hrtimer: Make the statistics fields smaller
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .clock_base =
71 {
72 {
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
75 .get_time = &ktime_get,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 },
82 {
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
85 .get_time = &ktime_get_boottime,
86 },
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 },
92 }
93 };
94
95 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
100 };
101
102 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103 {
104 return hrtimer_clock_to_base_table[clock_id];
105 }
106
107
108 /*
109 * Get the coarse grained time at the softirq based on xtime and
110 * wall_to_monotonic.
111 */
112 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
113 {
114 ktime_t xtim, mono, boot, tai;
115 ktime_t off_real, off_boot, off_tai;
116
117 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
118 boot = ktime_add(mono, off_boot);
119 xtim = ktime_add(mono, off_real);
120 tai = ktime_add(mono, off_tai);
121
122 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
123 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
124 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
125 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
126 }
127
128 /*
129 * Functions and macros which are different for UP/SMP systems are kept in a
130 * single place
131 */
132 #ifdef CONFIG_SMP
133
134 /*
135 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
136 * means that all timers which are tied to this base via timer->base are
137 * locked, and the base itself is locked too.
138 *
139 * So __run_timers/migrate_timers can safely modify all timers which could
140 * be found on the lists/queues.
141 *
142 * When the timer's base is locked, and the timer removed from list, it is
143 * possible to set timer->base = NULL and drop the lock: the timer remains
144 * locked.
145 */
146 static
147 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
148 unsigned long *flags)
149 {
150 struct hrtimer_clock_base *base;
151
152 for (;;) {
153 base = timer->base;
154 if (likely(base != NULL)) {
155 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
156 if (likely(base == timer->base))
157 return base;
158 /* The timer has migrated to another CPU: */
159 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
160 }
161 cpu_relax();
162 }
163 }
164
165 /*
166 * With HIGHRES=y we do not migrate the timer when it is expiring
167 * before the next event on the target cpu because we cannot reprogram
168 * the target cpu hardware and we would cause it to fire late.
169 *
170 * Called with cpu_base->lock of target cpu held.
171 */
172 static int
173 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
174 {
175 #ifdef CONFIG_HIGH_RES_TIMERS
176 ktime_t expires;
177
178 if (!new_base->cpu_base->hres_active)
179 return 0;
180
181 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
182 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
183 #else
184 return 0;
185 #endif
186 }
187
188 /*
189 * Switch the timer base to the current CPU when possible.
190 */
191 static inline struct hrtimer_clock_base *
192 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
193 int pinned)
194 {
195 struct hrtimer_clock_base *new_base;
196 struct hrtimer_cpu_base *new_cpu_base;
197 int this_cpu = smp_processor_id();
198 int cpu = get_nohz_timer_target(pinned);
199 int basenum = base->index;
200
201 again:
202 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
203 new_base = &new_cpu_base->clock_base[basenum];
204
205 if (base != new_base) {
206 /*
207 * We are trying to move timer to new_base.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
215 if (unlikely(hrtimer_callback_running(timer)))
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
220 raw_spin_unlock(&base->cpu_base->lock);
221 raw_spin_lock(&new_base->cpu_base->lock);
222
223 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
224 cpu = this_cpu;
225 raw_spin_unlock(&new_base->cpu_base->lock);
226 raw_spin_lock(&base->cpu_base->lock);
227 timer->base = base;
228 goto again;
229 }
230 timer->base = new_base;
231 } else {
232 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
233 cpu = this_cpu;
234 goto again;
235 }
236 }
237 return new_base;
238 }
239
240 #else /* CONFIG_SMP */
241
242 static inline struct hrtimer_clock_base *
243 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
244 {
245 struct hrtimer_clock_base *base = timer->base;
246
247 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
248
249 return base;
250 }
251
252 # define switch_hrtimer_base(t, b, p) (b)
253
254 #endif /* !CONFIG_SMP */
255
256 /*
257 * Functions for the union type storage format of ktime_t which are
258 * too large for inlining:
259 */
260 #if BITS_PER_LONG < 64
261 /*
262 * Divide a ktime value by a nanosecond value
263 */
264 u64 __ktime_divns(const ktime_t kt, s64 div)
265 {
266 u64 dclc;
267 int sft = 0;
268
269 dclc = ktime_to_ns(kt);
270 /* Make sure the divisor is less than 2^32: */
271 while (div >> 32) {
272 sft++;
273 div >>= 1;
274 }
275 dclc >>= sft;
276 do_div(dclc, (unsigned long) div);
277
278 return dclc;
279 }
280 EXPORT_SYMBOL_GPL(__ktime_divns);
281 #endif /* BITS_PER_LONG >= 64 */
282
283 /*
284 * Add two ktime values and do a safety check for overflow:
285 */
286 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
287 {
288 ktime_t res = ktime_add(lhs, rhs);
289
290 /*
291 * We use KTIME_SEC_MAX here, the maximum timeout which we can
292 * return to user space in a timespec:
293 */
294 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
295 res = ktime_set(KTIME_SEC_MAX, 0);
296
297 return res;
298 }
299
300 EXPORT_SYMBOL_GPL(ktime_add_safe);
301
302 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
303
304 static struct debug_obj_descr hrtimer_debug_descr;
305
306 static void *hrtimer_debug_hint(void *addr)
307 {
308 return ((struct hrtimer *) addr)->function;
309 }
310
311 /*
312 * fixup_init is called when:
313 * - an active object is initialized
314 */
315 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
316 {
317 struct hrtimer *timer = addr;
318
319 switch (state) {
320 case ODEBUG_STATE_ACTIVE:
321 hrtimer_cancel(timer);
322 debug_object_init(timer, &hrtimer_debug_descr);
323 return 1;
324 default:
325 return 0;
326 }
327 }
328
329 /*
330 * fixup_activate is called when:
331 * - an active object is activated
332 * - an unknown object is activated (might be a statically initialized object)
333 */
334 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
335 {
336 switch (state) {
337
338 case ODEBUG_STATE_NOTAVAILABLE:
339 WARN_ON_ONCE(1);
340 return 0;
341
342 case ODEBUG_STATE_ACTIVE:
343 WARN_ON(1);
344
345 default:
346 return 0;
347 }
348 }
349
350 /*
351 * fixup_free is called when:
352 * - an active object is freed
353 */
354 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
355 {
356 struct hrtimer *timer = addr;
357
358 switch (state) {
359 case ODEBUG_STATE_ACTIVE:
360 hrtimer_cancel(timer);
361 debug_object_free(timer, &hrtimer_debug_descr);
362 return 1;
363 default:
364 return 0;
365 }
366 }
367
368 static struct debug_obj_descr hrtimer_debug_descr = {
369 .name = "hrtimer",
370 .debug_hint = hrtimer_debug_hint,
371 .fixup_init = hrtimer_fixup_init,
372 .fixup_activate = hrtimer_fixup_activate,
373 .fixup_free = hrtimer_fixup_free,
374 };
375
376 static inline void debug_hrtimer_init(struct hrtimer *timer)
377 {
378 debug_object_init(timer, &hrtimer_debug_descr);
379 }
380
381 static inline void debug_hrtimer_activate(struct hrtimer *timer)
382 {
383 debug_object_activate(timer, &hrtimer_debug_descr);
384 }
385
386 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
387 {
388 debug_object_deactivate(timer, &hrtimer_debug_descr);
389 }
390
391 static inline void debug_hrtimer_free(struct hrtimer *timer)
392 {
393 debug_object_free(timer, &hrtimer_debug_descr);
394 }
395
396 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
397 enum hrtimer_mode mode);
398
399 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
400 enum hrtimer_mode mode)
401 {
402 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
403 __hrtimer_init(timer, clock_id, mode);
404 }
405 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
406
407 void destroy_hrtimer_on_stack(struct hrtimer *timer)
408 {
409 debug_object_free(timer, &hrtimer_debug_descr);
410 }
411
412 #else
413 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
414 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
415 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
416 #endif
417
418 static inline void
419 debug_init(struct hrtimer *timer, clockid_t clockid,
420 enum hrtimer_mode mode)
421 {
422 debug_hrtimer_init(timer);
423 trace_hrtimer_init(timer, clockid, mode);
424 }
425
426 static inline void debug_activate(struct hrtimer *timer)
427 {
428 debug_hrtimer_activate(timer);
429 trace_hrtimer_start(timer);
430 }
431
432 static inline void debug_deactivate(struct hrtimer *timer)
433 {
434 debug_hrtimer_deactivate(timer);
435 trace_hrtimer_cancel(timer);
436 }
437
438 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
439 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
440 {
441 struct hrtimer_clock_base *base = cpu_base->clock_base;
442 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
443 int i;
444
445 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
446 struct timerqueue_node *next;
447 struct hrtimer *timer;
448
449 next = timerqueue_getnext(&base->active);
450 if (!next)
451 continue;
452
453 timer = container_of(next, struct hrtimer, node);
454 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
455 if (expires.tv64 < expires_next.tv64)
456 expires_next = expires;
457 }
458 /*
459 * clock_was_set() might have changed base->offset of any of
460 * the clock bases so the result might be negative. Fix it up
461 * to prevent a false positive in clockevents_program_event().
462 */
463 if (expires_next.tv64 < 0)
464 expires_next.tv64 = 0;
465 return expires_next;
466 }
467 #endif
468
469 /* High resolution timer related functions */
470 #ifdef CONFIG_HIGH_RES_TIMERS
471
472 /*
473 * High resolution timer enabled ?
474 */
475 static int hrtimer_hres_enabled __read_mostly = 1;
476 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477 EXPORT_SYMBOL_GPL(hrtimer_resolution);
478
479 /*
480 * Enable / Disable high resolution mode
481 */
482 static int __init setup_hrtimer_hres(char *str)
483 {
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491 }
492
493 __setup("highres=", setup_hrtimer_hres);
494
495 /*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498 static inline int hrtimer_is_hres_enabled(void)
499 {
500 return hrtimer_hres_enabled;
501 }
502
503 /*
504 * Is the high resolution mode active ?
505 */
506 static inline int hrtimer_hres_active(void)
507 {
508 return __this_cpu_read(hrtimer_bases.hres_active);
509 }
510
511 /*
512 * Reprogram the event source with checking both queues for the
513 * next event
514 * Called with interrupts disabled and base->lock held
515 */
516 static void
517 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
518 {
519 ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
520
521 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
522 return;
523
524 cpu_base->expires_next.tv64 = expires_next.tv64;
525
526 /*
527 * If a hang was detected in the last timer interrupt then we
528 * leave the hang delay active in the hardware. We want the
529 * system to make progress. That also prevents the following
530 * scenario:
531 * T1 expires 50ms from now
532 * T2 expires 5s from now
533 *
534 * T1 is removed, so this code is called and would reprogram
535 * the hardware to 5s from now. Any hrtimer_start after that
536 * will not reprogram the hardware due to hang_detected being
537 * set. So we'd effectivly block all timers until the T2 event
538 * fires.
539 */
540 if (cpu_base->hang_detected)
541 return;
542
543 if (cpu_base->expires_next.tv64 != KTIME_MAX)
544 tick_program_event(cpu_base->expires_next, 1);
545 }
546
547 /*
548 * Shared reprogramming for clock_realtime and clock_monotonic
549 *
550 * When a timer is enqueued and expires earlier than the already enqueued
551 * timers, we have to check, whether it expires earlier than the timer for
552 * which the clock event device was armed.
553 *
554 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
555 * and no expiry check happens. The timer gets enqueued into the rbtree. The
556 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
557 * softirq.
558 *
559 * Called with interrupts disabled and base->cpu_base.lock held
560 */
561 static int hrtimer_reprogram(struct hrtimer *timer,
562 struct hrtimer_clock_base *base)
563 {
564 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
565 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
566 int res;
567
568 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
569
570 /*
571 * When the callback is running, we do not reprogram the clock event
572 * device. The timer callback is either running on a different CPU or
573 * the callback is executed in the hrtimer_interrupt context. The
574 * reprogramming is handled either by the softirq, which called the
575 * callback or at the end of the hrtimer_interrupt.
576 */
577 if (hrtimer_callback_running(timer))
578 return 0;
579
580 /*
581 * CLOCK_REALTIME timer might be requested with an absolute
582 * expiry time which is less than base->offset. Nothing wrong
583 * about that, just avoid to call into the tick code, which
584 * has now objections against negative expiry values.
585 */
586 if (expires.tv64 < 0)
587 return -ETIME;
588
589 if (expires.tv64 >= cpu_base->expires_next.tv64)
590 return 0;
591
592 /*
593 * When the target cpu of the timer is currently executing
594 * hrtimer_interrupt(), then we do not touch the clock event
595 * device. hrtimer_interrupt() will reevaluate all clock bases
596 * before reprogramming the device.
597 */
598 if (cpu_base->in_hrtirq)
599 return 0;
600
601 /*
602 * If a hang was detected in the last timer interrupt then we
603 * do not schedule a timer which is earlier than the expiry
604 * which we enforced in the hang detection. We want the system
605 * to make progress.
606 */
607 if (cpu_base->hang_detected)
608 return 0;
609
610 /*
611 * Clockevents returns -ETIME, when the event was in the past.
612 */
613 res = tick_program_event(expires, 0);
614 if (!IS_ERR_VALUE(res))
615 cpu_base->expires_next = expires;
616 return res;
617 }
618
619 /*
620 * Initialize the high resolution related parts of cpu_base
621 */
622 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
623 {
624 base->expires_next.tv64 = KTIME_MAX;
625 base->hres_active = 0;
626 }
627
628 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
629 {
630 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
631 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
632 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
633
634 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
635 }
636
637 /*
638 * Retrigger next event is called after clock was set
639 *
640 * Called with interrupts disabled via on_each_cpu()
641 */
642 static void retrigger_next_event(void *arg)
643 {
644 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
645
646 if (!hrtimer_hres_active())
647 return;
648
649 raw_spin_lock(&base->lock);
650 hrtimer_update_base(base);
651 hrtimer_force_reprogram(base, 0);
652 raw_spin_unlock(&base->lock);
653 }
654
655 /*
656 * Switch to high resolution mode
657 */
658 static int hrtimer_switch_to_hres(void)
659 {
660 int cpu = smp_processor_id();
661 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
662 unsigned long flags;
663
664 if (base->hres_active)
665 return 1;
666
667 local_irq_save(flags);
668
669 if (tick_init_highres()) {
670 local_irq_restore(flags);
671 printk(KERN_WARNING "Could not switch to high resolution "
672 "mode on CPU %d\n", cpu);
673 return 0;
674 }
675 base->hres_active = 1;
676 hrtimer_resolution = HIGH_RES_NSEC;
677
678 tick_setup_sched_timer();
679 /* "Retrigger" the interrupt to get things going */
680 retrigger_next_event(NULL);
681 local_irq_restore(flags);
682 return 1;
683 }
684
685 static void clock_was_set_work(struct work_struct *work)
686 {
687 clock_was_set();
688 }
689
690 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
691
692 /*
693 * Called from timekeeping and resume code to reprogramm the hrtimer
694 * interrupt device on all cpus.
695 */
696 void clock_was_set_delayed(void)
697 {
698 schedule_work(&hrtimer_work);
699 }
700
701 #else
702
703 static inline int hrtimer_hres_active(void) { return 0; }
704 static inline int hrtimer_is_hres_enabled(void) { return 0; }
705 static inline int hrtimer_switch_to_hres(void) { return 0; }
706 static inline void
707 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
708 static inline int hrtimer_reprogram(struct hrtimer *timer,
709 struct hrtimer_clock_base *base)
710 {
711 return 0;
712 }
713 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
714 static inline void retrigger_next_event(void *arg) { }
715
716 #endif /* CONFIG_HIGH_RES_TIMERS */
717
718 /*
719 * Clock realtime was set
720 *
721 * Change the offset of the realtime clock vs. the monotonic
722 * clock.
723 *
724 * We might have to reprogram the high resolution timer interrupt. On
725 * SMP we call the architecture specific code to retrigger _all_ high
726 * resolution timer interrupts. On UP we just disable interrupts and
727 * call the high resolution interrupt code.
728 */
729 void clock_was_set(void)
730 {
731 #ifdef CONFIG_HIGH_RES_TIMERS
732 /* Retrigger the CPU local events everywhere */
733 on_each_cpu(retrigger_next_event, NULL, 1);
734 #endif
735 timerfd_clock_was_set();
736 }
737
738 /*
739 * During resume we might have to reprogram the high resolution timer
740 * interrupt on all online CPUs. However, all other CPUs will be
741 * stopped with IRQs interrupts disabled so the clock_was_set() call
742 * must be deferred.
743 */
744 void hrtimers_resume(void)
745 {
746 WARN_ONCE(!irqs_disabled(),
747 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
748
749 /* Retrigger on the local CPU */
750 retrigger_next_event(NULL);
751 /* And schedule a retrigger for all others */
752 clock_was_set_delayed();
753 }
754
755 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
756 {
757 #ifdef CONFIG_TIMER_STATS
758 if (timer->start_site)
759 return;
760 timer->start_site = __builtin_return_address(0);
761 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
762 timer->start_pid = current->pid;
763 #endif
764 }
765
766 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
767 {
768 #ifdef CONFIG_TIMER_STATS
769 timer->start_site = NULL;
770 #endif
771 }
772
773 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
774 {
775 #ifdef CONFIG_TIMER_STATS
776 if (likely(!timer_stats_active))
777 return;
778 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
779 timer->function, timer->start_comm, 0);
780 #endif
781 }
782
783 /*
784 * Counterpart to lock_hrtimer_base above:
785 */
786 static inline
787 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
788 {
789 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
790 }
791
792 /**
793 * hrtimer_forward - forward the timer expiry
794 * @timer: hrtimer to forward
795 * @now: forward past this time
796 * @interval: the interval to forward
797 *
798 * Forward the timer expiry so it will expire in the future.
799 * Returns the number of overruns.
800 *
801 * Can be safely called from the callback function of @timer. If
802 * called from other contexts @timer must neither be enqueued nor
803 * running the callback and the caller needs to take care of
804 * serialization.
805 *
806 * Note: This only updates the timer expiry value and does not requeue
807 * the timer.
808 */
809 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
810 {
811 u64 orun = 1;
812 ktime_t delta;
813
814 delta = ktime_sub(now, hrtimer_get_expires(timer));
815
816 if (delta.tv64 < 0)
817 return 0;
818
819 if (interval.tv64 < hrtimer_resolution)
820 interval.tv64 = hrtimer_resolution;
821
822 if (unlikely(delta.tv64 >= interval.tv64)) {
823 s64 incr = ktime_to_ns(interval);
824
825 orun = ktime_divns(delta, incr);
826 hrtimer_add_expires_ns(timer, incr * orun);
827 if (hrtimer_get_expires_tv64(timer) > now.tv64)
828 return orun;
829 /*
830 * This (and the ktime_add() below) is the
831 * correction for exact:
832 */
833 orun++;
834 }
835 hrtimer_add_expires(timer, interval);
836
837 return orun;
838 }
839 EXPORT_SYMBOL_GPL(hrtimer_forward);
840
841 /*
842 * enqueue_hrtimer - internal function to (re)start a timer
843 *
844 * The timer is inserted in expiry order. Insertion into the
845 * red black tree is O(log(n)). Must hold the base lock.
846 *
847 * Returns 1 when the new timer is the leftmost timer in the tree.
848 */
849 static int enqueue_hrtimer(struct hrtimer *timer,
850 struct hrtimer_clock_base *base)
851 {
852 debug_activate(timer);
853
854 timerqueue_add(&base->active, &timer->node);
855 base->cpu_base->active_bases |= 1 << base->index;
856
857 /*
858 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
859 * state of a possibly running callback.
860 */
861 timer->state |= HRTIMER_STATE_ENQUEUED;
862
863 return (&timer->node == base->active.next);
864 }
865
866 /*
867 * __remove_hrtimer - internal function to remove a timer
868 *
869 * Caller must hold the base lock.
870 *
871 * High resolution timer mode reprograms the clock event device when the
872 * timer is the one which expires next. The caller can disable this by setting
873 * reprogram to zero. This is useful, when the context does a reprogramming
874 * anyway (e.g. timer interrupt)
875 */
876 static void __remove_hrtimer(struct hrtimer *timer,
877 struct hrtimer_clock_base *base,
878 unsigned long newstate, int reprogram)
879 {
880 struct timerqueue_node *next_timer;
881 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
882 goto out;
883
884 next_timer = timerqueue_getnext(&base->active);
885 timerqueue_del(&base->active, &timer->node);
886 if (!timerqueue_getnext(&base->active))
887 base->cpu_base->active_bases &= ~(1 << base->index);
888
889 if (&timer->node == next_timer) {
890 #ifdef CONFIG_HIGH_RES_TIMERS
891 /* Reprogram the clock event device. if enabled */
892 if (reprogram && hrtimer_hres_active()) {
893 ktime_t expires;
894
895 expires = ktime_sub(hrtimer_get_expires(timer),
896 base->offset);
897 if (base->cpu_base->expires_next.tv64 == expires.tv64)
898 hrtimer_force_reprogram(base->cpu_base, 1);
899 }
900 #endif
901 }
902 out:
903 timer->state = newstate;
904 }
905
906 /*
907 * remove hrtimer, called with base lock held
908 */
909 static inline int
910 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
911 {
912 if (hrtimer_is_queued(timer)) {
913 unsigned long state;
914 int reprogram;
915
916 /*
917 * Remove the timer and force reprogramming when high
918 * resolution mode is active and the timer is on the current
919 * CPU. If we remove a timer on another CPU, reprogramming is
920 * skipped. The interrupt event on this CPU is fired and
921 * reprogramming happens in the interrupt handler. This is a
922 * rare case and less expensive than a smp call.
923 */
924 debug_deactivate(timer);
925 timer_stats_hrtimer_clear_start_info(timer);
926 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
927 /*
928 * We must preserve the CALLBACK state flag here,
929 * otherwise we could move the timer base in
930 * switch_hrtimer_base.
931 */
932 state = timer->state & HRTIMER_STATE_CALLBACK;
933 __remove_hrtimer(timer, base, state, reprogram);
934 return 1;
935 }
936 return 0;
937 }
938
939 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
940 unsigned long delta_ns, const enum hrtimer_mode mode,
941 int wakeup)
942 {
943 struct hrtimer_clock_base *base, *new_base;
944 unsigned long flags;
945 int ret, leftmost;
946
947 base = lock_hrtimer_base(timer, &flags);
948
949 /* Remove an active timer from the queue: */
950 ret = remove_hrtimer(timer, base);
951
952 if (mode & HRTIMER_MODE_REL) {
953 tim = ktime_add_safe(tim, base->get_time());
954 /*
955 * CONFIG_TIME_LOW_RES is a temporary way for architectures
956 * to signal that they simply return xtime in
957 * do_gettimeoffset(). In this case we want to round up by
958 * resolution when starting a relative timer, to avoid short
959 * timeouts. This will go away with the GTOD framework.
960 */
961 #ifdef CONFIG_TIME_LOW_RES
962 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
963 #endif
964 }
965
966 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
967
968 /* Switch the timer base, if necessary: */
969 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
970
971 timer_stats_hrtimer_set_start_info(timer);
972
973 leftmost = enqueue_hrtimer(timer, new_base);
974
975 if (!leftmost) {
976 unlock_hrtimer_base(timer, &flags);
977 return ret;
978 }
979
980 if (!hrtimer_is_hres_active(timer)) {
981 /*
982 * Kick to reschedule the next tick to handle the new timer
983 * on dynticks target.
984 */
985 wake_up_nohz_cpu(new_base->cpu_base->cpu);
986 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
987 hrtimer_reprogram(timer, new_base)) {
988 /*
989 * Only allow reprogramming if the new base is on this CPU.
990 * (it might still be on another CPU if the timer was pending)
991 *
992 * XXX send_remote_softirq() ?
993 */
994 if (wakeup) {
995 /*
996 * We need to drop cpu_base->lock to avoid a
997 * lock ordering issue vs. rq->lock.
998 */
999 raw_spin_unlock(&new_base->cpu_base->lock);
1000 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1001 local_irq_restore(flags);
1002 return ret;
1003 } else {
1004 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1005 }
1006 }
1007
1008 unlock_hrtimer_base(timer, &flags);
1009
1010 return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1013
1014 /**
1015 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1016 * @timer: the timer to be added
1017 * @tim: expiry time
1018 * @delta_ns: "slack" range for the timer
1019 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1020 * relative (HRTIMER_MODE_REL)
1021 *
1022 * Returns:
1023 * 0 on success
1024 * 1 when the timer was active
1025 */
1026 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1027 unsigned long delta_ns, const enum hrtimer_mode mode)
1028 {
1029 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1030 }
1031 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1032
1033 /**
1034 * hrtimer_start - (re)start an hrtimer on the current CPU
1035 * @timer: the timer to be added
1036 * @tim: expiry time
1037 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1038 * relative (HRTIMER_MODE_REL)
1039 *
1040 * Returns:
1041 * 0 on success
1042 * 1 when the timer was active
1043 */
1044 int
1045 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1046 {
1047 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_start);
1050
1051
1052 /**
1053 * hrtimer_try_to_cancel - try to deactivate a timer
1054 * @timer: hrtimer to stop
1055 *
1056 * Returns:
1057 * 0 when the timer was not active
1058 * 1 when the timer was active
1059 * -1 when the timer is currently excuting the callback function and
1060 * cannot be stopped
1061 */
1062 int hrtimer_try_to_cancel(struct hrtimer *timer)
1063 {
1064 struct hrtimer_clock_base *base;
1065 unsigned long flags;
1066 int ret = -1;
1067
1068 base = lock_hrtimer_base(timer, &flags);
1069
1070 if (!hrtimer_callback_running(timer))
1071 ret = remove_hrtimer(timer, base);
1072
1073 unlock_hrtimer_base(timer, &flags);
1074
1075 return ret;
1076
1077 }
1078 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1079
1080 /**
1081 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1082 * @timer: the timer to be cancelled
1083 *
1084 * Returns:
1085 * 0 when the timer was not active
1086 * 1 when the timer was active
1087 */
1088 int hrtimer_cancel(struct hrtimer *timer)
1089 {
1090 for (;;) {
1091 int ret = hrtimer_try_to_cancel(timer);
1092
1093 if (ret >= 0)
1094 return ret;
1095 cpu_relax();
1096 }
1097 }
1098 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1099
1100 /**
1101 * hrtimer_get_remaining - get remaining time for the timer
1102 * @timer: the timer to read
1103 */
1104 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1105 {
1106 unsigned long flags;
1107 ktime_t rem;
1108
1109 lock_hrtimer_base(timer, &flags);
1110 rem = hrtimer_expires_remaining(timer);
1111 unlock_hrtimer_base(timer, &flags);
1112
1113 return rem;
1114 }
1115 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1116
1117 #ifdef CONFIG_NO_HZ_COMMON
1118 /**
1119 * hrtimer_get_next_event - get the time until next expiry event
1120 *
1121 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1122 * is pending.
1123 */
1124 ktime_t hrtimer_get_next_event(void)
1125 {
1126 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1127 ktime_t mindelta = { .tv64 = KTIME_MAX };
1128 unsigned long flags;
1129
1130 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1131
1132 if (!hrtimer_hres_active())
1133 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1134 ktime_get());
1135
1136 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1137
1138 if (mindelta.tv64 < 0)
1139 mindelta.tv64 = 0;
1140 return mindelta;
1141 }
1142 #endif
1143
1144 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145 enum hrtimer_mode mode)
1146 {
1147 struct hrtimer_cpu_base *cpu_base;
1148 int base;
1149
1150 memset(timer, 0, sizeof(struct hrtimer));
1151
1152 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1153
1154 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1155 clock_id = CLOCK_MONOTONIC;
1156
1157 base = hrtimer_clockid_to_base(clock_id);
1158 timer->base = &cpu_base->clock_base[base];
1159 timerqueue_init(&timer->node);
1160
1161 #ifdef CONFIG_TIMER_STATS
1162 timer->start_site = NULL;
1163 timer->start_pid = -1;
1164 memset(timer->start_comm, 0, TASK_COMM_LEN);
1165 #endif
1166 }
1167
1168 /**
1169 * hrtimer_init - initialize a timer to the given clock
1170 * @timer: the timer to be initialized
1171 * @clock_id: the clock to be used
1172 * @mode: timer mode abs/rel
1173 */
1174 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1175 enum hrtimer_mode mode)
1176 {
1177 debug_init(timer, clock_id, mode);
1178 __hrtimer_init(timer, clock_id, mode);
1179 }
1180 EXPORT_SYMBOL_GPL(hrtimer_init);
1181
1182 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1183 {
1184 struct hrtimer_clock_base *base = timer->base;
1185 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1186 enum hrtimer_restart (*fn)(struct hrtimer *);
1187 int restart;
1188
1189 WARN_ON(!irqs_disabled());
1190
1191 debug_deactivate(timer);
1192 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1193 timer_stats_account_hrtimer(timer);
1194 fn = timer->function;
1195
1196 /*
1197 * Because we run timers from hardirq context, there is no chance
1198 * they get migrated to another cpu, therefore its safe to unlock
1199 * the timer base.
1200 */
1201 raw_spin_unlock(&cpu_base->lock);
1202 trace_hrtimer_expire_entry(timer, now);
1203 restart = fn(timer);
1204 trace_hrtimer_expire_exit(timer);
1205 raw_spin_lock(&cpu_base->lock);
1206
1207 /*
1208 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1209 * we do not reprogramm the event hardware. Happens either in
1210 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1211 */
1212 if (restart != HRTIMER_NORESTART) {
1213 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1214 enqueue_hrtimer(timer, base);
1215 }
1216
1217 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1218
1219 timer->state &= ~HRTIMER_STATE_CALLBACK;
1220 }
1221
1222 #ifdef CONFIG_HIGH_RES_TIMERS
1223
1224 /*
1225 * High resolution timer interrupt
1226 * Called with interrupts disabled
1227 */
1228 void hrtimer_interrupt(struct clock_event_device *dev)
1229 {
1230 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1231 ktime_t expires_next, now, entry_time, delta;
1232 int i, retries = 0;
1233
1234 BUG_ON(!cpu_base->hres_active);
1235 cpu_base->nr_events++;
1236 dev->next_event.tv64 = KTIME_MAX;
1237
1238 raw_spin_lock(&cpu_base->lock);
1239 entry_time = now = hrtimer_update_base(cpu_base);
1240 retry:
1241 cpu_base->in_hrtirq = 1;
1242 /*
1243 * We set expires_next to KTIME_MAX here with cpu_base->lock
1244 * held to prevent that a timer is enqueued in our queue via
1245 * the migration code. This does not affect enqueueing of
1246 * timers which run their callback and need to be requeued on
1247 * this CPU.
1248 */
1249 cpu_base->expires_next.tv64 = KTIME_MAX;
1250
1251 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1252 struct hrtimer_clock_base *base;
1253 struct timerqueue_node *node;
1254 ktime_t basenow;
1255
1256 if (!(cpu_base->active_bases & (1 << i)))
1257 continue;
1258
1259 base = cpu_base->clock_base + i;
1260 basenow = ktime_add(now, base->offset);
1261
1262 while ((node = timerqueue_getnext(&base->active))) {
1263 struct hrtimer *timer;
1264
1265 timer = container_of(node, struct hrtimer, node);
1266
1267 /*
1268 * The immediate goal for using the softexpires is
1269 * minimizing wakeups, not running timers at the
1270 * earliest interrupt after their soft expiration.
1271 * This allows us to avoid using a Priority Search
1272 * Tree, which can answer a stabbing querry for
1273 * overlapping intervals and instead use the simple
1274 * BST we already have.
1275 * We don't add extra wakeups by delaying timers that
1276 * are right-of a not yet expired timer, because that
1277 * timer will have to trigger a wakeup anyway.
1278 */
1279 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1280 break;
1281
1282 __run_hrtimer(timer, &basenow);
1283 }
1284 }
1285 /* Reevaluate the clock bases for the next expiry */
1286 expires_next = __hrtimer_get_next_event(cpu_base);
1287 /*
1288 * Store the new expiry value so the migration code can verify
1289 * against it.
1290 */
1291 cpu_base->expires_next = expires_next;
1292 cpu_base->in_hrtirq = 0;
1293 raw_spin_unlock(&cpu_base->lock);
1294
1295 /* Reprogramming necessary ? */
1296 if (expires_next.tv64 == KTIME_MAX ||
1297 !tick_program_event(expires_next, 0)) {
1298 cpu_base->hang_detected = 0;
1299 return;
1300 }
1301
1302 /*
1303 * The next timer was already expired due to:
1304 * - tracing
1305 * - long lasting callbacks
1306 * - being scheduled away when running in a VM
1307 *
1308 * We need to prevent that we loop forever in the hrtimer
1309 * interrupt routine. We give it 3 attempts to avoid
1310 * overreacting on some spurious event.
1311 *
1312 * Acquire base lock for updating the offsets and retrieving
1313 * the current time.
1314 */
1315 raw_spin_lock(&cpu_base->lock);
1316 now = hrtimer_update_base(cpu_base);
1317 cpu_base->nr_retries++;
1318 if (++retries < 3)
1319 goto retry;
1320 /*
1321 * Give the system a chance to do something else than looping
1322 * here. We stored the entry time, so we know exactly how long
1323 * we spent here. We schedule the next event this amount of
1324 * time away.
1325 */
1326 cpu_base->nr_hangs++;
1327 cpu_base->hang_detected = 1;
1328 raw_spin_unlock(&cpu_base->lock);
1329 delta = ktime_sub(now, entry_time);
1330 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1331 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1332 /*
1333 * Limit it to a sensible value as we enforce a longer
1334 * delay. Give the CPU at least 100ms to catch up.
1335 */
1336 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1337 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1338 else
1339 expires_next = ktime_add(now, delta);
1340 tick_program_event(expires_next, 1);
1341 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1342 ktime_to_ns(delta));
1343 }
1344
1345 /*
1346 * local version of hrtimer_peek_ahead_timers() called with interrupts
1347 * disabled.
1348 */
1349 static void __hrtimer_peek_ahead_timers(void)
1350 {
1351 struct tick_device *td;
1352
1353 if (!hrtimer_hres_active())
1354 return;
1355
1356 td = this_cpu_ptr(&tick_cpu_device);
1357 if (td && td->evtdev)
1358 hrtimer_interrupt(td->evtdev);
1359 }
1360
1361 /**
1362 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1363 *
1364 * hrtimer_peek_ahead_timers will peek at the timer queue of
1365 * the current cpu and check if there are any timers for which
1366 * the soft expires time has passed. If any such timers exist,
1367 * they are run immediately and then removed from the timer queue.
1368 *
1369 */
1370 void hrtimer_peek_ahead_timers(void)
1371 {
1372 unsigned long flags;
1373
1374 local_irq_save(flags);
1375 __hrtimer_peek_ahead_timers();
1376 local_irq_restore(flags);
1377 }
1378
1379 static void run_hrtimer_softirq(struct softirq_action *h)
1380 {
1381 hrtimer_peek_ahead_timers();
1382 }
1383
1384 #else /* CONFIG_HIGH_RES_TIMERS */
1385
1386 static inline void __hrtimer_peek_ahead_timers(void) { }
1387
1388 #endif /* !CONFIG_HIGH_RES_TIMERS */
1389
1390 /*
1391 * Called from timer softirq every jiffy, expire hrtimers:
1392 *
1393 * For HRT its the fall back code to run the softirq in the timer
1394 * softirq context in case the hrtimer initialization failed or has
1395 * not been done yet.
1396 */
1397 void hrtimer_run_pending(void)
1398 {
1399 if (hrtimer_hres_active())
1400 return;
1401
1402 /*
1403 * This _is_ ugly: We have to check in the softirq context,
1404 * whether we can switch to highres and / or nohz mode. The
1405 * clocksource switch happens in the timer interrupt with
1406 * xtime_lock held. Notification from there only sets the
1407 * check bit in the tick_oneshot code, otherwise we might
1408 * deadlock vs. xtime_lock.
1409 */
1410 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1411 hrtimer_switch_to_hres();
1412 }
1413
1414 /*
1415 * Called from hardirq context every jiffy
1416 */
1417 void hrtimer_run_queues(void)
1418 {
1419 struct timerqueue_node *node;
1420 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1421 struct hrtimer_clock_base *base;
1422 int index, gettime = 1;
1423
1424 if (hrtimer_hres_active())
1425 return;
1426
1427 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1428 base = &cpu_base->clock_base[index];
1429 if (!timerqueue_getnext(&base->active))
1430 continue;
1431
1432 if (gettime) {
1433 hrtimer_get_softirq_time(cpu_base);
1434 gettime = 0;
1435 }
1436
1437 raw_spin_lock(&cpu_base->lock);
1438
1439 while ((node = timerqueue_getnext(&base->active))) {
1440 struct hrtimer *timer;
1441
1442 timer = container_of(node, struct hrtimer, node);
1443 if (base->softirq_time.tv64 <=
1444 hrtimer_get_expires_tv64(timer))
1445 break;
1446
1447 __run_hrtimer(timer, &base->softirq_time);
1448 }
1449 raw_spin_unlock(&cpu_base->lock);
1450 }
1451 }
1452
1453 /*
1454 * Sleep related functions:
1455 */
1456 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1457 {
1458 struct hrtimer_sleeper *t =
1459 container_of(timer, struct hrtimer_sleeper, timer);
1460 struct task_struct *task = t->task;
1461
1462 t->task = NULL;
1463 if (task)
1464 wake_up_process(task);
1465
1466 return HRTIMER_NORESTART;
1467 }
1468
1469 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1470 {
1471 sl->timer.function = hrtimer_wakeup;
1472 sl->task = task;
1473 }
1474 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1475
1476 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1477 {
1478 hrtimer_init_sleeper(t, current);
1479
1480 do {
1481 set_current_state(TASK_INTERRUPTIBLE);
1482 hrtimer_start_expires(&t->timer, mode);
1483 if (!hrtimer_active(&t->timer))
1484 t->task = NULL;
1485
1486 if (likely(t->task))
1487 freezable_schedule();
1488
1489 hrtimer_cancel(&t->timer);
1490 mode = HRTIMER_MODE_ABS;
1491
1492 } while (t->task && !signal_pending(current));
1493
1494 __set_current_state(TASK_RUNNING);
1495
1496 return t->task == NULL;
1497 }
1498
1499 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1500 {
1501 struct timespec rmt;
1502 ktime_t rem;
1503
1504 rem = hrtimer_expires_remaining(timer);
1505 if (rem.tv64 <= 0)
1506 return 0;
1507 rmt = ktime_to_timespec(rem);
1508
1509 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1510 return -EFAULT;
1511
1512 return 1;
1513 }
1514
1515 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1516 {
1517 struct hrtimer_sleeper t;
1518 struct timespec __user *rmtp;
1519 int ret = 0;
1520
1521 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1522 HRTIMER_MODE_ABS);
1523 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1524
1525 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1526 goto out;
1527
1528 rmtp = restart->nanosleep.rmtp;
1529 if (rmtp) {
1530 ret = update_rmtp(&t.timer, rmtp);
1531 if (ret <= 0)
1532 goto out;
1533 }
1534
1535 /* The other values in restart are already filled in */
1536 ret = -ERESTART_RESTARTBLOCK;
1537 out:
1538 destroy_hrtimer_on_stack(&t.timer);
1539 return ret;
1540 }
1541
1542 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1543 const enum hrtimer_mode mode, const clockid_t clockid)
1544 {
1545 struct restart_block *restart;
1546 struct hrtimer_sleeper t;
1547 int ret = 0;
1548 unsigned long slack;
1549
1550 slack = current->timer_slack_ns;
1551 if (dl_task(current) || rt_task(current))
1552 slack = 0;
1553
1554 hrtimer_init_on_stack(&t.timer, clockid, mode);
1555 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1556 if (do_nanosleep(&t, mode))
1557 goto out;
1558
1559 /* Absolute timers do not update the rmtp value and restart: */
1560 if (mode == HRTIMER_MODE_ABS) {
1561 ret = -ERESTARTNOHAND;
1562 goto out;
1563 }
1564
1565 if (rmtp) {
1566 ret = update_rmtp(&t.timer, rmtp);
1567 if (ret <= 0)
1568 goto out;
1569 }
1570
1571 restart = &current->restart_block;
1572 restart->fn = hrtimer_nanosleep_restart;
1573 restart->nanosleep.clockid = t.timer.base->clockid;
1574 restart->nanosleep.rmtp = rmtp;
1575 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1576
1577 ret = -ERESTART_RESTARTBLOCK;
1578 out:
1579 destroy_hrtimer_on_stack(&t.timer);
1580 return ret;
1581 }
1582
1583 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1584 struct timespec __user *, rmtp)
1585 {
1586 struct timespec tu;
1587
1588 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1589 return -EFAULT;
1590
1591 if (!timespec_valid(&tu))
1592 return -EINVAL;
1593
1594 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1595 }
1596
1597 /*
1598 * Functions related to boot-time initialization:
1599 */
1600 static void init_hrtimers_cpu(int cpu)
1601 {
1602 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1603 int i;
1604
1605 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1606 cpu_base->clock_base[i].cpu_base = cpu_base;
1607 timerqueue_init_head(&cpu_base->clock_base[i].active);
1608 }
1609
1610 cpu_base->cpu = cpu;
1611 hrtimer_init_hres(cpu_base);
1612 }
1613
1614 #ifdef CONFIG_HOTPLUG_CPU
1615
1616 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1617 struct hrtimer_clock_base *new_base)
1618 {
1619 struct hrtimer *timer;
1620 struct timerqueue_node *node;
1621
1622 while ((node = timerqueue_getnext(&old_base->active))) {
1623 timer = container_of(node, struct hrtimer, node);
1624 BUG_ON(hrtimer_callback_running(timer));
1625 debug_deactivate(timer);
1626
1627 /*
1628 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1629 * timer could be seen as !active and just vanish away
1630 * under us on another CPU
1631 */
1632 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1633 timer->base = new_base;
1634 /*
1635 * Enqueue the timers on the new cpu. This does not
1636 * reprogram the event device in case the timer
1637 * expires before the earliest on this CPU, but we run
1638 * hrtimer_interrupt after we migrated everything to
1639 * sort out already expired timers and reprogram the
1640 * event device.
1641 */
1642 enqueue_hrtimer(timer, new_base);
1643
1644 /* Clear the migration state bit */
1645 timer->state &= ~HRTIMER_STATE_MIGRATE;
1646 }
1647 }
1648
1649 static void migrate_hrtimers(int scpu)
1650 {
1651 struct hrtimer_cpu_base *old_base, *new_base;
1652 int i;
1653
1654 BUG_ON(cpu_online(scpu));
1655 tick_cancel_sched_timer(scpu);
1656
1657 local_irq_disable();
1658 old_base = &per_cpu(hrtimer_bases, scpu);
1659 new_base = this_cpu_ptr(&hrtimer_bases);
1660 /*
1661 * The caller is globally serialized and nobody else
1662 * takes two locks at once, deadlock is not possible.
1663 */
1664 raw_spin_lock(&new_base->lock);
1665 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1666
1667 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1668 migrate_hrtimer_list(&old_base->clock_base[i],
1669 &new_base->clock_base[i]);
1670 }
1671
1672 raw_spin_unlock(&old_base->lock);
1673 raw_spin_unlock(&new_base->lock);
1674
1675 /* Check, if we got expired work to do */
1676 __hrtimer_peek_ahead_timers();
1677 local_irq_enable();
1678 }
1679
1680 #endif /* CONFIG_HOTPLUG_CPU */
1681
1682 static int hrtimer_cpu_notify(struct notifier_block *self,
1683 unsigned long action, void *hcpu)
1684 {
1685 int scpu = (long)hcpu;
1686
1687 switch (action) {
1688
1689 case CPU_UP_PREPARE:
1690 case CPU_UP_PREPARE_FROZEN:
1691 init_hrtimers_cpu(scpu);
1692 break;
1693
1694 #ifdef CONFIG_HOTPLUG_CPU
1695 case CPU_DEAD:
1696 case CPU_DEAD_FROZEN:
1697 migrate_hrtimers(scpu);
1698 break;
1699 #endif
1700
1701 default:
1702 break;
1703 }
1704
1705 return NOTIFY_OK;
1706 }
1707
1708 static struct notifier_block hrtimers_nb = {
1709 .notifier_call = hrtimer_cpu_notify,
1710 };
1711
1712 void __init hrtimers_init(void)
1713 {
1714 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1715 (void *)(long)smp_processor_id());
1716 register_cpu_notifier(&hrtimers_nb);
1717 #ifdef CONFIG_HIGH_RES_TIMERS
1718 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1719 #endif
1720 }
1721
1722 /**
1723 * schedule_hrtimeout_range_clock - sleep until timeout
1724 * @expires: timeout value (ktime_t)
1725 * @delta: slack in expires timeout (ktime_t)
1726 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1727 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1728 */
1729 int __sched
1730 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1731 const enum hrtimer_mode mode, int clock)
1732 {
1733 struct hrtimer_sleeper t;
1734
1735 /*
1736 * Optimize when a zero timeout value is given. It does not
1737 * matter whether this is an absolute or a relative time.
1738 */
1739 if (expires && !expires->tv64) {
1740 __set_current_state(TASK_RUNNING);
1741 return 0;
1742 }
1743
1744 /*
1745 * A NULL parameter means "infinite"
1746 */
1747 if (!expires) {
1748 schedule();
1749 return -EINTR;
1750 }
1751
1752 hrtimer_init_on_stack(&t.timer, clock, mode);
1753 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1754
1755 hrtimer_init_sleeper(&t, current);
1756
1757 hrtimer_start_expires(&t.timer, mode);
1758 if (!hrtimer_active(&t.timer))
1759 t.task = NULL;
1760
1761 if (likely(t.task))
1762 schedule();
1763
1764 hrtimer_cancel(&t.timer);
1765 destroy_hrtimer_on_stack(&t.timer);
1766
1767 __set_current_state(TASK_RUNNING);
1768
1769 return !t.task ? 0 : -EINTR;
1770 }
1771
1772 /**
1773 * schedule_hrtimeout_range - sleep until timeout
1774 * @expires: timeout value (ktime_t)
1775 * @delta: slack in expires timeout (ktime_t)
1776 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1777 *
1778 * Make the current task sleep until the given expiry time has
1779 * elapsed. The routine will return immediately unless
1780 * the current task state has been set (see set_current_state()).
1781 *
1782 * The @delta argument gives the kernel the freedom to schedule the
1783 * actual wakeup to a time that is both power and performance friendly.
1784 * The kernel give the normal best effort behavior for "@expires+@delta",
1785 * but may decide to fire the timer earlier, but no earlier than @expires.
1786 *
1787 * You can set the task state as follows -
1788 *
1789 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1790 * pass before the routine returns.
1791 *
1792 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1793 * delivered to the current task.
1794 *
1795 * The current task state is guaranteed to be TASK_RUNNING when this
1796 * routine returns.
1797 *
1798 * Returns 0 when the timer has expired otherwise -EINTR
1799 */
1800 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1801 const enum hrtimer_mode mode)
1802 {
1803 return schedule_hrtimeout_range_clock(expires, delta, mode,
1804 CLOCK_MONOTONIC);
1805 }
1806 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1807
1808 /**
1809 * schedule_hrtimeout - sleep until timeout
1810 * @expires: timeout value (ktime_t)
1811 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1812 *
1813 * Make the current task sleep until the given expiry time has
1814 * elapsed. The routine will return immediately unless
1815 * the current task state has been set (see set_current_state()).
1816 *
1817 * You can set the task state as follows -
1818 *
1819 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820 * pass before the routine returns.
1821 *
1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1823 * delivered to the current task.
1824 *
1825 * The current task state is guaranteed to be TASK_RUNNING when this
1826 * routine returns.
1827 *
1828 * Returns 0 when the timer has expired otherwise -EINTR
1829 */
1830 int __sched schedule_hrtimeout(ktime_t *expires,
1831 const enum hrtimer_mode mode)
1832 {
1833 return schedule_hrtimeout_range(expires, 0, mode);
1834 }
1835 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.067286 seconds and 5 git commands to generate.