * Switch the timer base to the current CPU when possible.
169 */
170 static inline struct hrtimer_clock_base *
171 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
173 {
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
176 int this_cpu = smp_processor_id();
177 int cpu = get_nohz_timer_target(pinned);
178 int basenum = base->index;
179
180 again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182 new_base = &new_cpu_base->clock_base[basenum];
183
184 if (base != new_base) {
185 /*
186 * We are trying to move timer to new_base.
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
194 if (unlikely(hrtimer_callback_running(timer)))
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
201
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
206 timer->base = base;
207 goto again;
208 }
209 timer->base = new_base;
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
215 }
216 return new_base;
217 }
218
219 #else /* CONFIG_SMP */
220
221 static inline struct hrtimer_clock_base *
222 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223 {
224 struct hrtimer_clock_base *base = timer->base;
225
226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227
228 return base;
229 }
230
231 # define switch_hrtimer_base(t, b, p) (b)
232
233 #endif /* !CONFIG_SMP */
234
235 /*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239 #if BITS_PER_LONG < 64
240 /*
241 * Divide a ktime value by a nanosecond value
242 */
243 u64 __ktime_divns(const ktime_t kt, s64 div)
244 {
245 u64 dclc;
246 int sft = 0;
247
248 dclc = ktime_to_ns(kt);
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
257 return dclc;
258 }
259 EXPORT_SYMBOL_GPL(__ktime_divns);
260 #endif /* BITS_PER_LONG >= 64 */
261
262 /*
263 * Add two ktime values and do a safety check for overflow:
264 */
265 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266 {
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277 }
278
279 EXPORT_SYMBOL_GPL(ktime_add_safe);
280
281 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283 static struct debug_obj_descr hrtimer_debug_descr;
284
285 static void *hrtimer_debug_hint(void *addr)
286 {
287 return ((struct hrtimer *) addr)->function;
288 }
289
290 /*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295 {
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306 }
307
308 /*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314 {
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327 }
328
329 /*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334 {
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345 }
346
347 static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
349 .debug_hint = hrtimer_debug_hint,
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353 };
354
355 static inline void debug_hrtimer_init(struct hrtimer *timer)
356 {
357 debug_object_init(timer, &hrtimer_debug_descr);
358 }
359
360 static inline void debug_hrtimer_activate(struct hrtimer *timer)
361 {
362 debug_object_activate(timer, &hrtimer_debug_descr);
363 }
364
365 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366 {
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368 }
369
370 static inline void debug_hrtimer_free(struct hrtimer *timer)
371 {
372 debug_object_free(timer, &hrtimer_debug_descr);
373 }
374
375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380 {
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383 }
384 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385
386 void destroy_hrtimer_on_stack(struct hrtimer *timer)
387 {
388 debug_object_free(timer, &hrtimer_debug_descr);
389 }
390
391 #else
392 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395 #endif
396
397 static inline void
398 debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400 {
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403 }
404
405 static inline void debug_activate(struct hrtimer *timer)
406 {
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409 }
410
411 static inline void debug_deactivate(struct hrtimer *timer)
412 {
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415 }
416
417 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 struct hrtimer *timer)
420 {
421 #ifdef CONFIG_HIGH_RES_TIMERS
422 cpu_base->next_timer = timer;
423 #endif
424 }
425
426 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 {
428 struct hrtimer_clock_base *base = cpu_base->clock_base;
429 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430 unsigned int active = cpu_base->active_bases;
431
432 hrtimer_update_next_timer(cpu_base, NULL);
433 for (; active; base++, active >>= 1) {
434 struct timerqueue_node *next;
435 struct hrtimer *timer;
436
437 if (!(active & 0x01))
438 continue;
439
440 next = timerqueue_getnext(&base->active);
441 timer = container_of(next, struct hrtimer, node);
442 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443 if (expires.tv64 < expires_next.tv64) {
444 expires_next = expires;
445 hrtimer_update_next_timer(cpu_base, timer);
446 }
447 }
448 /*
449 * clock_was_set() might have changed base->offset of any of
450 * the clock bases so the result might be negative. Fix it up
451 * to prevent a false positive in clockevents_program_event().
452 */
453 if (expires_next.tv64 < 0)
454 expires_next.tv64 = 0;
455 return expires_next;
456 }
457 #endif
458
459 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460 {
461 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464
465 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 offs_real, offs_boot, offs_tai);
467 }
468
469 /* High resolution timer related functions */
470 #ifdef CONFIG_HIGH_RES_TIMERS
471
472 /*
473 * High resolution timer enabled ?
474 */
475 static int hrtimer_hres_enabled __read_mostly = 1;
476 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477 EXPORT_SYMBOL_GPL(hrtimer_resolution);
478
479 /*
480 * Enable / Disable high resolution mode
481 */
482 static int __init setup_hrtimer_hres(char *str)
483 {
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491 }
492
493 __setup("highres=", setup_hrtimer_hres);
494
495 /*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498 static inline int hrtimer_is_hres_enabled(void)
499 {
500 return hrtimer_hres_enabled;
501 }
502
503 /*
504 * Is the high resolution mode active ?
505 */
506 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507 {
508 return cpu_base->hres_active;
509 }
510
511 static inline int hrtimer_hres_active(void)
512 {
513 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 }
515
516 /*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
521 static void
522 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523 {
524 ktime_t expires_next;
525
526 if (!cpu_base->hres_active)
527 return;
528
529 expires_next = __hrtimer_get_next_event(cpu_base);
530
531 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 return;
533
534 cpu_base->expires_next.tv64 = expires_next.tv64;
535
536 /*
537 * If a hang was detected in the last timer interrupt then we
538 * leave the hang delay active in the hardware. We want the
539 * system to make progress. That also prevents the following
540 * scenario:
541 * T1 expires 50ms from now
542 * T2 expires 5s from now
543 *
544 * T1 is removed, so this code is called and would reprogram
545 * the hardware to 5s from now. Any hrtimer_start after that
546 * will not reprogram the hardware due to hang_detected being
547 * set. So we'd effectivly block all timers until the T2 event
548 * fires.
549 */
550 if (cpu_base->hang_detected)
551 return;
552
553 if (cpu_base->expires_next.tv64 != KTIME_MAX)
554 tick_program_event(cpu_base->expires_next, 1);
555 }
556
557 /*
558 * When a timer is enqueued and expires earlier than the already enqueued
559 * timers, we have to check, whether it expires earlier than the timer for
560 * which the clock event device was armed.
561 *
562 * Called with interrupts disabled and base->cpu_base.lock held
563 */
564 static void hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
566 {
567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569
570 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
571
572 /*
573 * If the timer is not on the current cpu, we cannot reprogram
574 * the other cpus clock event device.
575 */
576 if (base->cpu_base != cpu_base)
577 return;
578
579 /*
580 * If the hrtimer interrupt is running, then it will
581 * reevaluate the clock bases and reprogram the clock event
582 * device. The callbacks are always executed in hard interrupt
583 * context so we don't need an extra check for a running
584 * callback.
585 */
586 if (cpu_base->in_hrtirq)
587 return;
588
589 /*
590 * CLOCK_REALTIME timer might be requested with an absolute
591 * expiry time which is less than base->offset. Set it to 0.
592 */
593 if (expires.tv64 < 0)
594 expires.tv64 = 0;
595
596 if (expires.tv64 >= cpu_base->expires_next.tv64)
597 return;
598
599 /* Update the pointer to the next expiring timer */
600 cpu_base->next_timer = timer;
601
602 /*
603 * If a hang was detected in the last timer interrupt then we
604 * do not schedule a timer which is earlier than the expiry
605 * which we enforced in the hang detection. We want the system
606 * to make progress.
607 */
608 if (cpu_base->hang_detected)
609 return;
610
611 /*
612 * Program the timer hardware. We enforce the expiry for
613 * events which are already in the past.
614 */
615 cpu_base->expires_next = expires;
616 tick_program_event(expires, 1);
617 }
618
619 /*
620 * Initialize the high resolution related parts of cpu_base
621 */
622 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
623 {
624 base->expires_next.tv64 = KTIME_MAX;
625 base->hres_active = 0;
626 }
627
628 /*
629 * Retrigger next event is called after clock was set
630 *
631 * Called with interrupts disabled via on_each_cpu()
632 */
633 static void retrigger_next_event(void *arg)
634 {
635 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
636
637 if (!base->hres_active)
638 return;
639
640 raw_spin_lock(&base->lock);
641 hrtimer_update_base(base);
642 hrtimer_force_reprogram(base, 0);
643 raw_spin_unlock(&base->lock);
644 }
645
646 /*
647 * Switch to high resolution mode
648 */
649 static int hrtimer_switch_to_hres(void)
650 {
651 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
652
653 if (tick_init_highres()) {
654 printk(KERN_WARNING "Could not switch to high resolution "
655 "mode on CPU %d\n", base->cpu);
656 return 0;
657 }
658 base->hres_active = 1;
659 hrtimer_resolution = HIGH_RES_NSEC;
660
661 tick_setup_sched_timer();
662 /* "Retrigger" the interrupt to get things going */
663 retrigger_next_event(NULL);
664 return 1;
665 }
666
667 static void clock_was_set_work(struct work_struct *work)
668 {
669 clock_was_set();
670 }
671
672 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
673
674 /*
675 * Called from timekeeping and resume code to reprogramm the hrtimer
676 * interrupt device on all cpus.
677 */
678 void clock_was_set_delayed(void)
679 {
680 schedule_work(&hrtimer_work);
681 }
682
683 #else
684
685 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
686 static inline int hrtimer_hres_active(void) { return 0; }
687 static inline int hrtimer_is_hres_enabled(void) { return 0; }
688 static inline int hrtimer_switch_to_hres(void) { return 0; }
689 static inline void
690 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
691 static inline int hrtimer_reprogram(struct hrtimer *timer,
692 struct hrtimer_clock_base *base)
693 {
694 return 0;
695 }
696 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
697 static inline void retrigger_next_event(void *arg) { }
698
699 #endif /* CONFIG_HIGH_RES_TIMERS */
700
701 /*
702 * Clock realtime was set
703 *
704 * Change the offset of the realtime clock vs. the monotonic
705 * clock.
706 *
707 * We might have to reprogram the high resolution timer interrupt. On
708 * SMP we call the architecture specific code to retrigger _all_ high
709 * resolution timer interrupts. On UP we just disable interrupts and
710 * call the high resolution interrupt code.
711 */
712 void clock_was_set(void)
713 {
714 #ifdef CONFIG_HIGH_RES_TIMERS
715 /* Retrigger the CPU local events everywhere */
716 on_each_cpu(retrigger_next_event, NULL, 1);
717 #endif
718 timerfd_clock_was_set();
719 }
720
721 /*
722 * During resume we might have to reprogram the high resolution timer
723 * interrupt on all online CPUs. However, all other CPUs will be
724 * stopped with IRQs interrupts disabled so the clock_was_set() call
725 * must be deferred.
726 */
727 void hrtimers_resume(void)
728 {
729 WARN_ONCE(!irqs_disabled(),
730 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
731
732 /* Retrigger on the local CPU */
733 retrigger_next_event(NULL);
734 /* And schedule a retrigger for all others */
735 clock_was_set_delayed();
736 }
737
738 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
739 {
740 #ifdef CONFIG_TIMER_STATS
741 if (timer->start_site)
742 return;
743 timer->start_site = __builtin_return_address(0);
744 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
745 timer->start_pid = current->pid;
746 #endif
747 }
748
749 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
750 {
751 #ifdef CONFIG_TIMER_STATS
752 timer->start_site = NULL;
753 #endif
754 }
755
756 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
757 {
758 #ifdef CONFIG_TIMER_STATS
759 if (likely(!timer_stats_active))
760 return;
761 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
762 timer->function, timer->start_comm, 0);
763 #endif
764 }
765
766 /*
767 * Counterpart to lock_hrtimer_base above:
768 */
769 static inline
770 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
771 {
772 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
773 }
774
775 /**
776 * hrtimer_forward - forward the timer expiry
777 * @timer: hrtimer to forward
778 * @now: forward past this time
779 * @interval: the interval to forward
780 *
781 * Forward the timer expiry so it will expire in the future.
782 * Returns the number of overruns.
783 *
784 * Can be safely called from the callback function of @timer. If
785 * called from other contexts @timer must neither be enqueued nor
786 * running the callback and the caller needs to take care of
787 * serialization.
788 *
789 * Note: This only updates the timer expiry value and does not requeue
790 * the timer.
791 */
792 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
793 {
794 u64 orun = 1;
795 ktime_t delta;
796
797 delta = ktime_sub(now, hrtimer_get_expires(timer));
798
799 if (delta.tv64 < 0)
800 return 0;
801
802 if (interval.tv64 < hrtimer_resolution)
803 interval.tv64 = hrtimer_resolution;
804
805 if (unlikely(delta.tv64 >= interval.tv64)) {
806 s64 incr = ktime_to_ns(interval);
807
808 orun = ktime_divns(delta, incr);
809 hrtimer_add_expires_ns(timer, incr * orun);
810 if (hrtimer_get_expires_tv64(timer) > now.tv64)
811 return orun;
812 /*
813 * This (and the ktime_add() below) is the
814 * correction for exact:
815 */
816 orun++;
817 }
818 hrtimer_add_expires(timer, interval);
819
820 return orun;
821 }
822 EXPORT_SYMBOL_GPL(hrtimer_forward);
823
824 /*
825 * enqueue_hrtimer - internal function to (re)start a timer
826 *
827 * The timer is inserted in expiry order. Insertion into the
828 * red black tree is O(log(n)). Must hold the base lock.
829 *
830 * Returns 1 when the new timer is the leftmost timer in the tree.
831 */
832 static int enqueue_hrtimer(struct hrtimer *timer,
833 struct hrtimer_clock_base *base)
834 {
835 debug_activate(timer);
836
837 base->cpu_base->active_bases |= 1 << base->index;
838
839 /*
840 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
841 * state of a possibly running callback.
842 */
843 timer->state |= HRTIMER_STATE_ENQUEUED;
844
845 return timerqueue_add(&base->active, &timer->node);
846 }
847
848 /*
849 * __remove_hrtimer - internal function to remove a timer
850 *
851 * Caller must hold the base lock.
852 *
853 * High resolution timer mode reprograms the clock event device when the
854 * timer is the one which expires next. The caller can disable this by setting
855 * reprogram to zero. This is useful, when the context does a reprogramming
856 * anyway (e.g. timer interrupt)
857 */
858 static void __remove_hrtimer(struct hrtimer *timer,
859 struct hrtimer_clock_base *base,
860 unsigned long newstate, int reprogram)
861 {
862 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863 unsigned int state = timer->state;
864
865 timer->state = newstate;
866 if (!(state & HRTIMER_STATE_ENQUEUED))
867 return;
868
869 if (!timerqueue_del(&base->active, &timer->node))
870 cpu_base->active_bases &= ~(1 << base->index);
871
872 #ifdef CONFIG_HIGH_RES_TIMERS
873 /*
874 * Note: If reprogram is false we do not update
875 * cpu_base->next_timer. This happens when we remove the first
876 * timer on a remote cpu. No harm as we never dereference
877 * cpu_base->next_timer. So the worst thing what can happen is
878 * an superflous call to hrtimer_force_reprogram() on the
879 * remote cpu later on if the same timer gets enqueued again.
880 */
881 if (reprogram && timer == cpu_base->next_timer)
882 hrtimer_force_reprogram(cpu_base, 1);
883 #endif
884 }
885
886 /*
887 * remove hrtimer, called with base lock held
888 */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891 {
892 if (hrtimer_is_queued(timer)) {
893 unsigned long state;
894 int reprogram;
895
896 /*
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
903 */
904 debug_deactivate(timer);
905 timer_stats_hrtimer_clear_start_info(timer);
906 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907 /*
908 * We must preserve the CALLBACK state flag here,
909 * otherwise we could move the timer base in
910 * switch_hrtimer_base.
911 */
912 state = timer->state & HRTIMER_STATE_CALLBACK;
913 __remove_hrtimer(timer, base, state, reprogram);
914 return 1;
915 }
916 return 0;
917 }
918
919 /**
920 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
921 * @timer: the timer to be added
922 * @tim: expiry time
923 * @delta_ns: "slack" range for the timer
924 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
925 * relative (HRTIMER_MODE_REL)
926 */
927 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
928 unsigned long delta_ns, const enum hrtimer_mode mode)
929 {
930 struct hrtimer_clock_base *base, *new_base;
931 unsigned long flags;
932 int leftmost;
933
934 base = lock_hrtimer_base(timer, &flags);
935
936 /* Remove an active timer from the queue: */
937 remove_hrtimer(timer, base);
938
939 if (mode & HRTIMER_MODE_REL) {
940 tim = ktime_add_safe(tim, base->get_time());
941 /*
942 * CONFIG_TIME_LOW_RES is a temporary way for architectures
943 * to signal that they simply return xtime in
944 * do_gettimeoffset(). In this case we want to round up by
945 * resolution when starting a relative timer, to avoid short
946 * timeouts. This will go away with the GTOD framework.
947 */
948 #ifdef CONFIG_TIME_LOW_RES
949 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
950 #endif
951 }
952
953 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
954
955 /* Switch the timer base, if necessary: */
956 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
957
958 timer_stats_hrtimer_set_start_info(timer);
959
960 leftmost = enqueue_hrtimer(timer, new_base);
961 if (!leftmost)
962 goto unlock;
963
964 if (!hrtimer_is_hres_active(timer)) {
965 /*
966 * Kick to reschedule the next tick to handle the new timer
967 * on dynticks target.
968 */
969 wake_up_nohz_cpu(new_base->cpu_base->cpu);
970 } else {
971 hrtimer_reprogram(timer, new_base);
972 }
973 unlock:
974 unlock_hrtimer_base(timer, &flags);
975 }
976 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
977
978 /**
979 * hrtimer_try_to_cancel - try to deactivate a timer
980 * @timer: hrtimer to stop
981 *
982 * Returns:
983 * 0 when the timer was not active
984 * 1 when the timer was active
985 * -1 when the timer is currently excuting the callback function and
986 * cannot be stopped
987 */
988 int hrtimer_try_to_cancel(struct hrtimer *timer)
989 {
990 struct hrtimer_clock_base *base;
991 unsigned long flags;
992 int ret = -1;
993
994 /*
995 * Check lockless first. If the timer is not active (neither
996 * enqueued nor running the callback, nothing to do here. The
997 * base lock does not serialize against a concurrent enqueue,
998 * so we can avoid taking it.
999 */
1000 if (!hrtimer_active(timer))
1001 return 0;
1002
1003 base = lock_hrtimer_base(timer, &flags);
1004
1005 if (!hrtimer_callback_running(timer))
1006 ret = remove_hrtimer(timer, base);
1007
1008 unlock_hrtimer_base(timer, &flags);
1009
1010 return ret;
1011
1012 }
1013 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1014
1015 /**
1016 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1017 * @timer: the timer to be cancelled
1018 *
1019 * Returns:
1020 * 0 when the timer was not active
1021 * 1 when the timer was active
1022 */
1023 int hrtimer_cancel(struct hrtimer *timer)
1024 {
1025 for (;;) {
1026 int ret = hrtimer_try_to_cancel(timer);
1027
1028 if (ret >= 0)
1029 return ret;
1030 cpu_relax();
1031 }
1032 }
1033 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1034
1035 /**
1036 * hrtimer_get_remaining - get remaining time for the timer
1037 * @timer: the timer to read
1038 */
1039 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1040 {
1041 unsigned long flags;
1042 ktime_t rem;
1043
1044 lock_hrtimer_base(timer, &flags);
1045 rem = hrtimer_expires_remaining(timer);
1046 unlock_hrtimer_base(timer, &flags);
1047
1048 return rem;
1049 }
1050 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1051
1052 #ifdef CONFIG_NO_HZ_COMMON
1053 /**
1054 * hrtimer_get_next_event - get the time until next expiry event
1055 *
1056 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1057 */
1058 u64 hrtimer_get_next_event(void)
1059 {
1060 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1061 u64 expires = KTIME_MAX;
1062 unsigned long flags;
1063
1064 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1065
1066 if (!__hrtimer_hres_active(cpu_base))
1067 expires = __hrtimer_get_next_event(cpu_base).tv64;
1068
1069 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1070
1071 return expires;
1072 }
1073 #endif
1074
1075 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1076 enum hrtimer_mode mode)
1077 {
1078 struct hrtimer_cpu_base *cpu_base;
1079 int base;
1080
1081 memset(timer, 0, sizeof(struct hrtimer));
1082
1083 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1084
1085 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1086 clock_id = CLOCK_MONOTONIC;
1087
1088 base = hrtimer_clockid_to_base(clock_id);
1089 timer->base = &cpu_base->clock_base[base];
1090 timerqueue_init(&timer->node);
1091
1092 #ifdef CONFIG_TIMER_STATS
1093 timer->start_site = NULL;
1094 timer->start_pid = -1;
1095 memset(timer->start_comm, 0, TASK_COMM_LEN);
1096 #endif
1097 }
1098
1099 /**
1100 * hrtimer_init - initialize a timer to the given clock
1101 * @timer: the timer to be initialized
1102 * @clock_id: the clock to be used
1103 * @mode: timer mode abs/rel
1104 */
1105 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1106 enum hrtimer_mode mode)
1107 {
1108 debug_init(timer, clock_id, mode);
1109 __hrtimer_init(timer, clock_id, mode);
1110 }
1111 EXPORT_SYMBOL_GPL(hrtimer_init);
1112
1113 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1114 struct hrtimer_clock_base *base,
1115 struct hrtimer *timer, ktime_t *now)
1116 {
1117 enum hrtimer_restart (*fn)(struct hrtimer *);
1118 int restart;
1119
1120 WARN_ON(!irqs_disabled());
1121
1122 debug_deactivate(timer);
1123 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1124 timer_stats_account_hrtimer(timer);
1125 fn = timer->function;
1126
1127 /*
1128 * Because we run timers from hardirq context, there is no chance
1129 * they get migrated to another cpu, therefore its safe to unlock
1130 * the timer base.
1131 */
1132 raw_spin_unlock(&cpu_base->lock);
1133 trace_hrtimer_expire_entry(timer, now);
1134 restart = fn(timer);
1135 trace_hrtimer_expire_exit(timer);
1136 raw_spin_lock(&cpu_base->lock);
1137
1138 /*
1139 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1140 * we do not reprogramm the event hardware. Happens either in
1141 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1142 */
1143 if (restart != HRTIMER_NORESTART) {
1144 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1145 enqueue_hrtimer(timer, base);
1146 }
1147
1148 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1149
1150 timer->state &= ~HRTIMER_STATE_CALLBACK;
1151 }
1152
1153 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1154 {
1155 struct hrtimer_clock_base *base = cpu_base->clock_base;
1156 unsigned int active = cpu_base->active_bases;
1157
1158 for (; active; base++, active >>= 1) {
1159 struct timerqueue_node *node;
1160 ktime_t basenow;
1161
1162 if (!(active & 0x01))
1163 continue;
1164
1165 basenow = ktime_add(now, base->offset);
1166
1167 while ((node = timerqueue_getnext(&base->active))) {
1168 struct hrtimer *timer;
1169
1170 timer = container_of(node, struct hrtimer, node);
1171
1172 /*
1173 * The immediate goal for using the softexpires is
1174 * minimizing wakeups, not running timers at the
1175 * earliest interrupt after their soft expiration.
1176 * This allows us to avoid using a Priority Search
1177 * Tree, which can answer a stabbing querry for
1178 * overlapping intervals and instead use the simple
1179 * BST we already have.
1180 * We don't add extra wakeups by delaying timers that
1181 * are right-of a not yet expired timer, because that
1182 * timer will have to trigger a wakeup anyway.
1183 */
1184 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1185 break;
1186
1187 __run_hrtimer(cpu_base, base, timer, &basenow);
1188 }
1189 }
1190 }
1191
1192 #ifdef CONFIG_HIGH_RES_TIMERS
1193
1194 /*
1195 * High resolution timer interrupt
1196 * Called with interrupts disabled
1197 */
1198 void hrtimer_interrupt(struct clock_event_device *dev)
1199 {
1200 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1201 ktime_t expires_next, now, entry_time, delta;
1202 int retries = 0;
1203
1204 BUG_ON(!cpu_base->hres_active);
1205 cpu_base->nr_events++;
1206 dev->next_event.tv64 = KTIME_MAX;
1207
1208 raw_spin_lock(&cpu_base->lock);
1209 entry_time = now = hrtimer_update_base(cpu_base);
1210 retry:
1211 cpu_base->in_hrtirq = 1;
1212 /*
1213 * We set expires_next to KTIME_MAX here with cpu_base->lock
1214 * held to prevent that a timer is enqueued in our queue via
1215 * the migration code. This does not affect enqueueing of
1216 * timers which run their callback and need to be requeued on
1217 * this CPU.
1218 */
1219 cpu_base->expires_next.tv64 = KTIME_MAX;
1220
1221 __hrtimer_run_queues(cpu_base, now);
1222
1223 /* Reevaluate the clock bases for the next expiry */
1224 expires_next = __hrtimer_get_next_event(cpu_base);
1225 /*
1226 * Store the new expiry value so the migration code can verify
1227 * against it.
1228 */
1229 cpu_base->expires_next = expires_next;
1230 cpu_base->in_hrtirq = 0;
1231 raw_spin_unlock(&cpu_base->lock);
1232
1233 /* Reprogramming necessary ? */
1234 if (expires_next.tv64 == KTIME_MAX ||
1235 !tick_program_event(expires_next, 0)) {
1236 cpu_base->hang_detected = 0;
1237 return;
1238 }
1239
1240 /*
1241 * The next timer was already expired due to:
1242 * - tracing
1243 * - long lasting callbacks
1244 * - being scheduled away when running in a VM
1245 *
1246 * We need to prevent that we loop forever in the hrtimer
1247 * interrupt routine. We give it 3 attempts to avoid
1248 * overreacting on some spurious event.
1249 *
1250 * Acquire base lock for updating the offsets and retrieving
1251 * the current time.
1252 */
1253 raw_spin_lock(&cpu_base->lock);
1254 now = hrtimer_update_base(cpu_base);
1255 cpu_base->nr_retries++;
1256 if (++retries < 3)
1257 goto retry;
1258 /*
1259 * Give the system a chance to do something else than looping
1260 * here. We stored the entry time, so we know exactly how long
1261 * we spent here. We schedule the next event this amount of
1262 * time away.
1263 */
1264 cpu_base->nr_hangs++;
1265 cpu_base->hang_detected = 1;
1266 raw_spin_unlock(&cpu_base->lock);
1267 delta = ktime_sub(now, entry_time);
1268 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1269 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1270 /*
1271 * Limit it to a sensible value as we enforce a longer
1272 * delay. Give the CPU at least 100ms to catch up.
1273 */
1274 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1275 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1276 else
1277 expires_next = ktime_add(now, delta);
1278 tick_program_event(expires_next, 1);
1279 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1280 ktime_to_ns(delta));
1281 }
1282
1283 /*
1284 * local version of hrtimer_peek_ahead_timers() called with interrupts
1285 * disabled.
1286 */
1287 static inline void __hrtimer_peek_ahead_timers(void)
1288 {
1289 struct tick_device *td;
1290
1291 if (!hrtimer_hres_active())
1292 return;
1293
1294 td = this_cpu_ptr(&tick_cpu_device);
1295 if (td && td->evtdev)
1296 hrtimer_interrupt(td->evtdev);
1297 }
1298
1299 #else /* CONFIG_HIGH_RES_TIMERS */
1300
1301 static inline void __hrtimer_peek_ahead_timers(void) { }
1302
1303 #endif /* !CONFIG_HIGH_RES_TIMERS */
1304
1305 /*
1306 * Called from run_local_timers in hardirq context every jiffy
1307 */
1308 void hrtimer_run_queues(void)
1309 {
1310 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1311 ktime_t now;
1312
1313 if (__hrtimer_hres_active(cpu_base))
1314 return;
1315
1316 /*
1317 * This _is_ ugly: We have to check periodically, whether we
1318 * can switch to highres and / or nohz mode. The clocksource
1319 * switch happens with xtime_lock held. Notification from
1320 * there only sets the check bit in the tick_oneshot code,
1321 * otherwise we might deadlock vs. xtime_lock.
1322 */
1323 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1324 hrtimer_switch_to_hres();
1325 return;
1326 }
1327
1328 raw_spin_lock(&cpu_base->lock);
1329 now = hrtimer_update_base(cpu_base);
1330 __hrtimer_run_queues(cpu_base, now);
1331 raw_spin_unlock(&cpu_base->lock);
1332 }
1333
1334 /*
1335 * Sleep related functions:
1336 */
1337 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1338 {
1339 struct hrtimer_sleeper *t =
1340 container_of(timer, struct hrtimer_sleeper, timer);
1341 struct task_struct *task = t->task;
1342
1343 t->task = NULL;
1344 if (task)
1345 wake_up_process(task);
1346
1347 return HRTIMER_NORESTART;
1348 }
1349
1350 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1351 {
1352 sl->timer.function = hrtimer_wakeup;
1353 sl->task = task;
1354 }
1355 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1356
1357 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1358 {
1359 hrtimer_init_sleeper(t, current);
1360
1361 do {
1362 set_current_state(TASK_INTERRUPTIBLE);
1363 hrtimer_start_expires(&t->timer, mode);
1364
1365 if (likely(t->task))
1366 freezable_schedule();
1367
1368 hrtimer_cancel(&t->timer);
1369 mode = HRTIMER_MODE_ABS;
1370
1371 } while (t->task && !signal_pending(current));
1372
1373 __set_current_state(TASK_RUNNING);
1374
1375 return t->task == NULL;
1376 }
1377
1378 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1379 {
1380 struct timespec rmt;
1381 ktime_t rem;
1382
1383 rem = hrtimer_expires_remaining(timer);
1384 if (rem.tv64 <= 0)
1385 return 0;
1386 rmt = ktime_to_timespec(rem);
1387
1388 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1389 return -EFAULT;
1390
1391 return 1;
1392 }
1393
1394 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1395 {
1396 struct hrtimer_sleeper t;
1397 struct timespec __user *rmtp;
1398 int ret = 0;
1399
1400 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1401 HRTIMER_MODE_ABS);
1402 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1403
1404 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1405 goto out;
1406
1407 rmtp = restart->nanosleep.rmtp;
1408 if (rmtp) {
1409 ret = update_rmtp(&t.timer, rmtp);
1410 if (ret <= 0)
1411 goto out;
1412 }
1413
1414 /* The other values in restart are already filled in */
1415 ret = -ERESTART_RESTARTBLOCK;
1416 out:
1417 destroy_hrtimer_on_stack(&t.timer);
1418 return ret;
1419 }
1420
1421 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1422 const enum hrtimer_mode mode, const clockid_t clockid)
1423 {
1424 struct restart_block *restart;
1425 struct hrtimer_sleeper t;
1426 int ret = 0;
1427 unsigned long slack;
1428
1429 slack = current->timer_slack_ns;
1430 if (dl_task(current) || rt_task(current))
1431 slack = 0;
1432
1433 hrtimer_init_on_stack(&t.timer, clockid, mode);
1434 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1435 if (do_nanosleep(&t, mode))
1436 goto out;
1437
1438 /* Absolute timers do not update the rmtp value and restart: */
1439 if (mode == HRTIMER_MODE_ABS) {
1440 ret = -ERESTARTNOHAND;
1441 goto out;
1442 }
1443
1444 if (rmtp) {
1445 ret = update_rmtp(&t.timer, rmtp);
1446 if (ret <= 0)
1447 goto out;
1448 }
1449
1450 restart = &current->restart_block;
1451 restart->fn = hrtimer_nanosleep_restart;
1452 restart->nanosleep.clockid = t.timer.base->clockid;
1453 restart->nanosleep.rmtp = rmtp;
1454 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1455
1456 ret = -ERESTART_RESTARTBLOCK;
1457 out:
1458 destroy_hrtimer_on_stack(&t.timer);
1459 return ret;
1460 }
1461
1462 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1463 struct timespec __user *, rmtp)
1464 {
1465 struct timespec tu;
1466
1467 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1468 return -EFAULT;
1469
1470 if (!timespec_valid(&tu))
1471 return -EINVAL;
1472
1473 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1474 }
1475
1476 /*
1477 * Functions related to boot-time initialization:
1478 */
1479 static void init_hrtimers_cpu(int cpu)
1480 {
1481 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1482 int i;
1483
1484 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1485 cpu_base->clock_base[i].cpu_base = cpu_base;
1486 timerqueue_init_head(&cpu_base->clock_base[i].active);
1487 }
1488
1489 cpu_base->cpu = cpu;
1490 hrtimer_init_hres(cpu_base);
1491 }
1492
1493 #ifdef CONFIG_HOTPLUG_CPU
1494
1495 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1496 struct hrtimer_clock_base *new_base)
1497 {
1498 struct hrtimer *timer;
1499 struct timerqueue_node *node;
1500
1501 while ((node = timerqueue_getnext(&old_base->active))) {
1502 timer = container_of(node, struct hrtimer, node);
1503 BUG_ON(hrtimer_callback_running(timer));
1504 debug_deactivate(timer);
1505
1506 /*
1507 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1508 * timer could be seen as !active and just vanish away
1509 * under us on another CPU
1510 */
1511 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1512 timer->base = new_base;
1513 /*
1514 * Enqueue the timers on the new cpu. This does not
1515 * reprogram the event device in case the timer
1516 * expires before the earliest on this CPU, but we run
1517 * hrtimer_interrupt after we migrated everything to
1518 * sort out already expired timers and reprogram the
1519 * event device.
1520 */
1521 enqueue_hrtimer(timer, new_base);
1522
1523 /* Clear the migration state bit */
1524 timer->state &= ~HRTIMER_STATE_MIGRATE;
1525 }
1526 }
1527
1528 static void migrate_hrtimers(int scpu)
1529 {
1530 struct hrtimer_cpu_base *old_base, *new_base;
1531 int i;
1532
1533 BUG_ON(cpu_online(scpu));
1534 tick_cancel_sched_timer(scpu);
1535
1536 local_irq_disable();
1537 old_base = &per_cpu(hrtimer_bases, scpu);
1538 new_base = this_cpu_ptr(&hrtimer_bases);
1539 /*
1540 * The caller is globally serialized and nobody else
1541 * takes two locks at once, deadlock is not possible.
1542 */
1543 raw_spin_lock(&new_base->lock);
1544 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1545
1546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1547 migrate_hrtimer_list(&old_base->clock_base[i],
1548 &new_base->clock_base[i]);
1549 }
1550
1551 raw_spin_unlock(&old_base->lock);
1552 raw_spin_unlock(&new_base->lock);
1553
1554 /* Check, if we got expired work to do */
1555 __hrtimer_peek_ahead_timers();
1556 local_irq_enable();
1557 }
1558
1559 #endif /* CONFIG_HOTPLUG_CPU */
1560
1561 static int hrtimer_cpu_notify(struct notifier_block *self,
1562 unsigned long action, void *hcpu)
1563 {
1564 int scpu = (long)hcpu;
1565
1566 switch (action) {
1567
1568 case CPU_UP_PREPARE:
1569 case CPU_UP_PREPARE_FROZEN:
1570 init_hrtimers_cpu(scpu);
1571 break;
1572
1573 #ifdef CONFIG_HOTPLUG_CPU
1574 case CPU_DEAD:
1575 case CPU_DEAD_FROZEN:
1576 migrate_hrtimers(scpu);
1577 break;
1578 #endif
1579
1580 default:
1581 break;
1582 }
1583
1584 return NOTIFY_OK;
1585 }
1586
1587 static struct notifier_block hrtimers_nb = {
1588 .notifier_call = hrtimer_cpu_notify,
1589 };
1590
1591 void __init hrtimers_init(void)
1592 {
1593 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1594 (void *)(long)smp_processor_id());
1595 register_cpu_notifier(&hrtimers_nb);
1596 }
1597
1598 /**
1599 * schedule_hrtimeout_range_clock - sleep until timeout
1600 * @expires: timeout value (ktime_t)
1601 * @delta: slack in expires timeout (ktime_t)
1602 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1603 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1604 */
1605 int __sched
1606 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1607 const enum hrtimer_mode mode, int clock)
1608 {
1609 struct hrtimer_sleeper t;
1610
1611 /*
1612 * Optimize when a zero timeout value is given. It does not
1613 * matter whether this is an absolute or a relative time.
1614 */
1615 if (expires && !expires->tv64) {
1616 __set_current_state(TASK_RUNNING);
1617 return 0;
1618 }
1619
1620 /*
1621 * A NULL parameter means "infinite"
1622 */
1623 if (!expires) {
1624 schedule();
1625 return -EINTR;
1626 }
1627
1628 hrtimer_init_on_stack(&t.timer, clock, mode);
1629 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1630
1631 hrtimer_init_sleeper(&t, current);
1632
1633 hrtimer_start_expires(&t.timer, mode);
1634
1635 if (likely(t.task))
1636 schedule();
1637
1638 hrtimer_cancel(&t.timer);
1639 destroy_hrtimer_on_stack(&t.timer);
1640
1641 __set_current_state(TASK_RUNNING);
1642
1643 return !t.task ? 0 : -EINTR;
1644 }
1645
1646 /**
1647 * schedule_hrtimeout_range - sleep until timeout
1648 * @expires: timeout value (ktime_t)
1649 * @delta: slack in expires timeout (ktime_t)
1650 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1651 *
1652 * Make the current task sleep until the given expiry time has
1653 * elapsed. The routine will return immediately unless
1654 * the current task state has been set (see set_current_state()).
1655 *
1656 * The @delta argument gives the kernel the freedom to schedule the
1657 * actual wakeup to a time that is both power and performance friendly.
1658 * The kernel give the normal best effort behavior for "@expires+@delta",
1659 * but may decide to fire the timer earlier, but no earlier than @expires.
1660 *
1661 * You can set the task state as follows -
1662 *
1663 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1664 * pass before the routine returns.
1665 *
1666 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1667 * delivered to the current task.
1668 *
1669 * The current task state is guaranteed to be TASK_RUNNING when this
1670 * routine returns.
1671 *
1672 * Returns 0 when the timer has expired otherwise -EINTR
1673 */
1674 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1675 const enum hrtimer_mode mode)
1676 {
1677 return schedule_hrtimeout_range_clock(expires, delta, mode,
1678 CLOCK_MONOTONIC);
1679 }
1680 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1681
1682 /**
1683 * schedule_hrtimeout - sleep until timeout
1684 * @expires: timeout value (ktime_t)
1685 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1686 *
1687 * Make the current task sleep until the given expiry time has
1688 * elapsed. The routine will return immediately unless
1689 * the current task state has been set (see set_current_state()).
1690 *
1691 * You can set the task state as follows -
1692 *
1693 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1694 * pass before the routine returns.
1695 *
1696 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1697 * delivered to the current task.
1698 *
1699 * The current task state is guaranteed to be TASK_RUNNING when this
1700 * routine returns.
1701 *
1702 * Returns 0 when the timer has expired otherwise -EINTR
1703 */
1704 int __sched schedule_hrtimeout(ktime_t *expires,
1705 const enum hrtimer_mode mode)
1706 {
1707 return schedule_hrtimeout_range(expires, 0, mode);
1708 }
1709 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.067967 seconds and 5 git commands to generate.