hrtimer: Drop return code of hrtimer_switch_to_hres()
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108 /*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112 #ifdef CONFIG_SMP
113
114 /*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123
124 #define migration_base migration_cpu_base.clock_base[0]
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
178 }
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184 {
185 if (pinned || !base->migration_enabled)
186 return this_cpu_ptr(&hrtimer_bases);
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193 {
194 return this_cpu_ptr(&hrtimer_bases);
195 }
196 #endif
197
198 /*
199 * Switch the timer base to the current CPU when possible.
200 */
201 static inline struct hrtimer_clock_base *
202 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
203 int pinned)
204 {
205 struct hrtimer_cpu_base *new_cpu_base, *this_base;
206 struct hrtimer_clock_base *new_base;
207 int basenum = base->index;
208
209 this_base = this_cpu_ptr(&hrtimer_bases);
210 new_cpu_base = get_target_base(this_base, pinned);
211 again:
212 new_base = &new_cpu_base->clock_base[basenum];
213
214 if (base != new_base) {
215 /*
216 * We are trying to move timer to new_base.
217 * However we can't change timer's base while it is running,
218 * so we keep it on the same CPU. No hassle vs. reprogramming
219 * the event source in the high resolution case. The softirq
220 * code will take care of this when the timer function has
221 * completed. There is no conflict as we hold the lock until
222 * the timer is enqueued.
223 */
224 if (unlikely(hrtimer_callback_running(timer)))
225 return base;
226
227 /* See the comment in lock_hrtimer_base() */
228 timer->base = &migration_base;
229 raw_spin_unlock(&base->cpu_base->lock);
230 raw_spin_lock(&new_base->cpu_base->lock);
231
232 if (new_cpu_base != this_base &&
233 hrtimer_check_target(timer, new_base)) {
234 raw_spin_unlock(&new_base->cpu_base->lock);
235 raw_spin_lock(&base->cpu_base->lock);
236 new_cpu_base = this_base;
237 timer->base = base;
238 goto again;
239 }
240 timer->base = new_base;
241 } else {
242 if (new_cpu_base != this_base &&
243 hrtimer_check_target(timer, new_base)) {
244 new_cpu_base = this_base;
245 goto again;
246 }
247 }
248 return new_base;
249 }
250
251 #else /* CONFIG_SMP */
252
253 static inline struct hrtimer_clock_base *
254 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
255 {
256 struct hrtimer_clock_base *base = timer->base;
257
258 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
259
260 return base;
261 }
262
263 # define switch_hrtimer_base(t, b, p) (b)
264
265 #endif /* !CONFIG_SMP */
266
267 /*
268 * Functions for the union type storage format of ktime_t which are
269 * too large for inlining:
270 */
271 #if BITS_PER_LONG < 64
272 /*
273 * Divide a ktime value by a nanosecond value
274 */
275 s64 __ktime_divns(const ktime_t kt, s64 div)
276 {
277 int sft = 0;
278 s64 dclc;
279 u64 tmp;
280
281 dclc = ktime_to_ns(kt);
282 tmp = dclc < 0 ? -dclc : dclc;
283
284 /* Make sure the divisor is less than 2^32: */
285 while (div >> 32) {
286 sft++;
287 div >>= 1;
288 }
289 tmp >>= sft;
290 do_div(tmp, (unsigned long) div);
291 return dclc < 0 ? -tmp : tmp;
292 }
293 EXPORT_SYMBOL_GPL(__ktime_divns);
294 #endif /* BITS_PER_LONG >= 64 */
295
296 /*
297 * Add two ktime values and do a safety check for overflow:
298 */
299 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
300 {
301 ktime_t res = ktime_add(lhs, rhs);
302
303 /*
304 * We use KTIME_SEC_MAX here, the maximum timeout which we can
305 * return to user space in a timespec:
306 */
307 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
308 res = ktime_set(KTIME_SEC_MAX, 0);
309
310 return res;
311 }
312
313 EXPORT_SYMBOL_GPL(ktime_add_safe);
314
315 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
316
317 static struct debug_obj_descr hrtimer_debug_descr;
318
319 static void *hrtimer_debug_hint(void *addr)
320 {
321 return ((struct hrtimer *) addr)->function;
322 }
323
324 /*
325 * fixup_init is called when:
326 * - an active object is initialized
327 */
328 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
329 {
330 struct hrtimer *timer = addr;
331
332 switch (state) {
333 case ODEBUG_STATE_ACTIVE:
334 hrtimer_cancel(timer);
335 debug_object_init(timer, &hrtimer_debug_descr);
336 return 1;
337 default:
338 return 0;
339 }
340 }
341
342 /*
343 * fixup_activate is called when:
344 * - an active object is activated
345 * - an unknown object is activated (might be a statically initialized object)
346 */
347 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
348 {
349 switch (state) {
350
351 case ODEBUG_STATE_NOTAVAILABLE:
352 WARN_ON_ONCE(1);
353 return 0;
354
355 case ODEBUG_STATE_ACTIVE:
356 WARN_ON(1);
357
358 default:
359 return 0;
360 }
361 }
362
363 /*
364 * fixup_free is called when:
365 * - an active object is freed
366 */
367 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
368 {
369 struct hrtimer *timer = addr;
370
371 switch (state) {
372 case ODEBUG_STATE_ACTIVE:
373 hrtimer_cancel(timer);
374 debug_object_free(timer, &hrtimer_debug_descr);
375 return 1;
376 default:
377 return 0;
378 }
379 }
380
381 static struct debug_obj_descr hrtimer_debug_descr = {
382 .name = "hrtimer",
383 .debug_hint = hrtimer_debug_hint,
384 .fixup_init = hrtimer_fixup_init,
385 .fixup_activate = hrtimer_fixup_activate,
386 .fixup_free = hrtimer_fixup_free,
387 };
388
389 static inline void debug_hrtimer_init(struct hrtimer *timer)
390 {
391 debug_object_init(timer, &hrtimer_debug_descr);
392 }
393
394 static inline void debug_hrtimer_activate(struct hrtimer *timer)
395 {
396 debug_object_activate(timer, &hrtimer_debug_descr);
397 }
398
399 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
400 {
401 debug_object_deactivate(timer, &hrtimer_debug_descr);
402 }
403
404 static inline void debug_hrtimer_free(struct hrtimer *timer)
405 {
406 debug_object_free(timer, &hrtimer_debug_descr);
407 }
408
409 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
410 enum hrtimer_mode mode);
411
412 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
413 enum hrtimer_mode mode)
414 {
415 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
416 __hrtimer_init(timer, clock_id, mode);
417 }
418 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
419
420 void destroy_hrtimer_on_stack(struct hrtimer *timer)
421 {
422 debug_object_free(timer, &hrtimer_debug_descr);
423 }
424
425 #else
426 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
427 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
428 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
429 #endif
430
431 static inline void
432 debug_init(struct hrtimer *timer, clockid_t clockid,
433 enum hrtimer_mode mode)
434 {
435 debug_hrtimer_init(timer);
436 trace_hrtimer_init(timer, clockid, mode);
437 }
438
439 static inline void debug_activate(struct hrtimer *timer)
440 {
441 debug_hrtimer_activate(timer);
442 trace_hrtimer_start(timer);
443 }
444
445 static inline void debug_deactivate(struct hrtimer *timer)
446 {
447 debug_hrtimer_deactivate(timer);
448 trace_hrtimer_cancel(timer);
449 }
450
451 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
453 struct hrtimer *timer)
454 {
455 #ifdef CONFIG_HIGH_RES_TIMERS
456 cpu_base->next_timer = timer;
457 #endif
458 }
459
460 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
461 {
462 struct hrtimer_clock_base *base = cpu_base->clock_base;
463 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
464 unsigned int active = cpu_base->active_bases;
465
466 hrtimer_update_next_timer(cpu_base, NULL);
467 for (; active; base++, active >>= 1) {
468 struct timerqueue_node *next;
469 struct hrtimer *timer;
470
471 if (!(active & 0x01))
472 continue;
473
474 next = timerqueue_getnext(&base->active);
475 timer = container_of(next, struct hrtimer, node);
476 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
477 if (expires.tv64 < expires_next.tv64) {
478 expires_next = expires;
479 hrtimer_update_next_timer(cpu_base, timer);
480 }
481 }
482 /*
483 * clock_was_set() might have changed base->offset of any of
484 * the clock bases so the result might be negative. Fix it up
485 * to prevent a false positive in clockevents_program_event().
486 */
487 if (expires_next.tv64 < 0)
488 expires_next.tv64 = 0;
489 return expires_next;
490 }
491 #endif
492
493 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
494 {
495 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
496 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
497 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
498
499 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
500 offs_real, offs_boot, offs_tai);
501 }
502
503 /* High resolution timer related functions */
504 #ifdef CONFIG_HIGH_RES_TIMERS
505
506 /*
507 * High resolution timer enabled ?
508 */
509 static int hrtimer_hres_enabled __read_mostly = 1;
510 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
511 EXPORT_SYMBOL_GPL(hrtimer_resolution);
512
513 /*
514 * Enable / Disable high resolution mode
515 */
516 static int __init setup_hrtimer_hres(char *str)
517 {
518 if (!strcmp(str, "off"))
519 hrtimer_hres_enabled = 0;
520 else if (!strcmp(str, "on"))
521 hrtimer_hres_enabled = 1;
522 else
523 return 0;
524 return 1;
525 }
526
527 __setup("highres=", setup_hrtimer_hres);
528
529 /*
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 return hrtimer_hres_enabled;
535 }
536
537 /*
538 * Is the high resolution mode active ?
539 */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 return cpu_base->hres_active;
543 }
544
545 static inline int hrtimer_hres_active(void)
546 {
547 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549
550 /*
551 * Reprogram the event source with checking both queues for the
552 * next event
553 * Called with interrupts disabled and base->lock held
554 */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 ktime_t expires_next;
559
560 if (!cpu_base->hres_active)
561 return;
562
563 expires_next = __hrtimer_get_next_event(cpu_base);
564
565 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
566 return;
567
568 cpu_base->expires_next.tv64 = expires_next.tv64;
569
570 /*
571 * If a hang was detected in the last timer interrupt then we
572 * leave the hang delay active in the hardware. We want the
573 * system to make progress. That also prevents the following
574 * scenario:
575 * T1 expires 50ms from now
576 * T2 expires 5s from now
577 *
578 * T1 is removed, so this code is called and would reprogram
579 * the hardware to 5s from now. Any hrtimer_start after that
580 * will not reprogram the hardware due to hang_detected being
581 * set. So we'd effectivly block all timers until the T2 event
582 * fires.
583 */
584 if (cpu_base->hang_detected)
585 return;
586
587 tick_program_event(cpu_base->expires_next, 1);
588 }
589
590 /*
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
594 *
595 * Called with interrupts disabled and base->cpu_base.lock held
596 */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 struct hrtimer_clock_base *base)
599 {
600 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604
605 /*
606 * If the timer is not on the current cpu, we cannot reprogram
607 * the other cpus clock event device.
608 */
609 if (base->cpu_base != cpu_base)
610 return;
611
612 /*
613 * If the hrtimer interrupt is running, then it will
614 * reevaluate the clock bases and reprogram the clock event
615 * device. The callbacks are always executed in hard interrupt
616 * context so we don't need an extra check for a running
617 * callback.
618 */
619 if (cpu_base->in_hrtirq)
620 return;
621
622 /*
623 * CLOCK_REALTIME timer might be requested with an absolute
624 * expiry time which is less than base->offset. Set it to 0.
625 */
626 if (expires.tv64 < 0)
627 expires.tv64 = 0;
628
629 if (expires.tv64 >= cpu_base->expires_next.tv64)
630 return;
631
632 /* Update the pointer to the next expiring timer */
633 cpu_base->next_timer = timer;
634
635 /*
636 * If a hang was detected in the last timer interrupt then we
637 * do not schedule a timer which is earlier than the expiry
638 * which we enforced in the hang detection. We want the system
639 * to make progress.
640 */
641 if (cpu_base->hang_detected)
642 return;
643
644 /*
645 * Program the timer hardware. We enforce the expiry for
646 * events which are already in the past.
647 */
648 cpu_base->expires_next = expires;
649 tick_program_event(expires, 1);
650 }
651
652 /*
653 * Initialize the high resolution related parts of cpu_base
654 */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 base->expires_next.tv64 = KTIME_MAX;
658 base->hres_active = 0;
659 }
660
661 /*
662 * Retrigger next event is called after clock was set
663 *
664 * Called with interrupts disabled via on_each_cpu()
665 */
666 static void retrigger_next_event(void *arg)
667 {
668 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669
670 if (!base->hres_active)
671 return;
672
673 raw_spin_lock(&base->lock);
674 hrtimer_update_base(base);
675 hrtimer_force_reprogram(base, 0);
676 raw_spin_unlock(&base->lock);
677 }
678
679 /*
680 * Switch to high resolution mode
681 */
682 static void hrtimer_switch_to_hres(void)
683 {
684 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685
686 if (tick_init_highres()) {
687 printk(KERN_WARNING "Could not switch to high resolution "
688 "mode on CPU %d\n", base->cpu);
689 }
690 base->hres_active = 1;
691 hrtimer_resolution = HIGH_RES_NSEC;
692
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
696 }
697
698 static void clock_was_set_work(struct work_struct *work)
699 {
700 clock_was_set();
701 }
702
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
705 /*
706 * Called from timekeeping and resume code to reprogramm the hrtimer
707 * interrupt device on all cpus.
708 */
709 void clock_was_set_delayed(void)
710 {
711 schedule_work(&hrtimer_work);
712 }
713
714 #else
715
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
724 {
725 return 0;
726 }
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
729
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731
732 /*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 timerfd_clock_was_set();
750 }
751
752 /*
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
756 * must be deferred.
757 */
758 void hrtimers_resume(void)
759 {
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
767 }
768
769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770 {
771 #ifdef CONFIG_TIMER_STATS
772 if (timer->start_site)
773 return;
774 timer->start_site = __builtin_return_address(0);
775 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 timer->start_pid = current->pid;
777 #endif
778 }
779
780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781 {
782 #ifdef CONFIG_TIMER_STATS
783 timer->start_site = NULL;
784 #endif
785 }
786
787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 if (likely(!timer_stats_active))
791 return;
792 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 timer->function, timer->start_comm, 0);
794 #endif
795 }
796
797 /*
798 * Counterpart to lock_hrtimer_base above:
799 */
800 static inline
801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802 {
803 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 }
805
806 /**
807 * hrtimer_forward - forward the timer expiry
808 * @timer: hrtimer to forward
809 * @now: forward past this time
810 * @interval: the interval to forward
811 *
812 * Forward the timer expiry so it will expire in the future.
813 * Returns the number of overruns.
814 *
815 * Can be safely called from the callback function of @timer. If
816 * called from other contexts @timer must neither be enqueued nor
817 * running the callback and the caller needs to take care of
818 * serialization.
819 *
820 * Note: This only updates the timer expiry value and does not requeue
821 * the timer.
822 */
823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824 {
825 u64 orun = 1;
826 ktime_t delta;
827
828 delta = ktime_sub(now, hrtimer_get_expires(timer));
829
830 if (delta.tv64 < 0)
831 return 0;
832
833 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 return 0;
835
836 if (interval.tv64 < hrtimer_resolution)
837 interval.tv64 = hrtimer_resolution;
838
839 if (unlikely(delta.tv64 >= interval.tv64)) {
840 s64 incr = ktime_to_ns(interval);
841
842 orun = ktime_divns(delta, incr);
843 hrtimer_add_expires_ns(timer, incr * orun);
844 if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 return orun;
846 /*
847 * This (and the ktime_add() below) is the
848 * correction for exact:
849 */
850 orun++;
851 }
852 hrtimer_add_expires(timer, interval);
853
854 return orun;
855 }
856 EXPORT_SYMBOL_GPL(hrtimer_forward);
857
858 /*
859 * enqueue_hrtimer - internal function to (re)start a timer
860 *
861 * The timer is inserted in expiry order. Insertion into the
862 * red black tree is O(log(n)). Must hold the base lock.
863 *
864 * Returns 1 when the new timer is the leftmost timer in the tree.
865 */
866 static int enqueue_hrtimer(struct hrtimer *timer,
867 struct hrtimer_clock_base *base)
868 {
869 debug_activate(timer);
870
871 base->cpu_base->active_bases |= 1 << base->index;
872
873 timer->state = HRTIMER_STATE_ENQUEUED;
874
875 return timerqueue_add(&base->active, &timer->node);
876 }
877
878 /*
879 * __remove_hrtimer - internal function to remove a timer
880 *
881 * Caller must hold the base lock.
882 *
883 * High resolution timer mode reprograms the clock event device when the
884 * timer is the one which expires next. The caller can disable this by setting
885 * reprogram to zero. This is useful, when the context does a reprogramming
886 * anyway (e.g. timer interrupt)
887 */
888 static void __remove_hrtimer(struct hrtimer *timer,
889 struct hrtimer_clock_base *base,
890 unsigned long newstate, int reprogram)
891 {
892 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893 unsigned int state = timer->state;
894
895 timer->state = newstate;
896 if (!(state & HRTIMER_STATE_ENQUEUED))
897 return;
898
899 if (!timerqueue_del(&base->active, &timer->node))
900 cpu_base->active_bases &= ~(1 << base->index);
901
902 #ifdef CONFIG_HIGH_RES_TIMERS
903 /*
904 * Note: If reprogram is false we do not update
905 * cpu_base->next_timer. This happens when we remove the first
906 * timer on a remote cpu. No harm as we never dereference
907 * cpu_base->next_timer. So the worst thing what can happen is
908 * an superflous call to hrtimer_force_reprogram() on the
909 * remote cpu later on if the same timer gets enqueued again.
910 */
911 if (reprogram && timer == cpu_base->next_timer)
912 hrtimer_force_reprogram(cpu_base, 1);
913 #endif
914 }
915
916 /*
917 * remove hrtimer, called with base lock held
918 */
919 static inline int
920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921 {
922 if (hrtimer_is_queued(timer)) {
923 unsigned long state = timer->state;
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
934 debug_deactivate(timer);
935 timer_stats_hrtimer_clear_start_info(timer);
936 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937
938 if (!restart)
939 state = HRTIMER_STATE_INACTIVE;
940
941 __remove_hrtimer(timer, base, state, reprogram);
942 return 1;
943 }
944 return 0;
945 }
946
947 /**
948 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
949 * @timer: the timer to be added
950 * @tim: expiry time
951 * @delta_ns: "slack" range for the timer
952 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
953 * relative (HRTIMER_MODE_REL)
954 */
955 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
956 unsigned long delta_ns, const enum hrtimer_mode mode)
957 {
958 struct hrtimer_clock_base *base, *new_base;
959 unsigned long flags;
960 int leftmost;
961
962 base = lock_hrtimer_base(timer, &flags);
963
964 /* Remove an active timer from the queue: */
965 remove_hrtimer(timer, base, true);
966
967 if (mode & HRTIMER_MODE_REL) {
968 tim = ktime_add_safe(tim, base->get_time());
969 /*
970 * CONFIG_TIME_LOW_RES is a temporary way for architectures
971 * to signal that they simply return xtime in
972 * do_gettimeoffset(). In this case we want to round up by
973 * resolution when starting a relative timer, to avoid short
974 * timeouts. This will go away with the GTOD framework.
975 */
976 #ifdef CONFIG_TIME_LOW_RES
977 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
978 #endif
979 }
980
981 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
982
983 /* Switch the timer base, if necessary: */
984 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
985
986 timer_stats_hrtimer_set_start_info(timer);
987
988 leftmost = enqueue_hrtimer(timer, new_base);
989 if (!leftmost)
990 goto unlock;
991
992 if (!hrtimer_is_hres_active(timer)) {
993 /*
994 * Kick to reschedule the next tick to handle the new timer
995 * on dynticks target.
996 */
997 if (new_base->cpu_base->nohz_active)
998 wake_up_nohz_cpu(new_base->cpu_base->cpu);
999 } else {
1000 hrtimer_reprogram(timer, new_base);
1001 }
1002 unlock:
1003 unlock_hrtimer_base(timer, &flags);
1004 }
1005 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1006
1007 /**
1008 * hrtimer_try_to_cancel - try to deactivate a timer
1009 * @timer: hrtimer to stop
1010 *
1011 * Returns:
1012 * 0 when the timer was not active
1013 * 1 when the timer was active
1014 * -1 when the timer is currently excuting the callback function and
1015 * cannot be stopped
1016 */
1017 int hrtimer_try_to_cancel(struct hrtimer *timer)
1018 {
1019 struct hrtimer_clock_base *base;
1020 unsigned long flags;
1021 int ret = -1;
1022
1023 /*
1024 * Check lockless first. If the timer is not active (neither
1025 * enqueued nor running the callback, nothing to do here. The
1026 * base lock does not serialize against a concurrent enqueue,
1027 * so we can avoid taking it.
1028 */
1029 if (!hrtimer_active(timer))
1030 return 0;
1031
1032 base = lock_hrtimer_base(timer, &flags);
1033
1034 if (!hrtimer_callback_running(timer))
1035 ret = remove_hrtimer(timer, base, false);
1036
1037 unlock_hrtimer_base(timer, &flags);
1038
1039 return ret;
1040
1041 }
1042 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1043
1044 /**
1045 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1046 * @timer: the timer to be cancelled
1047 *
1048 * Returns:
1049 * 0 when the timer was not active
1050 * 1 when the timer was active
1051 */
1052 int hrtimer_cancel(struct hrtimer *timer)
1053 {
1054 for (;;) {
1055 int ret = hrtimer_try_to_cancel(timer);
1056
1057 if (ret >= 0)
1058 return ret;
1059 cpu_relax();
1060 }
1061 }
1062 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1063
1064 /**
1065 * hrtimer_get_remaining - get remaining time for the timer
1066 * @timer: the timer to read
1067 */
1068 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1069 {
1070 unsigned long flags;
1071 ktime_t rem;
1072
1073 lock_hrtimer_base(timer, &flags);
1074 rem = hrtimer_expires_remaining(timer);
1075 unlock_hrtimer_base(timer, &flags);
1076
1077 return rem;
1078 }
1079 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1080
1081 #ifdef CONFIG_NO_HZ_COMMON
1082 /**
1083 * hrtimer_get_next_event - get the time until next expiry event
1084 *
1085 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1086 */
1087 u64 hrtimer_get_next_event(void)
1088 {
1089 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1090 u64 expires = KTIME_MAX;
1091 unsigned long flags;
1092
1093 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1094
1095 if (!__hrtimer_hres_active(cpu_base))
1096 expires = __hrtimer_get_next_event(cpu_base).tv64;
1097
1098 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1099
1100 return expires;
1101 }
1102 #endif
1103
1104 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1105 enum hrtimer_mode mode)
1106 {
1107 struct hrtimer_cpu_base *cpu_base;
1108 int base;
1109
1110 memset(timer, 0, sizeof(struct hrtimer));
1111
1112 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1113
1114 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1115 clock_id = CLOCK_MONOTONIC;
1116
1117 base = hrtimer_clockid_to_base(clock_id);
1118 timer->base = &cpu_base->clock_base[base];
1119 timerqueue_init(&timer->node);
1120
1121 #ifdef CONFIG_TIMER_STATS
1122 timer->start_site = NULL;
1123 timer->start_pid = -1;
1124 memset(timer->start_comm, 0, TASK_COMM_LEN);
1125 #endif
1126 }
1127
1128 /**
1129 * hrtimer_init - initialize a timer to the given clock
1130 * @timer: the timer to be initialized
1131 * @clock_id: the clock to be used
1132 * @mode: timer mode abs/rel
1133 */
1134 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1135 enum hrtimer_mode mode)
1136 {
1137 debug_init(timer, clock_id, mode);
1138 __hrtimer_init(timer, clock_id, mode);
1139 }
1140 EXPORT_SYMBOL_GPL(hrtimer_init);
1141
1142 /*
1143 * A timer is active, when it is enqueued into the rbtree or the
1144 * callback function is running or it's in the state of being migrated
1145 * to another cpu.
1146 *
1147 * It is important for this function to not return a false negative.
1148 */
1149 bool hrtimer_active(const struct hrtimer *timer)
1150 {
1151 struct hrtimer_cpu_base *cpu_base;
1152 unsigned int seq;
1153
1154 do {
1155 cpu_base = READ_ONCE(timer->base->cpu_base);
1156 seq = raw_read_seqcount_begin(&cpu_base->seq);
1157
1158 if (timer->state != HRTIMER_STATE_INACTIVE ||
1159 cpu_base->running == timer)
1160 return true;
1161
1162 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1163 cpu_base != READ_ONCE(timer->base->cpu_base));
1164
1165 return false;
1166 }
1167 EXPORT_SYMBOL_GPL(hrtimer_active);
1168
1169 /*
1170 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1171 * distinct sections:
1172 *
1173 * - queued: the timer is queued
1174 * - callback: the timer is being ran
1175 * - post: the timer is inactive or (re)queued
1176 *
1177 * On the read side we ensure we observe timer->state and cpu_base->running
1178 * from the same section, if anything changed while we looked at it, we retry.
1179 * This includes timer->base changing because sequence numbers alone are
1180 * insufficient for that.
1181 *
1182 * The sequence numbers are required because otherwise we could still observe
1183 * a false negative if the read side got smeared over multiple consequtive
1184 * __run_hrtimer() invocations.
1185 */
1186
1187 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1188 struct hrtimer_clock_base *base,
1189 struct hrtimer *timer, ktime_t *now)
1190 {
1191 enum hrtimer_restart (*fn)(struct hrtimer *);
1192 int restart;
1193
1194 lockdep_assert_held(&cpu_base->lock);
1195
1196 debug_deactivate(timer);
1197 cpu_base->running = timer;
1198
1199 /*
1200 * Separate the ->running assignment from the ->state assignment.
1201 *
1202 * As with a regular write barrier, this ensures the read side in
1203 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1204 * timer->state == INACTIVE.
1205 */
1206 raw_write_seqcount_barrier(&cpu_base->seq);
1207
1208 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1209 timer_stats_account_hrtimer(timer);
1210 fn = timer->function;
1211
1212 /*
1213 * Because we run timers from hardirq context, there is no chance
1214 * they get migrated to another cpu, therefore its safe to unlock
1215 * the timer base.
1216 */
1217 raw_spin_unlock(&cpu_base->lock);
1218 trace_hrtimer_expire_entry(timer, now);
1219 restart = fn(timer);
1220 trace_hrtimer_expire_exit(timer);
1221 raw_spin_lock(&cpu_base->lock);
1222
1223 /*
1224 * Note: We clear the running state after enqueue_hrtimer and
1225 * we do not reprogramm the event hardware. Happens either in
1226 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1227 *
1228 * Note: Because we dropped the cpu_base->lock above,
1229 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1230 * for us already.
1231 */
1232 if (restart != HRTIMER_NORESTART &&
1233 !(timer->state & HRTIMER_STATE_ENQUEUED))
1234 enqueue_hrtimer(timer, base);
1235
1236 /*
1237 * Separate the ->running assignment from the ->state assignment.
1238 *
1239 * As with a regular write barrier, this ensures the read side in
1240 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1241 * timer->state == INACTIVE.
1242 */
1243 raw_write_seqcount_barrier(&cpu_base->seq);
1244
1245 WARN_ON_ONCE(cpu_base->running != timer);
1246 cpu_base->running = NULL;
1247 }
1248
1249 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1250 {
1251 struct hrtimer_clock_base *base = cpu_base->clock_base;
1252 unsigned int active = cpu_base->active_bases;
1253
1254 for (; active; base++, active >>= 1) {
1255 struct timerqueue_node *node;
1256 ktime_t basenow;
1257
1258 if (!(active & 0x01))
1259 continue;
1260
1261 basenow = ktime_add(now, base->offset);
1262
1263 while ((node = timerqueue_getnext(&base->active))) {
1264 struct hrtimer *timer;
1265
1266 timer = container_of(node, struct hrtimer, node);
1267
1268 /*
1269 * The immediate goal for using the softexpires is
1270 * minimizing wakeups, not running timers at the
1271 * earliest interrupt after their soft expiration.
1272 * This allows us to avoid using a Priority Search
1273 * Tree, which can answer a stabbing querry for
1274 * overlapping intervals and instead use the simple
1275 * BST we already have.
1276 * We don't add extra wakeups by delaying timers that
1277 * are right-of a not yet expired timer, because that
1278 * timer will have to trigger a wakeup anyway.
1279 */
1280 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1281 break;
1282
1283 __run_hrtimer(cpu_base, base, timer, &basenow);
1284 }
1285 }
1286 }
1287
1288 #ifdef CONFIG_HIGH_RES_TIMERS
1289
1290 /*
1291 * High resolution timer interrupt
1292 * Called with interrupts disabled
1293 */
1294 void hrtimer_interrupt(struct clock_event_device *dev)
1295 {
1296 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1297 ktime_t expires_next, now, entry_time, delta;
1298 int retries = 0;
1299
1300 BUG_ON(!cpu_base->hres_active);
1301 cpu_base->nr_events++;
1302 dev->next_event.tv64 = KTIME_MAX;
1303
1304 raw_spin_lock(&cpu_base->lock);
1305 entry_time = now = hrtimer_update_base(cpu_base);
1306 retry:
1307 cpu_base->in_hrtirq = 1;
1308 /*
1309 * We set expires_next to KTIME_MAX here with cpu_base->lock
1310 * held to prevent that a timer is enqueued in our queue via
1311 * the migration code. This does not affect enqueueing of
1312 * timers which run their callback and need to be requeued on
1313 * this CPU.
1314 */
1315 cpu_base->expires_next.tv64 = KTIME_MAX;
1316
1317 __hrtimer_run_queues(cpu_base, now);
1318
1319 /* Reevaluate the clock bases for the next expiry */
1320 expires_next = __hrtimer_get_next_event(cpu_base);
1321 /*
1322 * Store the new expiry value so the migration code can verify
1323 * against it.
1324 */
1325 cpu_base->expires_next = expires_next;
1326 cpu_base->in_hrtirq = 0;
1327 raw_spin_unlock(&cpu_base->lock);
1328
1329 /* Reprogramming necessary ? */
1330 if (!tick_program_event(expires_next, 0)) {
1331 cpu_base->hang_detected = 0;
1332 return;
1333 }
1334
1335 /*
1336 * The next timer was already expired due to:
1337 * - tracing
1338 * - long lasting callbacks
1339 * - being scheduled away when running in a VM
1340 *
1341 * We need to prevent that we loop forever in the hrtimer
1342 * interrupt routine. We give it 3 attempts to avoid
1343 * overreacting on some spurious event.
1344 *
1345 * Acquire base lock for updating the offsets and retrieving
1346 * the current time.
1347 */
1348 raw_spin_lock(&cpu_base->lock);
1349 now = hrtimer_update_base(cpu_base);
1350 cpu_base->nr_retries++;
1351 if (++retries < 3)
1352 goto retry;
1353 /*
1354 * Give the system a chance to do something else than looping
1355 * here. We stored the entry time, so we know exactly how long
1356 * we spent here. We schedule the next event this amount of
1357 * time away.
1358 */
1359 cpu_base->nr_hangs++;
1360 cpu_base->hang_detected = 1;
1361 raw_spin_unlock(&cpu_base->lock);
1362 delta = ktime_sub(now, entry_time);
1363 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1364 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1365 /*
1366 * Limit it to a sensible value as we enforce a longer
1367 * delay. Give the CPU at least 100ms to catch up.
1368 */
1369 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1370 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1371 else
1372 expires_next = ktime_add(now, delta);
1373 tick_program_event(expires_next, 1);
1374 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1375 ktime_to_ns(delta));
1376 }
1377
1378 /*
1379 * local version of hrtimer_peek_ahead_timers() called with interrupts
1380 * disabled.
1381 */
1382 static inline void __hrtimer_peek_ahead_timers(void)
1383 {
1384 struct tick_device *td;
1385
1386 if (!hrtimer_hres_active())
1387 return;
1388
1389 td = this_cpu_ptr(&tick_cpu_device);
1390 if (td && td->evtdev)
1391 hrtimer_interrupt(td->evtdev);
1392 }
1393
1394 #else /* CONFIG_HIGH_RES_TIMERS */
1395
1396 static inline void __hrtimer_peek_ahead_timers(void) { }
1397
1398 #endif /* !CONFIG_HIGH_RES_TIMERS */
1399
1400 /*
1401 * Called from run_local_timers in hardirq context every jiffy
1402 */
1403 void hrtimer_run_queues(void)
1404 {
1405 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1406 ktime_t now;
1407
1408 if (__hrtimer_hres_active(cpu_base))
1409 return;
1410
1411 /*
1412 * This _is_ ugly: We have to check periodically, whether we
1413 * can switch to highres and / or nohz mode. The clocksource
1414 * switch happens with xtime_lock held. Notification from
1415 * there only sets the check bit in the tick_oneshot code,
1416 * otherwise we might deadlock vs. xtime_lock.
1417 */
1418 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1419 hrtimer_switch_to_hres();
1420 return;
1421 }
1422
1423 raw_spin_lock(&cpu_base->lock);
1424 now = hrtimer_update_base(cpu_base);
1425 __hrtimer_run_queues(cpu_base, now);
1426 raw_spin_unlock(&cpu_base->lock);
1427 }
1428
1429 /*
1430 * Sleep related functions:
1431 */
1432 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1433 {
1434 struct hrtimer_sleeper *t =
1435 container_of(timer, struct hrtimer_sleeper, timer);
1436 struct task_struct *task = t->task;
1437
1438 t->task = NULL;
1439 if (task)
1440 wake_up_process(task);
1441
1442 return HRTIMER_NORESTART;
1443 }
1444
1445 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1446 {
1447 sl->timer.function = hrtimer_wakeup;
1448 sl->task = task;
1449 }
1450 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1451
1452 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1453 {
1454 hrtimer_init_sleeper(t, current);
1455
1456 do {
1457 set_current_state(TASK_INTERRUPTIBLE);
1458 hrtimer_start_expires(&t->timer, mode);
1459
1460 if (likely(t->task))
1461 freezable_schedule();
1462
1463 hrtimer_cancel(&t->timer);
1464 mode = HRTIMER_MODE_ABS;
1465
1466 } while (t->task && !signal_pending(current));
1467
1468 __set_current_state(TASK_RUNNING);
1469
1470 return t->task == NULL;
1471 }
1472
1473 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1474 {
1475 struct timespec rmt;
1476 ktime_t rem;
1477
1478 rem = hrtimer_expires_remaining(timer);
1479 if (rem.tv64 <= 0)
1480 return 0;
1481 rmt = ktime_to_timespec(rem);
1482
1483 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1484 return -EFAULT;
1485
1486 return 1;
1487 }
1488
1489 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1490 {
1491 struct hrtimer_sleeper t;
1492 struct timespec __user *rmtp;
1493 int ret = 0;
1494
1495 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1496 HRTIMER_MODE_ABS);
1497 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1498
1499 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1500 goto out;
1501
1502 rmtp = restart->nanosleep.rmtp;
1503 if (rmtp) {
1504 ret = update_rmtp(&t.timer, rmtp);
1505 if (ret <= 0)
1506 goto out;
1507 }
1508
1509 /* The other values in restart are already filled in */
1510 ret = -ERESTART_RESTARTBLOCK;
1511 out:
1512 destroy_hrtimer_on_stack(&t.timer);
1513 return ret;
1514 }
1515
1516 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1517 const enum hrtimer_mode mode, const clockid_t clockid)
1518 {
1519 struct restart_block *restart;
1520 struct hrtimer_sleeper t;
1521 int ret = 0;
1522 unsigned long slack;
1523
1524 slack = current->timer_slack_ns;
1525 if (dl_task(current) || rt_task(current))
1526 slack = 0;
1527
1528 hrtimer_init_on_stack(&t.timer, clockid, mode);
1529 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1530 if (do_nanosleep(&t, mode))
1531 goto out;
1532
1533 /* Absolute timers do not update the rmtp value and restart: */
1534 if (mode == HRTIMER_MODE_ABS) {
1535 ret = -ERESTARTNOHAND;
1536 goto out;
1537 }
1538
1539 if (rmtp) {
1540 ret = update_rmtp(&t.timer, rmtp);
1541 if (ret <= 0)
1542 goto out;
1543 }
1544
1545 restart = &current->restart_block;
1546 restart->fn = hrtimer_nanosleep_restart;
1547 restart->nanosleep.clockid = t.timer.base->clockid;
1548 restart->nanosleep.rmtp = rmtp;
1549 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1550
1551 ret = -ERESTART_RESTARTBLOCK;
1552 out:
1553 destroy_hrtimer_on_stack(&t.timer);
1554 return ret;
1555 }
1556
1557 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1558 struct timespec __user *, rmtp)
1559 {
1560 struct timespec tu;
1561
1562 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1563 return -EFAULT;
1564
1565 if (!timespec_valid(&tu))
1566 return -EINVAL;
1567
1568 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1569 }
1570
1571 /*
1572 * Functions related to boot-time initialization:
1573 */
1574 static void init_hrtimers_cpu(int cpu)
1575 {
1576 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1577 int i;
1578
1579 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1580 cpu_base->clock_base[i].cpu_base = cpu_base;
1581 timerqueue_init_head(&cpu_base->clock_base[i].active);
1582 }
1583
1584 cpu_base->cpu = cpu;
1585 hrtimer_init_hres(cpu_base);
1586 }
1587
1588 #ifdef CONFIG_HOTPLUG_CPU
1589
1590 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1591 struct hrtimer_clock_base *new_base)
1592 {
1593 struct hrtimer *timer;
1594 struct timerqueue_node *node;
1595
1596 while ((node = timerqueue_getnext(&old_base->active))) {
1597 timer = container_of(node, struct hrtimer, node);
1598 BUG_ON(hrtimer_callback_running(timer));
1599 debug_deactivate(timer);
1600
1601 /*
1602 * Mark it as ENQUEUED not INACTIVE otherwise the
1603 * timer could be seen as !active and just vanish away
1604 * under us on another CPU
1605 */
1606 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1607 timer->base = new_base;
1608 /*
1609 * Enqueue the timers on the new cpu. This does not
1610 * reprogram the event device in case the timer
1611 * expires before the earliest on this CPU, but we run
1612 * hrtimer_interrupt after we migrated everything to
1613 * sort out already expired timers and reprogram the
1614 * event device.
1615 */
1616 enqueue_hrtimer(timer, new_base);
1617 }
1618 }
1619
1620 static void migrate_hrtimers(int scpu)
1621 {
1622 struct hrtimer_cpu_base *old_base, *new_base;
1623 int i;
1624
1625 BUG_ON(cpu_online(scpu));
1626 tick_cancel_sched_timer(scpu);
1627
1628 local_irq_disable();
1629 old_base = &per_cpu(hrtimer_bases, scpu);
1630 new_base = this_cpu_ptr(&hrtimer_bases);
1631 /*
1632 * The caller is globally serialized and nobody else
1633 * takes two locks at once, deadlock is not possible.
1634 */
1635 raw_spin_lock(&new_base->lock);
1636 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1637
1638 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1639 migrate_hrtimer_list(&old_base->clock_base[i],
1640 &new_base->clock_base[i]);
1641 }
1642
1643 raw_spin_unlock(&old_base->lock);
1644 raw_spin_unlock(&new_base->lock);
1645
1646 /* Check, if we got expired work to do */
1647 __hrtimer_peek_ahead_timers();
1648 local_irq_enable();
1649 }
1650
1651 #endif /* CONFIG_HOTPLUG_CPU */
1652
1653 static int hrtimer_cpu_notify(struct notifier_block *self,
1654 unsigned long action, void *hcpu)
1655 {
1656 int scpu = (long)hcpu;
1657
1658 switch (action) {
1659
1660 case CPU_UP_PREPARE:
1661 case CPU_UP_PREPARE_FROZEN:
1662 init_hrtimers_cpu(scpu);
1663 break;
1664
1665 #ifdef CONFIG_HOTPLUG_CPU
1666 case CPU_DEAD:
1667 case CPU_DEAD_FROZEN:
1668 migrate_hrtimers(scpu);
1669 break;
1670 #endif
1671
1672 default:
1673 break;
1674 }
1675
1676 return NOTIFY_OK;
1677 }
1678
1679 static struct notifier_block hrtimers_nb = {
1680 .notifier_call = hrtimer_cpu_notify,
1681 };
1682
1683 void __init hrtimers_init(void)
1684 {
1685 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1686 (void *)(long)smp_processor_id());
1687 register_cpu_notifier(&hrtimers_nb);
1688 }
1689
1690 /**
1691 * schedule_hrtimeout_range_clock - sleep until timeout
1692 * @expires: timeout value (ktime_t)
1693 * @delta: slack in expires timeout (ktime_t)
1694 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1695 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1696 */
1697 int __sched
1698 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1699 const enum hrtimer_mode mode, int clock)
1700 {
1701 struct hrtimer_sleeper t;
1702
1703 /*
1704 * Optimize when a zero timeout value is given. It does not
1705 * matter whether this is an absolute or a relative time.
1706 */
1707 if (expires && !expires->tv64) {
1708 __set_current_state(TASK_RUNNING);
1709 return 0;
1710 }
1711
1712 /*
1713 * A NULL parameter means "infinite"
1714 */
1715 if (!expires) {
1716 schedule();
1717 return -EINTR;
1718 }
1719
1720 hrtimer_init_on_stack(&t.timer, clock, mode);
1721 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1722
1723 hrtimer_init_sleeper(&t, current);
1724
1725 hrtimer_start_expires(&t.timer, mode);
1726
1727 if (likely(t.task))
1728 schedule();
1729
1730 hrtimer_cancel(&t.timer);
1731 destroy_hrtimer_on_stack(&t.timer);
1732
1733 __set_current_state(TASK_RUNNING);
1734
1735 return !t.task ? 0 : -EINTR;
1736 }
1737
1738 /**
1739 * schedule_hrtimeout_range - sleep until timeout
1740 * @expires: timeout value (ktime_t)
1741 * @delta: slack in expires timeout (ktime_t)
1742 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1743 *
1744 * Make the current task sleep until the given expiry time has
1745 * elapsed. The routine will return immediately unless
1746 * the current task state has been set (see set_current_state()).
1747 *
1748 * The @delta argument gives the kernel the freedom to schedule the
1749 * actual wakeup to a time that is both power and performance friendly.
1750 * The kernel give the normal best effort behavior for "@expires+@delta",
1751 * but may decide to fire the timer earlier, but no earlier than @expires.
1752 *
1753 * You can set the task state as follows -
1754 *
1755 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1756 * pass before the routine returns.
1757 *
1758 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1759 * delivered to the current task.
1760 *
1761 * The current task state is guaranteed to be TASK_RUNNING when this
1762 * routine returns.
1763 *
1764 * Returns 0 when the timer has expired otherwise -EINTR
1765 */
1766 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1767 const enum hrtimer_mode mode)
1768 {
1769 return schedule_hrtimeout_range_clock(expires, delta, mode,
1770 CLOCK_MONOTONIC);
1771 }
1772 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1773
1774 /**
1775 * schedule_hrtimeout - sleep until timeout
1776 * @expires: timeout value (ktime_t)
1777 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1778 *
1779 * Make the current task sleep until the given expiry time has
1780 * elapsed. The routine will return immediately unless
1781 * the current task state has been set (see set_current_state()).
1782 *
1783 * You can set the task state as follows -
1784 *
1785 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1786 * pass before the routine returns.
1787 *
1788 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1789 * delivered to the current task.
1790 *
1791 * The current task state is guaranteed to be TASK_RUNNING when this
1792 * routine returns.
1793 *
1794 * Returns 0 when the timer has expired otherwise -EINTR
1795 */
1796 int __sched schedule_hrtimeout(ktime_t *expires,
1797 const enum hrtimer_mode mode)
1798 {
1799 return schedule_hrtimeout_range(expires, 0, mode);
1800 }
1801 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.066574 seconds and 6 git commands to generate.