beab02d3ff1e5a3d8907d139e9a0a39624273ff5
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .clock_base =
71 {
72 {
73 .index = HRTIMER_BASE_MONOTONIC,
74 .clockid = CLOCK_MONOTONIC,
75 .get_time = &ktime_get,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 },
82 {
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
85 .get_time = &ktime_get_boottime,
86 },
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 },
92 }
93 };
94
95 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
97 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
98 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
99 [CLOCK_TAI] = HRTIMER_BASE_TAI,
100 };
101
102 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
103 {
104 return hrtimer_clock_to_base_table[clock_id];
105 }
106
107 /*
108 * Functions and macros which are different for UP/SMP systems are kept in a
109 * single place
110 */
111 #ifdef CONFIG_SMP
112
113 /*
114 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
115 * means that all timers which are tied to this base via timer->base are
116 * locked, and the base itself is locked too.
117 *
118 * So __run_timers/migrate_timers can safely modify all timers which could
119 * be found on the lists/queues.
120 *
121 * When the timer's base is locked, and the timer removed from list, it is
122 * possible to set timer->base = NULL and drop the lock: the timer remains
123 * locked.
124 */
125 static
126 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
127 unsigned long *flags)
128 {
129 struct hrtimer_clock_base *base;
130
131 for (;;) {
132 base = timer->base;
133 if (likely(base != NULL)) {
134 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 if (likely(base == timer->base))
136 return base;
137 /* The timer has migrated to another CPU: */
138 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 }
140 cpu_relax();
141 }
142 }
143
144 /*
145 * With HIGHRES=y we do not migrate the timer when it is expiring
146 * before the next event on the target cpu because we cannot reprogram
147 * the target cpu hardware and we would cause it to fire late.
148 *
149 * Called with cpu_base->lock of target cpu held.
150 */
151 static int
152 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
153 {
154 #ifdef CONFIG_HIGH_RES_TIMERS
155 ktime_t expires;
156
157 if (!new_base->cpu_base->hres_active)
158 return 0;
159
160 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
161 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
162 #else
163 return 0;
164 #endif
165 }
166
167 /*
168 * Switch the timer base to the current CPU when possible.
169 */
170 static inline struct hrtimer_clock_base *
171 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
172 int pinned)
173 {
174 struct hrtimer_clock_base *new_base;
175 struct hrtimer_cpu_base *new_cpu_base;
176 int this_cpu = smp_processor_id();
177 int cpu = get_nohz_timer_target(pinned);
178 int basenum = base->index;
179
180 again:
181 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182 new_base = &new_cpu_base->clock_base[basenum];
183
184 if (base != new_base) {
185 /*
186 * We are trying to move timer to new_base.
187 * However we can't change timer's base while it is running,
188 * so we keep it on the same CPU. No hassle vs. reprogramming
189 * the event source in the high resolution case. The softirq
190 * code will take care of this when the timer function has
191 * completed. There is no conflict as we hold the lock until
192 * the timer is enqueued.
193 */
194 if (unlikely(hrtimer_callback_running(timer)))
195 return base;
196
197 /* See the comment in lock_timer_base() */
198 timer->base = NULL;
199 raw_spin_unlock(&base->cpu_base->lock);
200 raw_spin_lock(&new_base->cpu_base->lock);
201
202 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
203 cpu = this_cpu;
204 raw_spin_unlock(&new_base->cpu_base->lock);
205 raw_spin_lock(&base->cpu_base->lock);
206 timer->base = base;
207 goto again;
208 }
209 timer->base = new_base;
210 } else {
211 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
212 cpu = this_cpu;
213 goto again;
214 }
215 }
216 return new_base;
217 }
218
219 #else /* CONFIG_SMP */
220
221 static inline struct hrtimer_clock_base *
222 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
223 {
224 struct hrtimer_clock_base *base = timer->base;
225
226 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227
228 return base;
229 }
230
231 # define switch_hrtimer_base(t, b, p) (b)
232
233 #endif /* !CONFIG_SMP */
234
235 /*
236 * Functions for the union type storage format of ktime_t which are
237 * too large for inlining:
238 */
239 #if BITS_PER_LONG < 64
240 /*
241 * Divide a ktime value by a nanosecond value
242 */
243 u64 __ktime_divns(const ktime_t kt, s64 div)
244 {
245 u64 dclc;
246 int sft = 0;
247
248 dclc = ktime_to_ns(kt);
249 /* Make sure the divisor is less than 2^32: */
250 while (div >> 32) {
251 sft++;
252 div >>= 1;
253 }
254 dclc >>= sft;
255 do_div(dclc, (unsigned long) div);
256
257 return dclc;
258 }
259 EXPORT_SYMBOL_GPL(__ktime_divns);
260 #endif /* BITS_PER_LONG >= 64 */
261
262 /*
263 * Add two ktime values and do a safety check for overflow:
264 */
265 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
266 {
267 ktime_t res = ktime_add(lhs, rhs);
268
269 /*
270 * We use KTIME_SEC_MAX here, the maximum timeout which we can
271 * return to user space in a timespec:
272 */
273 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
274 res = ktime_set(KTIME_SEC_MAX, 0);
275
276 return res;
277 }
278
279 EXPORT_SYMBOL_GPL(ktime_add_safe);
280
281 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
282
283 static struct debug_obj_descr hrtimer_debug_descr;
284
285 static void *hrtimer_debug_hint(void *addr)
286 {
287 return ((struct hrtimer *) addr)->function;
288 }
289
290 /*
291 * fixup_init is called when:
292 * - an active object is initialized
293 */
294 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
295 {
296 struct hrtimer *timer = addr;
297
298 switch (state) {
299 case ODEBUG_STATE_ACTIVE:
300 hrtimer_cancel(timer);
301 debug_object_init(timer, &hrtimer_debug_descr);
302 return 1;
303 default:
304 return 0;
305 }
306 }
307
308 /*
309 * fixup_activate is called when:
310 * - an active object is activated
311 * - an unknown object is activated (might be a statically initialized object)
312 */
313 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
314 {
315 switch (state) {
316
317 case ODEBUG_STATE_NOTAVAILABLE:
318 WARN_ON_ONCE(1);
319 return 0;
320
321 case ODEBUG_STATE_ACTIVE:
322 WARN_ON(1);
323
324 default:
325 return 0;
326 }
327 }
328
329 /*
330 * fixup_free is called when:
331 * - an active object is freed
332 */
333 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
334 {
335 struct hrtimer *timer = addr;
336
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 hrtimer_cancel(timer);
340 debug_object_free(timer, &hrtimer_debug_descr);
341 return 1;
342 default:
343 return 0;
344 }
345 }
346
347 static struct debug_obj_descr hrtimer_debug_descr = {
348 .name = "hrtimer",
349 .debug_hint = hrtimer_debug_hint,
350 .fixup_init = hrtimer_fixup_init,
351 .fixup_activate = hrtimer_fixup_activate,
352 .fixup_free = hrtimer_fixup_free,
353 };
354
355 static inline void debug_hrtimer_init(struct hrtimer *timer)
356 {
357 debug_object_init(timer, &hrtimer_debug_descr);
358 }
359
360 static inline void debug_hrtimer_activate(struct hrtimer *timer)
361 {
362 debug_object_activate(timer, &hrtimer_debug_descr);
363 }
364
365 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
366 {
367 debug_object_deactivate(timer, &hrtimer_debug_descr);
368 }
369
370 static inline void debug_hrtimer_free(struct hrtimer *timer)
371 {
372 debug_object_free(timer, &hrtimer_debug_descr);
373 }
374
375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
376 enum hrtimer_mode mode);
377
378 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
379 enum hrtimer_mode mode)
380 {
381 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
382 __hrtimer_init(timer, clock_id, mode);
383 }
384 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385
386 void destroy_hrtimer_on_stack(struct hrtimer *timer)
387 {
388 debug_object_free(timer, &hrtimer_debug_descr);
389 }
390
391 #else
392 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
393 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
394 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
395 #endif
396
397 static inline void
398 debug_init(struct hrtimer *timer, clockid_t clockid,
399 enum hrtimer_mode mode)
400 {
401 debug_hrtimer_init(timer);
402 trace_hrtimer_init(timer, clockid, mode);
403 }
404
405 static inline void debug_activate(struct hrtimer *timer)
406 {
407 debug_hrtimer_activate(timer);
408 trace_hrtimer_start(timer);
409 }
410
411 static inline void debug_deactivate(struct hrtimer *timer)
412 {
413 debug_hrtimer_deactivate(timer);
414 trace_hrtimer_cancel(timer);
415 }
416
417 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
419 struct hrtimer *timer)
420 {
421 #ifdef CONFIG_HIGH_RES_TIMERS
422 cpu_base->next_timer = timer;
423 #endif
424 }
425
426 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 {
428 struct hrtimer_clock_base *base = cpu_base->clock_base;
429 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430 unsigned int active = cpu_base->active_bases;
431
432 hrtimer_update_next_timer(cpu_base, NULL);
433 for (; active; base++, active >>= 1) {
434 struct timerqueue_node *next;
435 struct hrtimer *timer;
436
437 if (!(active & 0x01))
438 continue;
439
440 next = timerqueue_getnext(&base->active);
441 timer = container_of(next, struct hrtimer, node);
442 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443 if (expires.tv64 < expires_next.tv64) {
444 expires_next = expires;
445 hrtimer_update_next_timer(cpu_base, timer);
446 }
447 }
448 /*
449 * clock_was_set() might have changed base->offset of any of
450 * the clock bases so the result might be negative. Fix it up
451 * to prevent a false positive in clockevents_program_event().
452 */
453 if (expires_next.tv64 < 0)
454 expires_next.tv64 = 0;
455 return expires_next;
456 }
457 #endif
458
459 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
460 {
461 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
462 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
463 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
464
465 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
466 offs_real, offs_boot, offs_tai);
467 }
468
469 /* High resolution timer related functions */
470 #ifdef CONFIG_HIGH_RES_TIMERS
471
472 /*
473 * High resolution timer enabled ?
474 */
475 static int hrtimer_hres_enabled __read_mostly = 1;
476 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
477 EXPORT_SYMBOL_GPL(hrtimer_resolution);
478
479 /*
480 * Enable / Disable high resolution mode
481 */
482 static int __init setup_hrtimer_hres(char *str)
483 {
484 if (!strcmp(str, "off"))
485 hrtimer_hres_enabled = 0;
486 else if (!strcmp(str, "on"))
487 hrtimer_hres_enabled = 1;
488 else
489 return 0;
490 return 1;
491 }
492
493 __setup("highres=", setup_hrtimer_hres);
494
495 /*
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
497 */
498 static inline int hrtimer_is_hres_enabled(void)
499 {
500 return hrtimer_hres_enabled;
501 }
502
503 /*
504 * Is the high resolution mode active ?
505 */
506 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
507 {
508 return cpu_base->hres_active;
509 }
510
511 static inline int hrtimer_hres_active(void)
512 {
513 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 }
515
516 /*
517 * Reprogram the event source with checking both queues for the
518 * next event
519 * Called with interrupts disabled and base->lock held
520 */
521 static void
522 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523 {
524 ktime_t expires_next;
525
526 if (!cpu_base->hres_active)
527 return;
528
529 expires_next = __hrtimer_get_next_event(cpu_base);
530
531 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
532 return;
533
534 cpu_base->expires_next.tv64 = expires_next.tv64;
535
536 /*
537 * If a hang was detected in the last timer interrupt then we
538 * leave the hang delay active in the hardware. We want the
539 * system to make progress. That also prevents the following
540 * scenario:
541 * T1 expires 50ms from now
542 * T2 expires 5s from now
543 *
544 * T1 is removed, so this code is called and would reprogram
545 * the hardware to 5s from now. Any hrtimer_start after that
546 * will not reprogram the hardware due to hang_detected being
547 * set. So we'd effectivly block all timers until the T2 event
548 * fires.
549 */
550 if (cpu_base->hang_detected)
551 return;
552
553 if (cpu_base->expires_next.tv64 != KTIME_MAX)
554 tick_program_event(cpu_base->expires_next, 1);
555 }
556
557 /*
558 * When a timer is enqueued and expires earlier than the already enqueued
559 * timers, we have to check, whether it expires earlier than the timer for
560 * which the clock event device was armed.
561 *
562 * Called with interrupts disabled and base->cpu_base.lock held
563 */
564 static void hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
566 {
567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569
570 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
571
572 /*
573 * If the timer is not on the current cpu, we cannot reprogram
574 * the other cpus clock event device.
575 */
576 if (base->cpu_base != cpu_base)
577 return;
578
579 /*
580 * If the hrtimer interrupt is running, then it will
581 * reevaluate the clock bases and reprogram the clock event
582 * device. The callbacks are always executed in hard interrupt
583 * context so we don't need an extra check for a running
584 * callback.
585 */
586 if (cpu_base->in_hrtirq)
587 return;
588
589 /*
590 * CLOCK_REALTIME timer might be requested with an absolute
591 * expiry time which is less than base->offset. Set it to 0.
592 */
593 if (expires.tv64 < 0)
594 expires.tv64 = 0;
595
596 if (expires.tv64 >= cpu_base->expires_next.tv64)
597 return;
598
599 /* Update the pointer to the next expiring timer */
600 cpu_base->next_timer = timer;
601
602 /*
603 * If a hang was detected in the last timer interrupt then we
604 * do not schedule a timer which is earlier than the expiry
605 * which we enforced in the hang detection. We want the system
606 * to make progress.
607 */
608 if (cpu_base->hang_detected)
609 return;
610
611 /*
612 * Program the timer hardware. We enforce the expiry for
613 * events which are already in the past.
614 */
615 cpu_base->expires_next = expires;
616 tick_program_event(expires, 1);
617 }
618
619 /*
620 * Initialize the high resolution related parts of cpu_base
621 */
622 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
623 {
624 base->expires_next.tv64 = KTIME_MAX;
625 base->hres_active = 0;
626 }
627
628 /*
629 * Retrigger next event is called after clock was set
630 *
631 * Called with interrupts disabled via on_each_cpu()
632 */
633 static void retrigger_next_event(void *arg)
634 {
635 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
636
637 if (!base->hres_active)
638 return;
639
640 raw_spin_lock(&base->lock);
641 hrtimer_update_base(base);
642 hrtimer_force_reprogram(base, 0);
643 raw_spin_unlock(&base->lock);
644 }
645
646 /*
647 * Switch to high resolution mode
648 */
649 static int hrtimer_switch_to_hres(void)
650 {
651 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
652
653 if (tick_init_highres()) {
654 printk(KERN_WARNING "Could not switch to high resolution "
655 "mode on CPU %d\n", base->cpu);
656 return 0;
657 }
658 base->hres_active = 1;
659 hrtimer_resolution = HIGH_RES_NSEC;
660
661 tick_setup_sched_timer();
662 /* "Retrigger" the interrupt to get things going */
663 retrigger_next_event(NULL);
664 return 1;
665 }
666
667 static void clock_was_set_work(struct work_struct *work)
668 {
669 clock_was_set();
670 }
671
672 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
673
674 /*
675 * Called from timekeeping and resume code to reprogramm the hrtimer
676 * interrupt device on all cpus.
677 */
678 void clock_was_set_delayed(void)
679 {
680 schedule_work(&hrtimer_work);
681 }
682
683 #else
684
685 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
686 static inline int hrtimer_hres_active(void) { return 0; }
687 static inline int hrtimer_is_hres_enabled(void) { return 0; }
688 static inline int hrtimer_switch_to_hres(void) { return 0; }
689 static inline void
690 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
691 static inline int hrtimer_reprogram(struct hrtimer *timer,
692 struct hrtimer_clock_base *base)
693 {
694 return 0;
695 }
696 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
697 static inline void retrigger_next_event(void *arg) { }
698
699 #endif /* CONFIG_HIGH_RES_TIMERS */
700
701 /*
702 * Clock realtime was set
703 *
704 * Change the offset of the realtime clock vs. the monotonic
705 * clock.
706 *
707 * We might have to reprogram the high resolution timer interrupt. On
708 * SMP we call the architecture specific code to retrigger _all_ high
709 * resolution timer interrupts. On UP we just disable interrupts and
710 * call the high resolution interrupt code.
711 */
712 void clock_was_set(void)
713 {
714 #ifdef CONFIG_HIGH_RES_TIMERS
715 /* Retrigger the CPU local events everywhere */
716 on_each_cpu(retrigger_next_event, NULL, 1);
717 #endif
718 timerfd_clock_was_set();
719 }
720
721 /*
722 * During resume we might have to reprogram the high resolution timer
723 * interrupt on all online CPUs. However, all other CPUs will be
724 * stopped with IRQs interrupts disabled so the clock_was_set() call
725 * must be deferred.
726 */
727 void hrtimers_resume(void)
728 {
729 WARN_ONCE(!irqs_disabled(),
730 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
731
732 /* Retrigger on the local CPU */
733 retrigger_next_event(NULL);
734 /* And schedule a retrigger for all others */
735 clock_was_set_delayed();
736 }
737
738 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
739 {
740 #ifdef CONFIG_TIMER_STATS
741 if (timer->start_site)
742 return;
743 timer->start_site = __builtin_return_address(0);
744 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
745 timer->start_pid = current->pid;
746 #endif
747 }
748
749 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
750 {
751 #ifdef CONFIG_TIMER_STATS
752 timer->start_site = NULL;
753 #endif
754 }
755
756 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
757 {
758 #ifdef CONFIG_TIMER_STATS
759 if (likely(!timer_stats_active))
760 return;
761 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
762 timer->function, timer->start_comm, 0);
763 #endif
764 }
765
766 /*
767 * Counterpart to lock_hrtimer_base above:
768 */
769 static inline
770 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
771 {
772 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
773 }
774
775 /**
776 * hrtimer_forward - forward the timer expiry
777 * @timer: hrtimer to forward
778 * @now: forward past this time
779 * @interval: the interval to forward
780 *
781 * Forward the timer expiry so it will expire in the future.
782 * Returns the number of overruns.
783 *
784 * Can be safely called from the callback function of @timer. If
785 * called from other contexts @timer must neither be enqueued nor
786 * running the callback and the caller needs to take care of
787 * serialization.
788 *
789 * Note: This only updates the timer expiry value and does not requeue
790 * the timer.
791 */
792 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
793 {
794 u64 orun = 1;
795 ktime_t delta;
796
797 delta = ktime_sub(now, hrtimer_get_expires(timer));
798
799 if (delta.tv64 < 0)
800 return 0;
801
802 if (interval.tv64 < hrtimer_resolution)
803 interval.tv64 = hrtimer_resolution;
804
805 if (unlikely(delta.tv64 >= interval.tv64)) {
806 s64 incr = ktime_to_ns(interval);
807
808 orun = ktime_divns(delta, incr);
809 hrtimer_add_expires_ns(timer, incr * orun);
810 if (hrtimer_get_expires_tv64(timer) > now.tv64)
811 return orun;
812 /*
813 * This (and the ktime_add() below) is the
814 * correction for exact:
815 */
816 orun++;
817 }
818 hrtimer_add_expires(timer, interval);
819
820 return orun;
821 }
822 EXPORT_SYMBOL_GPL(hrtimer_forward);
823
824 /*
825 * enqueue_hrtimer - internal function to (re)start a timer
826 *
827 * The timer is inserted in expiry order. Insertion into the
828 * red black tree is O(log(n)). Must hold the base lock.
829 *
830 * Returns 1 when the new timer is the leftmost timer in the tree.
831 */
832 static int enqueue_hrtimer(struct hrtimer *timer,
833 struct hrtimer_clock_base *base)
834 {
835 debug_activate(timer);
836
837 base->cpu_base->active_bases |= 1 << base->index;
838
839 /*
840 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
841 * state of a possibly running callback.
842 */
843 timer->state |= HRTIMER_STATE_ENQUEUED;
844
845 return timerqueue_add(&base->active, &timer->node);
846 }
847
848 /*
849 * __remove_hrtimer - internal function to remove a timer
850 *
851 * Caller must hold the base lock.
852 *
853 * High resolution timer mode reprograms the clock event device when the
854 * timer is the one which expires next. The caller can disable this by setting
855 * reprogram to zero. This is useful, when the context does a reprogramming
856 * anyway (e.g. timer interrupt)
857 */
858 static void __remove_hrtimer(struct hrtimer *timer,
859 struct hrtimer_clock_base *base,
860 unsigned long newstate, int reprogram)
861 {
862 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863 unsigned int state = timer->state;
864
865 timer->state = newstate;
866 if (!(state & HRTIMER_STATE_ENQUEUED))
867 return;
868
869 if (!timerqueue_del(&base->active, &timer->node))
870 cpu_base->active_bases &= ~(1 << base->index);
871
872 #ifdef CONFIG_HIGH_RES_TIMERS
873 /*
874 * Note: If reprogram is false we do not update
875 * cpu_base->next_timer. This happens when we remove the first
876 * timer on a remote cpu. No harm as we never dereference
877 * cpu_base->next_timer. So the worst thing what can happen is
878 * an superflous call to hrtimer_force_reprogram() on the
879 * remote cpu later on if the same timer gets enqueued again.
880 */
881 if (reprogram && timer == cpu_base->next_timer)
882 hrtimer_force_reprogram(cpu_base, 1);
883 #endif
884 }
885
886 /*
887 * remove hrtimer, called with base lock held
888 */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891 {
892 if (hrtimer_is_queued(timer)) {
893 unsigned long state;
894 int reprogram;
895
896 /*
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
903 */
904 debug_deactivate(timer);
905 timer_stats_hrtimer_clear_start_info(timer);
906 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907 /*
908 * We must preserve the CALLBACK state flag here,
909 * otherwise we could move the timer base in
910 * switch_hrtimer_base.
911 */
912 state = timer->state & HRTIMER_STATE_CALLBACK;
913 __remove_hrtimer(timer, base, state, reprogram);
914 return 1;
915 }
916 return 0;
917 }
918
919 /**
920 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
921 * @timer: the timer to be added
922 * @tim: expiry time
923 * @delta_ns: "slack" range for the timer
924 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
925 * relative (HRTIMER_MODE_REL)
926 */
927 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
928 unsigned long delta_ns, const enum hrtimer_mode mode)
929 {
930 struct hrtimer_clock_base *base, *new_base;
931 unsigned long flags;
932 int leftmost;
933
934 base = lock_hrtimer_base(timer, &flags);
935
936 /* Remove an active timer from the queue: */
937 remove_hrtimer(timer, base);
938
939 if (mode & HRTIMER_MODE_REL) {
940 tim = ktime_add_safe(tim, base->get_time());
941 /*
942 * CONFIG_TIME_LOW_RES is a temporary way for architectures
943 * to signal that they simply return xtime in
944 * do_gettimeoffset(). In this case we want to round up by
945 * resolution when starting a relative timer, to avoid short
946 * timeouts. This will go away with the GTOD framework.
947 */
948 #ifdef CONFIG_TIME_LOW_RES
949 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
950 #endif
951 }
952
953 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
954
955 /* Switch the timer base, if necessary: */
956 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
957
958 timer_stats_hrtimer_set_start_info(timer);
959
960 leftmost = enqueue_hrtimer(timer, new_base);
961 if (!leftmost)
962 goto unlock;
963
964 if (!hrtimer_is_hres_active(timer)) {
965 /*
966 * Kick to reschedule the next tick to handle the new timer
967 * on dynticks target.
968 */
969 wake_up_nohz_cpu(new_base->cpu_base->cpu);
970 } else {
971 hrtimer_reprogram(timer, new_base);
972 }
973 unlock:
974 unlock_hrtimer_base(timer, &flags);
975 }
976 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
977
978 /**
979 * hrtimer_try_to_cancel - try to deactivate a timer
980 * @timer: hrtimer to stop
981 *
982 * Returns:
983 * 0 when the timer was not active
984 * 1 when the timer was active
985 * -1 when the timer is currently excuting the callback function and
986 * cannot be stopped
987 */
988 int hrtimer_try_to_cancel(struct hrtimer *timer)
989 {
990 struct hrtimer_clock_base *base;
991 unsigned long flags;
992 int ret = -1;
993
994 base = lock_hrtimer_base(timer, &flags);
995
996 if (!hrtimer_callback_running(timer))
997 ret = remove_hrtimer(timer, base);
998
999 unlock_hrtimer_base(timer, &flags);
1000
1001 return ret;
1002
1003 }
1004 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1005
1006 /**
1007 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1008 * @timer: the timer to be cancelled
1009 *
1010 * Returns:
1011 * 0 when the timer was not active
1012 * 1 when the timer was active
1013 */
1014 int hrtimer_cancel(struct hrtimer *timer)
1015 {
1016 for (;;) {
1017 int ret = hrtimer_try_to_cancel(timer);
1018
1019 if (ret >= 0)
1020 return ret;
1021 cpu_relax();
1022 }
1023 }
1024 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1025
1026 /**
1027 * hrtimer_get_remaining - get remaining time for the timer
1028 * @timer: the timer to read
1029 */
1030 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1031 {
1032 unsigned long flags;
1033 ktime_t rem;
1034
1035 lock_hrtimer_base(timer, &flags);
1036 rem = hrtimer_expires_remaining(timer);
1037 unlock_hrtimer_base(timer, &flags);
1038
1039 return rem;
1040 }
1041 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1042
1043 #ifdef CONFIG_NO_HZ_COMMON
1044 /**
1045 * hrtimer_get_next_event - get the time until next expiry event
1046 *
1047 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1048 */
1049 u64 hrtimer_get_next_event(void)
1050 {
1051 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1052 u64 expires = KTIME_MAX;
1053 unsigned long flags;
1054
1055 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1056
1057 if (!__hrtimer_hres_active(cpu_base))
1058 expires = __hrtimer_get_next_event(cpu_base).tv64;
1059
1060 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1061
1062 return expires;
1063 }
1064 #endif
1065
1066 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1067 enum hrtimer_mode mode)
1068 {
1069 struct hrtimer_cpu_base *cpu_base;
1070 int base;
1071
1072 memset(timer, 0, sizeof(struct hrtimer));
1073
1074 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1075
1076 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1077 clock_id = CLOCK_MONOTONIC;
1078
1079 base = hrtimer_clockid_to_base(clock_id);
1080 timer->base = &cpu_base->clock_base[base];
1081 timerqueue_init(&timer->node);
1082
1083 #ifdef CONFIG_TIMER_STATS
1084 timer->start_site = NULL;
1085 timer->start_pid = -1;
1086 memset(timer->start_comm, 0, TASK_COMM_LEN);
1087 #endif
1088 }
1089
1090 /**
1091 * hrtimer_init - initialize a timer to the given clock
1092 * @timer: the timer to be initialized
1093 * @clock_id: the clock to be used
1094 * @mode: timer mode abs/rel
1095 */
1096 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1097 enum hrtimer_mode mode)
1098 {
1099 debug_init(timer, clock_id, mode);
1100 __hrtimer_init(timer, clock_id, mode);
1101 }
1102 EXPORT_SYMBOL_GPL(hrtimer_init);
1103
1104 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1105 struct hrtimer_clock_base *base,
1106 struct hrtimer *timer, ktime_t *now)
1107 {
1108 enum hrtimer_restart (*fn)(struct hrtimer *);
1109 int restart;
1110
1111 WARN_ON(!irqs_disabled());
1112
1113 debug_deactivate(timer);
1114 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1115 timer_stats_account_hrtimer(timer);
1116 fn = timer->function;
1117
1118 /*
1119 * Because we run timers from hardirq context, there is no chance
1120 * they get migrated to another cpu, therefore its safe to unlock
1121 * the timer base.
1122 */
1123 raw_spin_unlock(&cpu_base->lock);
1124 trace_hrtimer_expire_entry(timer, now);
1125 restart = fn(timer);
1126 trace_hrtimer_expire_exit(timer);
1127 raw_spin_lock(&cpu_base->lock);
1128
1129 /*
1130 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1131 * we do not reprogramm the event hardware. Happens either in
1132 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1133 */
1134 if (restart != HRTIMER_NORESTART) {
1135 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1136 enqueue_hrtimer(timer, base);
1137 }
1138
1139 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1140
1141 timer->state &= ~HRTIMER_STATE_CALLBACK;
1142 }
1143
1144 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1145 {
1146 struct hrtimer_clock_base *base = cpu_base->clock_base;
1147 unsigned int active = cpu_base->active_bases;
1148
1149 for (; active; base++, active >>= 1) {
1150 struct timerqueue_node *node;
1151 ktime_t basenow;
1152
1153 if (!(active & 0x01))
1154 continue;
1155
1156 basenow = ktime_add(now, base->offset);
1157
1158 while ((node = timerqueue_getnext(&base->active))) {
1159 struct hrtimer *timer;
1160
1161 timer = container_of(node, struct hrtimer, node);
1162
1163 /*
1164 * The immediate goal for using the softexpires is
1165 * minimizing wakeups, not running timers at the
1166 * earliest interrupt after their soft expiration.
1167 * This allows us to avoid using a Priority Search
1168 * Tree, which can answer a stabbing querry for
1169 * overlapping intervals and instead use the simple
1170 * BST we already have.
1171 * We don't add extra wakeups by delaying timers that
1172 * are right-of a not yet expired timer, because that
1173 * timer will have to trigger a wakeup anyway.
1174 */
1175 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1176 break;
1177
1178 __run_hrtimer(cpu_base, base, timer, &basenow);
1179 }
1180 }
1181 }
1182
1183 #ifdef CONFIG_HIGH_RES_TIMERS
1184
1185 /*
1186 * High resolution timer interrupt
1187 * Called with interrupts disabled
1188 */
1189 void hrtimer_interrupt(struct clock_event_device *dev)
1190 {
1191 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1192 ktime_t expires_next, now, entry_time, delta;
1193 int retries = 0;
1194
1195 BUG_ON(!cpu_base->hres_active);
1196 cpu_base->nr_events++;
1197 dev->next_event.tv64 = KTIME_MAX;
1198
1199 raw_spin_lock(&cpu_base->lock);
1200 entry_time = now = hrtimer_update_base(cpu_base);
1201 retry:
1202 cpu_base->in_hrtirq = 1;
1203 /*
1204 * We set expires_next to KTIME_MAX here with cpu_base->lock
1205 * held to prevent that a timer is enqueued in our queue via
1206 * the migration code. This does not affect enqueueing of
1207 * timers which run their callback and need to be requeued on
1208 * this CPU.
1209 */
1210 cpu_base->expires_next.tv64 = KTIME_MAX;
1211
1212 __hrtimer_run_queues(cpu_base, now);
1213
1214 /* Reevaluate the clock bases for the next expiry */
1215 expires_next = __hrtimer_get_next_event(cpu_base);
1216 /*
1217 * Store the new expiry value so the migration code can verify
1218 * against it.
1219 */
1220 cpu_base->expires_next = expires_next;
1221 cpu_base->in_hrtirq = 0;
1222 raw_spin_unlock(&cpu_base->lock);
1223
1224 /* Reprogramming necessary ? */
1225 if (expires_next.tv64 == KTIME_MAX ||
1226 !tick_program_event(expires_next, 0)) {
1227 cpu_base->hang_detected = 0;
1228 return;
1229 }
1230
1231 /*
1232 * The next timer was already expired due to:
1233 * - tracing
1234 * - long lasting callbacks
1235 * - being scheduled away when running in a VM
1236 *
1237 * We need to prevent that we loop forever in the hrtimer
1238 * interrupt routine. We give it 3 attempts to avoid
1239 * overreacting on some spurious event.
1240 *
1241 * Acquire base lock for updating the offsets and retrieving
1242 * the current time.
1243 */
1244 raw_spin_lock(&cpu_base->lock);
1245 now = hrtimer_update_base(cpu_base);
1246 cpu_base->nr_retries++;
1247 if (++retries < 3)
1248 goto retry;
1249 /*
1250 * Give the system a chance to do something else than looping
1251 * here. We stored the entry time, so we know exactly how long
1252 * we spent here. We schedule the next event this amount of
1253 * time away.
1254 */
1255 cpu_base->nr_hangs++;
1256 cpu_base->hang_detected = 1;
1257 raw_spin_unlock(&cpu_base->lock);
1258 delta = ktime_sub(now, entry_time);
1259 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1260 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1261 /*
1262 * Limit it to a sensible value as we enforce a longer
1263 * delay. Give the CPU at least 100ms to catch up.
1264 */
1265 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1266 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1267 else
1268 expires_next = ktime_add(now, delta);
1269 tick_program_event(expires_next, 1);
1270 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1271 ktime_to_ns(delta));
1272 }
1273
1274 /*
1275 * local version of hrtimer_peek_ahead_timers() called with interrupts
1276 * disabled.
1277 */
1278 static inline void __hrtimer_peek_ahead_timers(void)
1279 {
1280 struct tick_device *td;
1281
1282 if (!hrtimer_hres_active())
1283 return;
1284
1285 td = this_cpu_ptr(&tick_cpu_device);
1286 if (td && td->evtdev)
1287 hrtimer_interrupt(td->evtdev);
1288 }
1289
1290 #else /* CONFIG_HIGH_RES_TIMERS */
1291
1292 static inline void __hrtimer_peek_ahead_timers(void) { }
1293
1294 #endif /* !CONFIG_HIGH_RES_TIMERS */
1295
1296 /*
1297 * Called from run_local_timers in hardirq context every jiffy
1298 */
1299 void hrtimer_run_queues(void)
1300 {
1301 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1302 ktime_t now;
1303
1304 if (__hrtimer_hres_active(cpu_base))
1305 return;
1306
1307 /*
1308 * This _is_ ugly: We have to check periodically, whether we
1309 * can switch to highres and / or nohz mode. The clocksource
1310 * switch happens with xtime_lock held. Notification from
1311 * there only sets the check bit in the tick_oneshot code,
1312 * otherwise we might deadlock vs. xtime_lock.
1313 */
1314 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1315 hrtimer_switch_to_hres();
1316 return;
1317 }
1318
1319 raw_spin_lock(&cpu_base->lock);
1320 now = hrtimer_update_base(cpu_base);
1321 __hrtimer_run_queues(cpu_base, now);
1322 raw_spin_unlock(&cpu_base->lock);
1323 }
1324
1325 /*
1326 * Sleep related functions:
1327 */
1328 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1329 {
1330 struct hrtimer_sleeper *t =
1331 container_of(timer, struct hrtimer_sleeper, timer);
1332 struct task_struct *task = t->task;
1333
1334 t->task = NULL;
1335 if (task)
1336 wake_up_process(task);
1337
1338 return HRTIMER_NORESTART;
1339 }
1340
1341 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1342 {
1343 sl->timer.function = hrtimer_wakeup;
1344 sl->task = task;
1345 }
1346 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1347
1348 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1349 {
1350 hrtimer_init_sleeper(t, current);
1351
1352 do {
1353 set_current_state(TASK_INTERRUPTIBLE);
1354 hrtimer_start_expires(&t->timer, mode);
1355
1356 if (likely(t->task))
1357 freezable_schedule();
1358
1359 hrtimer_cancel(&t->timer);
1360 mode = HRTIMER_MODE_ABS;
1361
1362 } while (t->task && !signal_pending(current));
1363
1364 __set_current_state(TASK_RUNNING);
1365
1366 return t->task == NULL;
1367 }
1368
1369 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1370 {
1371 struct timespec rmt;
1372 ktime_t rem;
1373
1374 rem = hrtimer_expires_remaining(timer);
1375 if (rem.tv64 <= 0)
1376 return 0;
1377 rmt = ktime_to_timespec(rem);
1378
1379 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1380 return -EFAULT;
1381
1382 return 1;
1383 }
1384
1385 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1386 {
1387 struct hrtimer_sleeper t;
1388 struct timespec __user *rmtp;
1389 int ret = 0;
1390
1391 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1392 HRTIMER_MODE_ABS);
1393 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1394
1395 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1396 goto out;
1397
1398 rmtp = restart->nanosleep.rmtp;
1399 if (rmtp) {
1400 ret = update_rmtp(&t.timer, rmtp);
1401 if (ret <= 0)
1402 goto out;
1403 }
1404
1405 /* The other values in restart are already filled in */
1406 ret = -ERESTART_RESTARTBLOCK;
1407 out:
1408 destroy_hrtimer_on_stack(&t.timer);
1409 return ret;
1410 }
1411
1412 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1413 const enum hrtimer_mode mode, const clockid_t clockid)
1414 {
1415 struct restart_block *restart;
1416 struct hrtimer_sleeper t;
1417 int ret = 0;
1418 unsigned long slack;
1419
1420 slack = current->timer_slack_ns;
1421 if (dl_task(current) || rt_task(current))
1422 slack = 0;
1423
1424 hrtimer_init_on_stack(&t.timer, clockid, mode);
1425 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1426 if (do_nanosleep(&t, mode))
1427 goto out;
1428
1429 /* Absolute timers do not update the rmtp value and restart: */
1430 if (mode == HRTIMER_MODE_ABS) {
1431 ret = -ERESTARTNOHAND;
1432 goto out;
1433 }
1434
1435 if (rmtp) {
1436 ret = update_rmtp(&t.timer, rmtp);
1437 if (ret <= 0)
1438 goto out;
1439 }
1440
1441 restart = &current->restart_block;
1442 restart->fn = hrtimer_nanosleep_restart;
1443 restart->nanosleep.clockid = t.timer.base->clockid;
1444 restart->nanosleep.rmtp = rmtp;
1445 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1446
1447 ret = -ERESTART_RESTARTBLOCK;
1448 out:
1449 destroy_hrtimer_on_stack(&t.timer);
1450 return ret;
1451 }
1452
1453 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1454 struct timespec __user *, rmtp)
1455 {
1456 struct timespec tu;
1457
1458 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1459 return -EFAULT;
1460
1461 if (!timespec_valid(&tu))
1462 return -EINVAL;
1463
1464 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1465 }
1466
1467 /*
1468 * Functions related to boot-time initialization:
1469 */
1470 static void init_hrtimers_cpu(int cpu)
1471 {
1472 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1473 int i;
1474
1475 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1476 cpu_base->clock_base[i].cpu_base = cpu_base;
1477 timerqueue_init_head(&cpu_base->clock_base[i].active);
1478 }
1479
1480 cpu_base->cpu = cpu;
1481 hrtimer_init_hres(cpu_base);
1482 }
1483
1484 #ifdef CONFIG_HOTPLUG_CPU
1485
1486 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1487 struct hrtimer_clock_base *new_base)
1488 {
1489 struct hrtimer *timer;
1490 struct timerqueue_node *node;
1491
1492 while ((node = timerqueue_getnext(&old_base->active))) {
1493 timer = container_of(node, struct hrtimer, node);
1494 BUG_ON(hrtimer_callback_running(timer));
1495 debug_deactivate(timer);
1496
1497 /*
1498 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1499 * timer could be seen as !active and just vanish away
1500 * under us on another CPU
1501 */
1502 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1503 timer->base = new_base;
1504 /*
1505 * Enqueue the timers on the new cpu. This does not
1506 * reprogram the event device in case the timer
1507 * expires before the earliest on this CPU, but we run
1508 * hrtimer_interrupt after we migrated everything to
1509 * sort out already expired timers and reprogram the
1510 * event device.
1511 */
1512 enqueue_hrtimer(timer, new_base);
1513
1514 /* Clear the migration state bit */
1515 timer->state &= ~HRTIMER_STATE_MIGRATE;
1516 }
1517 }
1518
1519 static void migrate_hrtimers(int scpu)
1520 {
1521 struct hrtimer_cpu_base *old_base, *new_base;
1522 int i;
1523
1524 BUG_ON(cpu_online(scpu));
1525 tick_cancel_sched_timer(scpu);
1526
1527 local_irq_disable();
1528 old_base = &per_cpu(hrtimer_bases, scpu);
1529 new_base = this_cpu_ptr(&hrtimer_bases);
1530 /*
1531 * The caller is globally serialized and nobody else
1532 * takes two locks at once, deadlock is not possible.
1533 */
1534 raw_spin_lock(&new_base->lock);
1535 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1536
1537 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1538 migrate_hrtimer_list(&old_base->clock_base[i],
1539 &new_base->clock_base[i]);
1540 }
1541
1542 raw_spin_unlock(&old_base->lock);
1543 raw_spin_unlock(&new_base->lock);
1544
1545 /* Check, if we got expired work to do */
1546 __hrtimer_peek_ahead_timers();
1547 local_irq_enable();
1548 }
1549
1550 #endif /* CONFIG_HOTPLUG_CPU */
1551
1552 static int hrtimer_cpu_notify(struct notifier_block *self,
1553 unsigned long action, void *hcpu)
1554 {
1555 int scpu = (long)hcpu;
1556
1557 switch (action) {
1558
1559 case CPU_UP_PREPARE:
1560 case CPU_UP_PREPARE_FROZEN:
1561 init_hrtimers_cpu(scpu);
1562 break;
1563
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 case CPU_DEAD:
1566 case CPU_DEAD_FROZEN:
1567 migrate_hrtimers(scpu);
1568 break;
1569 #endif
1570
1571 default:
1572 break;
1573 }
1574
1575 return NOTIFY_OK;
1576 }
1577
1578 static struct notifier_block hrtimers_nb = {
1579 .notifier_call = hrtimer_cpu_notify,
1580 };
1581
1582 void __init hrtimers_init(void)
1583 {
1584 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1585 (void *)(long)smp_processor_id());
1586 register_cpu_notifier(&hrtimers_nb);
1587 }
1588
1589 /**
1590 * schedule_hrtimeout_range_clock - sleep until timeout
1591 * @expires: timeout value (ktime_t)
1592 * @delta: slack in expires timeout (ktime_t)
1593 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1594 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1595 */
1596 int __sched
1597 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1598 const enum hrtimer_mode mode, int clock)
1599 {
1600 struct hrtimer_sleeper t;
1601
1602 /*
1603 * Optimize when a zero timeout value is given. It does not
1604 * matter whether this is an absolute or a relative time.
1605 */
1606 if (expires && !expires->tv64) {
1607 __set_current_state(TASK_RUNNING);
1608 return 0;
1609 }
1610
1611 /*
1612 * A NULL parameter means "infinite"
1613 */
1614 if (!expires) {
1615 schedule();
1616 return -EINTR;
1617 }
1618
1619 hrtimer_init_on_stack(&t.timer, clock, mode);
1620 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1621
1622 hrtimer_init_sleeper(&t, current);
1623
1624 hrtimer_start_expires(&t.timer, mode);
1625
1626 if (likely(t.task))
1627 schedule();
1628
1629 hrtimer_cancel(&t.timer);
1630 destroy_hrtimer_on_stack(&t.timer);
1631
1632 __set_current_state(TASK_RUNNING);
1633
1634 return !t.task ? 0 : -EINTR;
1635 }
1636
1637 /**
1638 * schedule_hrtimeout_range - sleep until timeout
1639 * @expires: timeout value (ktime_t)
1640 * @delta: slack in expires timeout (ktime_t)
1641 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1642 *
1643 * Make the current task sleep until the given expiry time has
1644 * elapsed. The routine will return immediately unless
1645 * the current task state has been set (see set_current_state()).
1646 *
1647 * The @delta argument gives the kernel the freedom to schedule the
1648 * actual wakeup to a time that is both power and performance friendly.
1649 * The kernel give the normal best effort behavior for "@expires+@delta",
1650 * but may decide to fire the timer earlier, but no earlier than @expires.
1651 *
1652 * You can set the task state as follows -
1653 *
1654 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1655 * pass before the routine returns.
1656 *
1657 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1658 * delivered to the current task.
1659 *
1660 * The current task state is guaranteed to be TASK_RUNNING when this
1661 * routine returns.
1662 *
1663 * Returns 0 when the timer has expired otherwise -EINTR
1664 */
1665 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1666 const enum hrtimer_mode mode)
1667 {
1668 return schedule_hrtimeout_range_clock(expires, delta, mode,
1669 CLOCK_MONOTONIC);
1670 }
1671 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1672
1673 /**
1674 * schedule_hrtimeout - sleep until timeout
1675 * @expires: timeout value (ktime_t)
1676 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1677 *
1678 * Make the current task sleep until the given expiry time has
1679 * elapsed. The routine will return immediately unless
1680 * the current task state has been set (see set_current_state()).
1681 *
1682 * You can set the task state as follows -
1683 *
1684 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1685 * pass before the routine returns.
1686 *
1687 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1688 * delivered to the current task.
1689 *
1690 * The current task state is guaranteed to be TASK_RUNNING when this
1691 * routine returns.
1692 *
1693 * Returns 0 when the timer has expired otherwise -EINTR
1694 */
1695 int __sched schedule_hrtimeout(ktime_t *expires,
1696 const enum hrtimer_mode mode)
1697 {
1698 return schedule_hrtimeout_range(expires, 0, mode);
1699 }
1700 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.061531 seconds and 4 git commands to generate.