hrtimer: Unconfuse switch_hrtimer_base() a bit
[deliverable/linux.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108 /*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112 #ifdef CONFIG_SMP
113
114 /*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123
124 #define migration_base migration_cpu_base.clock_base[0]
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
178 }
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184 {
185 if (pinned || !base->migration_enabled)
186 return base;
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193 {
194 return base;
195 }
196 #endif
197
198 /*
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
209 */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
213 {
214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 struct hrtimer_clock_base *new_base;
216 int basenum = base->index;
217
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (new_cpu_base != this_cpu_base &&
242 hrtimer_check_target(timer, new_base)) {
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 new_cpu_base = this_cpu_base;
246 timer->base = base;
247 goto again;
248 }
249 timer->base = new_base;
250 } else {
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 new_cpu_base = this_cpu_base;
254 goto again;
255 }
256 }
257 return new_base;
258 }
259
260 #else /* CONFIG_SMP */
261
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 struct hrtimer_clock_base *base = timer->base;
266
267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268
269 return base;
270 }
271
272 # define switch_hrtimer_base(t, b, p) (b)
273
274 #endif /* !CONFIG_SMP */
275
276 /*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280 #if BITS_PER_LONG < 64
281 /*
282 * Divide a ktime value by a nanosecond value
283 */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 int sft = 0;
287 s64 dclc;
288 u64 tmp;
289
290 dclc = ktime_to_ns(kt);
291 tmp = dclc < 0 ? -dclc : dclc;
292
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304
305 /*
306 * Add two ktime values and do a safety check for overflow:
307 */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 ktime_t res = ktime_add(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320 }
321
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326 static struct debug_obj_descr hrtimer_debug_descr;
327
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 return ((struct hrtimer *) addr)->function;
331 }
332
333 /*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
337 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return 1;
346 default:
347 return 0;
348 }
349 }
350
351 /*
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown object is activated (might be a statically initialized object)
355 */
356 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 switch (state) {
359
360 case ODEBUG_STATE_NOTAVAILABLE:
361 WARN_ON_ONCE(1);
362 return 0;
363
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366
367 default:
368 return 0;
369 }
370 }
371
372 /*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
384 return 1;
385 default:
386 return 0;
387 }
388 }
389
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
392 .debug_hint = hrtimer_debug_hint,
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396 };
397
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 debug_object_init(timer, &hrtimer_debug_descr);
401 }
402
403 static inline void debug_hrtimer_activate(struct hrtimer *timer)
404 {
405 debug_object_activate(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
409 {
410 debug_object_deactivate(timer, &hrtimer_debug_descr);
411 }
412
413 static inline void debug_hrtimer_free(struct hrtimer *timer)
414 {
415 debug_object_free(timer, &hrtimer_debug_descr);
416 }
417
418 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
419 enum hrtimer_mode mode);
420
421 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode)
423 {
424 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
425 __hrtimer_init(timer, clock_id, mode);
426 }
427 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428
429 void destroy_hrtimer_on_stack(struct hrtimer *timer)
430 {
431 debug_object_free(timer, &hrtimer_debug_descr);
432 }
433
434 #else
435 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
436 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
437 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
438 #endif
439
440 static inline void
441 debug_init(struct hrtimer *timer, clockid_t clockid,
442 enum hrtimer_mode mode)
443 {
444 debug_hrtimer_init(timer);
445 trace_hrtimer_init(timer, clockid, mode);
446 }
447
448 static inline void debug_activate(struct hrtimer *timer)
449 {
450 debug_hrtimer_activate(timer);
451 trace_hrtimer_start(timer);
452 }
453
454 static inline void debug_deactivate(struct hrtimer *timer)
455 {
456 debug_hrtimer_deactivate(timer);
457 trace_hrtimer_cancel(timer);
458 }
459
460 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
462 struct hrtimer *timer)
463 {
464 #ifdef CONFIG_HIGH_RES_TIMERS
465 cpu_base->next_timer = timer;
466 #endif
467 }
468
469 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 {
471 struct hrtimer_clock_base *base = cpu_base->clock_base;
472 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473 unsigned int active = cpu_base->active_bases;
474
475 hrtimer_update_next_timer(cpu_base, NULL);
476 for (; active; base++, active >>= 1) {
477 struct timerqueue_node *next;
478 struct hrtimer *timer;
479
480 if (!(active & 0x01))
481 continue;
482
483 next = timerqueue_getnext(&base->active);
484 timer = container_of(next, struct hrtimer, node);
485 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486 if (expires.tv64 < expires_next.tv64) {
487 expires_next = expires;
488 hrtimer_update_next_timer(cpu_base, timer);
489 }
490 }
491 /*
492 * clock_was_set() might have changed base->offset of any of
493 * the clock bases so the result might be negative. Fix it up
494 * to prevent a false positive in clockevents_program_event().
495 */
496 if (expires_next.tv64 < 0)
497 expires_next.tv64 = 0;
498 return expires_next;
499 }
500 #endif
501
502 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
503 {
504 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
505 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
506 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
507
508 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
509 offs_real, offs_boot, offs_tai);
510 }
511
512 /* High resolution timer related functions */
513 #ifdef CONFIG_HIGH_RES_TIMERS
514
515 /*
516 * High resolution timer enabled ?
517 */
518 static int hrtimer_hres_enabled __read_mostly = 1;
519 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
520 EXPORT_SYMBOL_GPL(hrtimer_resolution);
521
522 /*
523 * Enable / Disable high resolution mode
524 */
525 static int __init setup_hrtimer_hres(char *str)
526 {
527 if (!strcmp(str, "off"))
528 hrtimer_hres_enabled = 0;
529 else if (!strcmp(str, "on"))
530 hrtimer_hres_enabled = 1;
531 else
532 return 0;
533 return 1;
534 }
535
536 __setup("highres=", setup_hrtimer_hres);
537
538 /*
539 * hrtimer_high_res_enabled - query, if the highres mode is enabled
540 */
541 static inline int hrtimer_is_hres_enabled(void)
542 {
543 return hrtimer_hres_enabled;
544 }
545
546 /*
547 * Is the high resolution mode active ?
548 */
549 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
550 {
551 return cpu_base->hres_active;
552 }
553
554 static inline int hrtimer_hres_active(void)
555 {
556 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
557 }
558
559 /*
560 * Reprogram the event source with checking both queues for the
561 * next event
562 * Called with interrupts disabled and base->lock held
563 */
564 static void
565 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
566 {
567 ktime_t expires_next;
568
569 if (!cpu_base->hres_active)
570 return;
571
572 expires_next = __hrtimer_get_next_event(cpu_base);
573
574 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
575 return;
576
577 cpu_base->expires_next.tv64 = expires_next.tv64;
578
579 /*
580 * If a hang was detected in the last timer interrupt then we
581 * leave the hang delay active in the hardware. We want the
582 * system to make progress. That also prevents the following
583 * scenario:
584 * T1 expires 50ms from now
585 * T2 expires 5s from now
586 *
587 * T1 is removed, so this code is called and would reprogram
588 * the hardware to 5s from now. Any hrtimer_start after that
589 * will not reprogram the hardware due to hang_detected being
590 * set. So we'd effectivly block all timers until the T2 event
591 * fires.
592 */
593 if (cpu_base->hang_detected)
594 return;
595
596 tick_program_event(cpu_base->expires_next, 1);
597 }
598
599 /*
600 * When a timer is enqueued and expires earlier than the already enqueued
601 * timers, we have to check, whether it expires earlier than the timer for
602 * which the clock event device was armed.
603 *
604 * Called with interrupts disabled and base->cpu_base.lock held
605 */
606 static void hrtimer_reprogram(struct hrtimer *timer,
607 struct hrtimer_clock_base *base)
608 {
609 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
610 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611
612 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613
614 /*
615 * If the timer is not on the current cpu, we cannot reprogram
616 * the other cpus clock event device.
617 */
618 if (base->cpu_base != cpu_base)
619 return;
620
621 /*
622 * If the hrtimer interrupt is running, then it will
623 * reevaluate the clock bases and reprogram the clock event
624 * device. The callbacks are always executed in hard interrupt
625 * context so we don't need an extra check for a running
626 * callback.
627 */
628 if (cpu_base->in_hrtirq)
629 return;
630
631 /*
632 * CLOCK_REALTIME timer might be requested with an absolute
633 * expiry time which is less than base->offset. Set it to 0.
634 */
635 if (expires.tv64 < 0)
636 expires.tv64 = 0;
637
638 if (expires.tv64 >= cpu_base->expires_next.tv64)
639 return;
640
641 /* Update the pointer to the next expiring timer */
642 cpu_base->next_timer = timer;
643
644 /*
645 * If a hang was detected in the last timer interrupt then we
646 * do not schedule a timer which is earlier than the expiry
647 * which we enforced in the hang detection. We want the system
648 * to make progress.
649 */
650 if (cpu_base->hang_detected)
651 return;
652
653 /*
654 * Program the timer hardware. We enforce the expiry for
655 * events which are already in the past.
656 */
657 cpu_base->expires_next = expires;
658 tick_program_event(expires, 1);
659 }
660
661 /*
662 * Initialize the high resolution related parts of cpu_base
663 */
664 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
665 {
666 base->expires_next.tv64 = KTIME_MAX;
667 base->hres_active = 0;
668 }
669
670 /*
671 * Retrigger next event is called after clock was set
672 *
673 * Called with interrupts disabled via on_each_cpu()
674 */
675 static void retrigger_next_event(void *arg)
676 {
677 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678
679 if (!base->hres_active)
680 return;
681
682 raw_spin_lock(&base->lock);
683 hrtimer_update_base(base);
684 hrtimer_force_reprogram(base, 0);
685 raw_spin_unlock(&base->lock);
686 }
687
688 /*
689 * Switch to high resolution mode
690 */
691 static void hrtimer_switch_to_hres(void)
692 {
693 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694
695 if (tick_init_highres()) {
696 printk(KERN_WARNING "Could not switch to high resolution "
697 "mode on CPU %d\n", base->cpu);
698 }
699 base->hres_active = 1;
700 hrtimer_resolution = HIGH_RES_NSEC;
701
702 tick_setup_sched_timer();
703 /* "Retrigger" the interrupt to get things going */
704 retrigger_next_event(NULL);
705 }
706
707 static void clock_was_set_work(struct work_struct *work)
708 {
709 clock_was_set();
710 }
711
712 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
713
714 /*
715 * Called from timekeeping and resume code to reprogramm the hrtimer
716 * interrupt device on all cpus.
717 */
718 void clock_was_set_delayed(void)
719 {
720 schedule_work(&hrtimer_work);
721 }
722
723 #else
724
725 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
726 static inline int hrtimer_hres_active(void) { return 0; }
727 static inline int hrtimer_is_hres_enabled(void) { return 0; }
728 static inline void hrtimer_switch_to_hres(void) { }
729 static inline void
730 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
731 static inline int hrtimer_reprogram(struct hrtimer *timer,
732 struct hrtimer_clock_base *base)
733 {
734 return 0;
735 }
736 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
737 static inline void retrigger_next_event(void *arg) { }
738
739 #endif /* CONFIG_HIGH_RES_TIMERS */
740
741 /*
742 * Clock realtime was set
743 *
744 * Change the offset of the realtime clock vs. the monotonic
745 * clock.
746 *
747 * We might have to reprogram the high resolution timer interrupt. On
748 * SMP we call the architecture specific code to retrigger _all_ high
749 * resolution timer interrupts. On UP we just disable interrupts and
750 * call the high resolution interrupt code.
751 */
752 void clock_was_set(void)
753 {
754 #ifdef CONFIG_HIGH_RES_TIMERS
755 /* Retrigger the CPU local events everywhere */
756 on_each_cpu(retrigger_next_event, NULL, 1);
757 #endif
758 timerfd_clock_was_set();
759 }
760
761 /*
762 * During resume we might have to reprogram the high resolution timer
763 * interrupt on all online CPUs. However, all other CPUs will be
764 * stopped with IRQs interrupts disabled so the clock_was_set() call
765 * must be deferred.
766 */
767 void hrtimers_resume(void)
768 {
769 WARN_ONCE(!irqs_disabled(),
770 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
771
772 /* Retrigger on the local CPU */
773 retrigger_next_event(NULL);
774 /* And schedule a retrigger for all others */
775 clock_was_set_delayed();
776 }
777
778 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
779 {
780 #ifdef CONFIG_TIMER_STATS
781 if (timer->start_site)
782 return;
783 timer->start_site = __builtin_return_address(0);
784 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
785 timer->start_pid = current->pid;
786 #endif
787 }
788
789 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
790 {
791 #ifdef CONFIG_TIMER_STATS
792 timer->start_site = NULL;
793 #endif
794 }
795
796 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
797 {
798 #ifdef CONFIG_TIMER_STATS
799 if (likely(!timer_stats_active))
800 return;
801 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
802 timer->function, timer->start_comm, 0);
803 #endif
804 }
805
806 /*
807 * Counterpart to lock_hrtimer_base above:
808 */
809 static inline
810 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
811 {
812 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
813 }
814
815 /**
816 * hrtimer_forward - forward the timer expiry
817 * @timer: hrtimer to forward
818 * @now: forward past this time
819 * @interval: the interval to forward
820 *
821 * Forward the timer expiry so it will expire in the future.
822 * Returns the number of overruns.
823 *
824 * Can be safely called from the callback function of @timer. If
825 * called from other contexts @timer must neither be enqueued nor
826 * running the callback and the caller needs to take care of
827 * serialization.
828 *
829 * Note: This only updates the timer expiry value and does not requeue
830 * the timer.
831 */
832 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
833 {
834 u64 orun = 1;
835 ktime_t delta;
836
837 delta = ktime_sub(now, hrtimer_get_expires(timer));
838
839 if (delta.tv64 < 0)
840 return 0;
841
842 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
843 return 0;
844
845 if (interval.tv64 < hrtimer_resolution)
846 interval.tv64 = hrtimer_resolution;
847
848 if (unlikely(delta.tv64 >= interval.tv64)) {
849 s64 incr = ktime_to_ns(interval);
850
851 orun = ktime_divns(delta, incr);
852 hrtimer_add_expires_ns(timer, incr * orun);
853 if (hrtimer_get_expires_tv64(timer) > now.tv64)
854 return orun;
855 /*
856 * This (and the ktime_add() below) is the
857 * correction for exact:
858 */
859 orun++;
860 }
861 hrtimer_add_expires(timer, interval);
862
863 return orun;
864 }
865 EXPORT_SYMBOL_GPL(hrtimer_forward);
866
867 /*
868 * enqueue_hrtimer - internal function to (re)start a timer
869 *
870 * The timer is inserted in expiry order. Insertion into the
871 * red black tree is O(log(n)). Must hold the base lock.
872 *
873 * Returns 1 when the new timer is the leftmost timer in the tree.
874 */
875 static int enqueue_hrtimer(struct hrtimer *timer,
876 struct hrtimer_clock_base *base)
877 {
878 debug_activate(timer);
879
880 base->cpu_base->active_bases |= 1 << base->index;
881
882 timer->state = HRTIMER_STATE_ENQUEUED;
883
884 return timerqueue_add(&base->active, &timer->node);
885 }
886
887 /*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
900 {
901 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
902 unsigned int state = timer->state;
903
904 timer->state = newstate;
905 if (!(state & HRTIMER_STATE_ENQUEUED))
906 return;
907
908 if (!timerqueue_del(&base->active, &timer->node))
909 cpu_base->active_bases &= ~(1 << base->index);
910
911 #ifdef CONFIG_HIGH_RES_TIMERS
912 /*
913 * Note: If reprogram is false we do not update
914 * cpu_base->next_timer. This happens when we remove the first
915 * timer on a remote cpu. No harm as we never dereference
916 * cpu_base->next_timer. So the worst thing what can happen is
917 * an superflous call to hrtimer_force_reprogram() on the
918 * remote cpu later on if the same timer gets enqueued again.
919 */
920 if (reprogram && timer == cpu_base->next_timer)
921 hrtimer_force_reprogram(cpu_base, 1);
922 #endif
923 }
924
925 /*
926 * remove hrtimer, called with base lock held
927 */
928 static inline int
929 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
930 {
931 if (hrtimer_is_queued(timer)) {
932 unsigned long state = timer->state;
933 int reprogram;
934
935 /*
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
942 */
943 debug_deactivate(timer);
944 timer_stats_hrtimer_clear_start_info(timer);
945 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
946
947 if (!restart)
948 state = HRTIMER_STATE_INACTIVE;
949
950 __remove_hrtimer(timer, base, state, reprogram);
951 return 1;
952 }
953 return 0;
954 }
955
956 /**
957 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
958 * @timer: the timer to be added
959 * @tim: expiry time
960 * @delta_ns: "slack" range for the timer
961 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
962 * relative (HRTIMER_MODE_REL)
963 */
964 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
965 unsigned long delta_ns, const enum hrtimer_mode mode)
966 {
967 struct hrtimer_clock_base *base, *new_base;
968 unsigned long flags;
969 int leftmost;
970
971 base = lock_hrtimer_base(timer, &flags);
972
973 /* Remove an active timer from the queue: */
974 remove_hrtimer(timer, base, true);
975
976 if (mode & HRTIMER_MODE_REL) {
977 tim = ktime_add_safe(tim, base->get_time());
978 /*
979 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980 * to signal that they simply return xtime in
981 * do_gettimeoffset(). In this case we want to round up by
982 * resolution when starting a relative timer, to avoid short
983 * timeouts. This will go away with the GTOD framework.
984 */
985 #ifdef CONFIG_TIME_LOW_RES
986 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
987 #endif
988 }
989
990 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
991
992 /* Switch the timer base, if necessary: */
993 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
994
995 timer_stats_hrtimer_set_start_info(timer);
996
997 leftmost = enqueue_hrtimer(timer, new_base);
998 if (!leftmost)
999 goto unlock;
1000
1001 if (!hrtimer_is_hres_active(timer)) {
1002 /*
1003 * Kick to reschedule the next tick to handle the new timer
1004 * on dynticks target.
1005 */
1006 if (new_base->cpu_base->nohz_active)
1007 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1008 } else {
1009 hrtimer_reprogram(timer, new_base);
1010 }
1011 unlock:
1012 unlock_hrtimer_base(timer, &flags);
1013 }
1014 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1015
1016 /**
1017 * hrtimer_try_to_cancel - try to deactivate a timer
1018 * @timer: hrtimer to stop
1019 *
1020 * Returns:
1021 * 0 when the timer was not active
1022 * 1 when the timer was active
1023 * -1 when the timer is currently excuting the callback function and
1024 * cannot be stopped
1025 */
1026 int hrtimer_try_to_cancel(struct hrtimer *timer)
1027 {
1028 struct hrtimer_clock_base *base;
1029 unsigned long flags;
1030 int ret = -1;
1031
1032 /*
1033 * Check lockless first. If the timer is not active (neither
1034 * enqueued nor running the callback, nothing to do here. The
1035 * base lock does not serialize against a concurrent enqueue,
1036 * so we can avoid taking it.
1037 */
1038 if (!hrtimer_active(timer))
1039 return 0;
1040
1041 base = lock_hrtimer_base(timer, &flags);
1042
1043 if (!hrtimer_callback_running(timer))
1044 ret = remove_hrtimer(timer, base, false);
1045
1046 unlock_hrtimer_base(timer, &flags);
1047
1048 return ret;
1049
1050 }
1051 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1052
1053 /**
1054 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1055 * @timer: the timer to be cancelled
1056 *
1057 * Returns:
1058 * 0 when the timer was not active
1059 * 1 when the timer was active
1060 */
1061 int hrtimer_cancel(struct hrtimer *timer)
1062 {
1063 for (;;) {
1064 int ret = hrtimer_try_to_cancel(timer);
1065
1066 if (ret >= 0)
1067 return ret;
1068 cpu_relax();
1069 }
1070 }
1071 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1072
1073 /**
1074 * hrtimer_get_remaining - get remaining time for the timer
1075 * @timer: the timer to read
1076 */
1077 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1078 {
1079 unsigned long flags;
1080 ktime_t rem;
1081
1082 lock_hrtimer_base(timer, &flags);
1083 rem = hrtimer_expires_remaining(timer);
1084 unlock_hrtimer_base(timer, &flags);
1085
1086 return rem;
1087 }
1088 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1089
1090 #ifdef CONFIG_NO_HZ_COMMON
1091 /**
1092 * hrtimer_get_next_event - get the time until next expiry event
1093 *
1094 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1095 */
1096 u64 hrtimer_get_next_event(void)
1097 {
1098 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1099 u64 expires = KTIME_MAX;
1100 unsigned long flags;
1101
1102 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1103
1104 if (!__hrtimer_hres_active(cpu_base))
1105 expires = __hrtimer_get_next_event(cpu_base).tv64;
1106
1107 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1108
1109 return expires;
1110 }
1111 #endif
1112
1113 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1114 enum hrtimer_mode mode)
1115 {
1116 struct hrtimer_cpu_base *cpu_base;
1117 int base;
1118
1119 memset(timer, 0, sizeof(struct hrtimer));
1120
1121 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1122
1123 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1124 clock_id = CLOCK_MONOTONIC;
1125
1126 base = hrtimer_clockid_to_base(clock_id);
1127 timer->base = &cpu_base->clock_base[base];
1128 timerqueue_init(&timer->node);
1129
1130 #ifdef CONFIG_TIMER_STATS
1131 timer->start_site = NULL;
1132 timer->start_pid = -1;
1133 memset(timer->start_comm, 0, TASK_COMM_LEN);
1134 #endif
1135 }
1136
1137 /**
1138 * hrtimer_init - initialize a timer to the given clock
1139 * @timer: the timer to be initialized
1140 * @clock_id: the clock to be used
1141 * @mode: timer mode abs/rel
1142 */
1143 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1144 enum hrtimer_mode mode)
1145 {
1146 debug_init(timer, clock_id, mode);
1147 __hrtimer_init(timer, clock_id, mode);
1148 }
1149 EXPORT_SYMBOL_GPL(hrtimer_init);
1150
1151 /*
1152 * A timer is active, when it is enqueued into the rbtree or the
1153 * callback function is running or it's in the state of being migrated
1154 * to another cpu.
1155 *
1156 * It is important for this function to not return a false negative.
1157 */
1158 bool hrtimer_active(const struct hrtimer *timer)
1159 {
1160 struct hrtimer_cpu_base *cpu_base;
1161 unsigned int seq;
1162
1163 do {
1164 cpu_base = READ_ONCE(timer->base->cpu_base);
1165 seq = raw_read_seqcount_begin(&cpu_base->seq);
1166
1167 if (timer->state != HRTIMER_STATE_INACTIVE ||
1168 cpu_base->running == timer)
1169 return true;
1170
1171 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1172 cpu_base != READ_ONCE(timer->base->cpu_base));
1173
1174 return false;
1175 }
1176 EXPORT_SYMBOL_GPL(hrtimer_active);
1177
1178 /*
1179 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1180 * distinct sections:
1181 *
1182 * - queued: the timer is queued
1183 * - callback: the timer is being ran
1184 * - post: the timer is inactive or (re)queued
1185 *
1186 * On the read side we ensure we observe timer->state and cpu_base->running
1187 * from the same section, if anything changed while we looked at it, we retry.
1188 * This includes timer->base changing because sequence numbers alone are
1189 * insufficient for that.
1190 *
1191 * The sequence numbers are required because otherwise we could still observe
1192 * a false negative if the read side got smeared over multiple consequtive
1193 * __run_hrtimer() invocations.
1194 */
1195
1196 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1197 struct hrtimer_clock_base *base,
1198 struct hrtimer *timer, ktime_t *now)
1199 {
1200 enum hrtimer_restart (*fn)(struct hrtimer *);
1201 int restart;
1202
1203 lockdep_assert_held(&cpu_base->lock);
1204
1205 debug_deactivate(timer);
1206 cpu_base->running = timer;
1207
1208 /*
1209 * Separate the ->running assignment from the ->state assignment.
1210 *
1211 * As with a regular write barrier, this ensures the read side in
1212 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1213 * timer->state == INACTIVE.
1214 */
1215 raw_write_seqcount_barrier(&cpu_base->seq);
1216
1217 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1218 timer_stats_account_hrtimer(timer);
1219 fn = timer->function;
1220
1221 /*
1222 * Because we run timers from hardirq context, there is no chance
1223 * they get migrated to another cpu, therefore its safe to unlock
1224 * the timer base.
1225 */
1226 raw_spin_unlock(&cpu_base->lock);
1227 trace_hrtimer_expire_entry(timer, now);
1228 restart = fn(timer);
1229 trace_hrtimer_expire_exit(timer);
1230 raw_spin_lock(&cpu_base->lock);
1231
1232 /*
1233 * Note: We clear the running state after enqueue_hrtimer and
1234 * we do not reprogramm the event hardware. Happens either in
1235 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236 *
1237 * Note: Because we dropped the cpu_base->lock above,
1238 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1239 * for us already.
1240 */
1241 if (restart != HRTIMER_NORESTART &&
1242 !(timer->state & HRTIMER_STATE_ENQUEUED))
1243 enqueue_hrtimer(timer, base);
1244
1245 /*
1246 * Separate the ->running assignment from the ->state assignment.
1247 *
1248 * As with a regular write barrier, this ensures the read side in
1249 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1250 * timer->state == INACTIVE.
1251 */
1252 raw_write_seqcount_barrier(&cpu_base->seq);
1253
1254 WARN_ON_ONCE(cpu_base->running != timer);
1255 cpu_base->running = NULL;
1256 }
1257
1258 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1259 {
1260 struct hrtimer_clock_base *base = cpu_base->clock_base;
1261 unsigned int active = cpu_base->active_bases;
1262
1263 for (; active; base++, active >>= 1) {
1264 struct timerqueue_node *node;
1265 ktime_t basenow;
1266
1267 if (!(active & 0x01))
1268 continue;
1269
1270 basenow = ktime_add(now, base->offset);
1271
1272 while ((node = timerqueue_getnext(&base->active))) {
1273 struct hrtimer *timer;
1274
1275 timer = container_of(node, struct hrtimer, node);
1276
1277 /*
1278 * The immediate goal for using the softexpires is
1279 * minimizing wakeups, not running timers at the
1280 * earliest interrupt after their soft expiration.
1281 * This allows us to avoid using a Priority Search
1282 * Tree, which can answer a stabbing querry for
1283 * overlapping intervals and instead use the simple
1284 * BST we already have.
1285 * We don't add extra wakeups by delaying timers that
1286 * are right-of a not yet expired timer, because that
1287 * timer will have to trigger a wakeup anyway.
1288 */
1289 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1290 break;
1291
1292 __run_hrtimer(cpu_base, base, timer, &basenow);
1293 }
1294 }
1295 }
1296
1297 #ifdef CONFIG_HIGH_RES_TIMERS
1298
1299 /*
1300 * High resolution timer interrupt
1301 * Called with interrupts disabled
1302 */
1303 void hrtimer_interrupt(struct clock_event_device *dev)
1304 {
1305 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1306 ktime_t expires_next, now, entry_time, delta;
1307 int retries = 0;
1308
1309 BUG_ON(!cpu_base->hres_active);
1310 cpu_base->nr_events++;
1311 dev->next_event.tv64 = KTIME_MAX;
1312
1313 raw_spin_lock(&cpu_base->lock);
1314 entry_time = now = hrtimer_update_base(cpu_base);
1315 retry:
1316 cpu_base->in_hrtirq = 1;
1317 /*
1318 * We set expires_next to KTIME_MAX here with cpu_base->lock
1319 * held to prevent that a timer is enqueued in our queue via
1320 * the migration code. This does not affect enqueueing of
1321 * timers which run their callback and need to be requeued on
1322 * this CPU.
1323 */
1324 cpu_base->expires_next.tv64 = KTIME_MAX;
1325
1326 __hrtimer_run_queues(cpu_base, now);
1327
1328 /* Reevaluate the clock bases for the next expiry */
1329 expires_next = __hrtimer_get_next_event(cpu_base);
1330 /*
1331 * Store the new expiry value so the migration code can verify
1332 * against it.
1333 */
1334 cpu_base->expires_next = expires_next;
1335 cpu_base->in_hrtirq = 0;
1336 raw_spin_unlock(&cpu_base->lock);
1337
1338 /* Reprogramming necessary ? */
1339 if (!tick_program_event(expires_next, 0)) {
1340 cpu_base->hang_detected = 0;
1341 return;
1342 }
1343
1344 /*
1345 * The next timer was already expired due to:
1346 * - tracing
1347 * - long lasting callbacks
1348 * - being scheduled away when running in a VM
1349 *
1350 * We need to prevent that we loop forever in the hrtimer
1351 * interrupt routine. We give it 3 attempts to avoid
1352 * overreacting on some spurious event.
1353 *
1354 * Acquire base lock for updating the offsets and retrieving
1355 * the current time.
1356 */
1357 raw_spin_lock(&cpu_base->lock);
1358 now = hrtimer_update_base(cpu_base);
1359 cpu_base->nr_retries++;
1360 if (++retries < 3)
1361 goto retry;
1362 /*
1363 * Give the system a chance to do something else than looping
1364 * here. We stored the entry time, so we know exactly how long
1365 * we spent here. We schedule the next event this amount of
1366 * time away.
1367 */
1368 cpu_base->nr_hangs++;
1369 cpu_base->hang_detected = 1;
1370 raw_spin_unlock(&cpu_base->lock);
1371 delta = ktime_sub(now, entry_time);
1372 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1373 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1374 /*
1375 * Limit it to a sensible value as we enforce a longer
1376 * delay. Give the CPU at least 100ms to catch up.
1377 */
1378 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1379 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1380 else
1381 expires_next = ktime_add(now, delta);
1382 tick_program_event(expires_next, 1);
1383 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1384 ktime_to_ns(delta));
1385 }
1386
1387 /*
1388 * local version of hrtimer_peek_ahead_timers() called with interrupts
1389 * disabled.
1390 */
1391 static inline void __hrtimer_peek_ahead_timers(void)
1392 {
1393 struct tick_device *td;
1394
1395 if (!hrtimer_hres_active())
1396 return;
1397
1398 td = this_cpu_ptr(&tick_cpu_device);
1399 if (td && td->evtdev)
1400 hrtimer_interrupt(td->evtdev);
1401 }
1402
1403 #else /* CONFIG_HIGH_RES_TIMERS */
1404
1405 static inline void __hrtimer_peek_ahead_timers(void) { }
1406
1407 #endif /* !CONFIG_HIGH_RES_TIMERS */
1408
1409 /*
1410 * Called from run_local_timers in hardirq context every jiffy
1411 */
1412 void hrtimer_run_queues(void)
1413 {
1414 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1415 ktime_t now;
1416
1417 if (__hrtimer_hres_active(cpu_base))
1418 return;
1419
1420 /*
1421 * This _is_ ugly: We have to check periodically, whether we
1422 * can switch to highres and / or nohz mode. The clocksource
1423 * switch happens with xtime_lock held. Notification from
1424 * there only sets the check bit in the tick_oneshot code,
1425 * otherwise we might deadlock vs. xtime_lock.
1426 */
1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1428 hrtimer_switch_to_hres();
1429 return;
1430 }
1431
1432 raw_spin_lock(&cpu_base->lock);
1433 now = hrtimer_update_base(cpu_base);
1434 __hrtimer_run_queues(cpu_base, now);
1435 raw_spin_unlock(&cpu_base->lock);
1436 }
1437
1438 /*
1439 * Sleep related functions:
1440 */
1441 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1442 {
1443 struct hrtimer_sleeper *t =
1444 container_of(timer, struct hrtimer_sleeper, timer);
1445 struct task_struct *task = t->task;
1446
1447 t->task = NULL;
1448 if (task)
1449 wake_up_process(task);
1450
1451 return HRTIMER_NORESTART;
1452 }
1453
1454 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1455 {
1456 sl->timer.function = hrtimer_wakeup;
1457 sl->task = task;
1458 }
1459 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1460
1461 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1462 {
1463 hrtimer_init_sleeper(t, current);
1464
1465 do {
1466 set_current_state(TASK_INTERRUPTIBLE);
1467 hrtimer_start_expires(&t->timer, mode);
1468
1469 if (likely(t->task))
1470 freezable_schedule();
1471
1472 hrtimer_cancel(&t->timer);
1473 mode = HRTIMER_MODE_ABS;
1474
1475 } while (t->task && !signal_pending(current));
1476
1477 __set_current_state(TASK_RUNNING);
1478
1479 return t->task == NULL;
1480 }
1481
1482 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1483 {
1484 struct timespec rmt;
1485 ktime_t rem;
1486
1487 rem = hrtimer_expires_remaining(timer);
1488 if (rem.tv64 <= 0)
1489 return 0;
1490 rmt = ktime_to_timespec(rem);
1491
1492 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1493 return -EFAULT;
1494
1495 return 1;
1496 }
1497
1498 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1499 {
1500 struct hrtimer_sleeper t;
1501 struct timespec __user *rmtp;
1502 int ret = 0;
1503
1504 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1505 HRTIMER_MODE_ABS);
1506 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1507
1508 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1509 goto out;
1510
1511 rmtp = restart->nanosleep.rmtp;
1512 if (rmtp) {
1513 ret = update_rmtp(&t.timer, rmtp);
1514 if (ret <= 0)
1515 goto out;
1516 }
1517
1518 /* The other values in restart are already filled in */
1519 ret = -ERESTART_RESTARTBLOCK;
1520 out:
1521 destroy_hrtimer_on_stack(&t.timer);
1522 return ret;
1523 }
1524
1525 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1526 const enum hrtimer_mode mode, const clockid_t clockid)
1527 {
1528 struct restart_block *restart;
1529 struct hrtimer_sleeper t;
1530 int ret = 0;
1531 unsigned long slack;
1532
1533 slack = current->timer_slack_ns;
1534 if (dl_task(current) || rt_task(current))
1535 slack = 0;
1536
1537 hrtimer_init_on_stack(&t.timer, clockid, mode);
1538 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1539 if (do_nanosleep(&t, mode))
1540 goto out;
1541
1542 /* Absolute timers do not update the rmtp value and restart: */
1543 if (mode == HRTIMER_MODE_ABS) {
1544 ret = -ERESTARTNOHAND;
1545 goto out;
1546 }
1547
1548 if (rmtp) {
1549 ret = update_rmtp(&t.timer, rmtp);
1550 if (ret <= 0)
1551 goto out;
1552 }
1553
1554 restart = &current->restart_block;
1555 restart->fn = hrtimer_nanosleep_restart;
1556 restart->nanosleep.clockid = t.timer.base->clockid;
1557 restart->nanosleep.rmtp = rmtp;
1558 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1559
1560 ret = -ERESTART_RESTARTBLOCK;
1561 out:
1562 destroy_hrtimer_on_stack(&t.timer);
1563 return ret;
1564 }
1565
1566 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1567 struct timespec __user *, rmtp)
1568 {
1569 struct timespec tu;
1570
1571 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1572 return -EFAULT;
1573
1574 if (!timespec_valid(&tu))
1575 return -EINVAL;
1576
1577 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1578 }
1579
1580 /*
1581 * Functions related to boot-time initialization:
1582 */
1583 static void init_hrtimers_cpu(int cpu)
1584 {
1585 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1586 int i;
1587
1588 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1589 cpu_base->clock_base[i].cpu_base = cpu_base;
1590 timerqueue_init_head(&cpu_base->clock_base[i].active);
1591 }
1592
1593 cpu_base->cpu = cpu;
1594 hrtimer_init_hres(cpu_base);
1595 }
1596
1597 #ifdef CONFIG_HOTPLUG_CPU
1598
1599 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1600 struct hrtimer_clock_base *new_base)
1601 {
1602 struct hrtimer *timer;
1603 struct timerqueue_node *node;
1604
1605 while ((node = timerqueue_getnext(&old_base->active))) {
1606 timer = container_of(node, struct hrtimer, node);
1607 BUG_ON(hrtimer_callback_running(timer));
1608 debug_deactivate(timer);
1609
1610 /*
1611 * Mark it as ENQUEUED not INACTIVE otherwise the
1612 * timer could be seen as !active and just vanish away
1613 * under us on another CPU
1614 */
1615 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1616 timer->base = new_base;
1617 /*
1618 * Enqueue the timers on the new cpu. This does not
1619 * reprogram the event device in case the timer
1620 * expires before the earliest on this CPU, but we run
1621 * hrtimer_interrupt after we migrated everything to
1622 * sort out already expired timers and reprogram the
1623 * event device.
1624 */
1625 enqueue_hrtimer(timer, new_base);
1626 }
1627 }
1628
1629 static void migrate_hrtimers(int scpu)
1630 {
1631 struct hrtimer_cpu_base *old_base, *new_base;
1632 int i;
1633
1634 BUG_ON(cpu_online(scpu));
1635 tick_cancel_sched_timer(scpu);
1636
1637 local_irq_disable();
1638 old_base = &per_cpu(hrtimer_bases, scpu);
1639 new_base = this_cpu_ptr(&hrtimer_bases);
1640 /*
1641 * The caller is globally serialized and nobody else
1642 * takes two locks at once, deadlock is not possible.
1643 */
1644 raw_spin_lock(&new_base->lock);
1645 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1646
1647 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1648 migrate_hrtimer_list(&old_base->clock_base[i],
1649 &new_base->clock_base[i]);
1650 }
1651
1652 raw_spin_unlock(&old_base->lock);
1653 raw_spin_unlock(&new_base->lock);
1654
1655 /* Check, if we got expired work to do */
1656 __hrtimer_peek_ahead_timers();
1657 local_irq_enable();
1658 }
1659
1660 #endif /* CONFIG_HOTPLUG_CPU */
1661
1662 static int hrtimer_cpu_notify(struct notifier_block *self,
1663 unsigned long action, void *hcpu)
1664 {
1665 int scpu = (long)hcpu;
1666
1667 switch (action) {
1668
1669 case CPU_UP_PREPARE:
1670 case CPU_UP_PREPARE_FROZEN:
1671 init_hrtimers_cpu(scpu);
1672 break;
1673
1674 #ifdef CONFIG_HOTPLUG_CPU
1675 case CPU_DEAD:
1676 case CPU_DEAD_FROZEN:
1677 migrate_hrtimers(scpu);
1678 break;
1679 #endif
1680
1681 default:
1682 break;
1683 }
1684
1685 return NOTIFY_OK;
1686 }
1687
1688 static struct notifier_block hrtimers_nb = {
1689 .notifier_call = hrtimer_cpu_notify,
1690 };
1691
1692 void __init hrtimers_init(void)
1693 {
1694 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1695 (void *)(long)smp_processor_id());
1696 register_cpu_notifier(&hrtimers_nb);
1697 }
1698
1699 /**
1700 * schedule_hrtimeout_range_clock - sleep until timeout
1701 * @expires: timeout value (ktime_t)
1702 * @delta: slack in expires timeout (ktime_t)
1703 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1704 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1705 */
1706 int __sched
1707 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1708 const enum hrtimer_mode mode, int clock)
1709 {
1710 struct hrtimer_sleeper t;
1711
1712 /*
1713 * Optimize when a zero timeout value is given. It does not
1714 * matter whether this is an absolute or a relative time.
1715 */
1716 if (expires && !expires->tv64) {
1717 __set_current_state(TASK_RUNNING);
1718 return 0;
1719 }
1720
1721 /*
1722 * A NULL parameter means "infinite"
1723 */
1724 if (!expires) {
1725 schedule();
1726 return -EINTR;
1727 }
1728
1729 hrtimer_init_on_stack(&t.timer, clock, mode);
1730 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1731
1732 hrtimer_init_sleeper(&t, current);
1733
1734 hrtimer_start_expires(&t.timer, mode);
1735
1736 if (likely(t.task))
1737 schedule();
1738
1739 hrtimer_cancel(&t.timer);
1740 destroy_hrtimer_on_stack(&t.timer);
1741
1742 __set_current_state(TASK_RUNNING);
1743
1744 return !t.task ? 0 : -EINTR;
1745 }
1746
1747 /**
1748 * schedule_hrtimeout_range - sleep until timeout
1749 * @expires: timeout value (ktime_t)
1750 * @delta: slack in expires timeout (ktime_t)
1751 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1752 *
1753 * Make the current task sleep until the given expiry time has
1754 * elapsed. The routine will return immediately unless
1755 * the current task state has been set (see set_current_state()).
1756 *
1757 * The @delta argument gives the kernel the freedom to schedule the
1758 * actual wakeup to a time that is both power and performance friendly.
1759 * The kernel give the normal best effort behavior for "@expires+@delta",
1760 * but may decide to fire the timer earlier, but no earlier than @expires.
1761 *
1762 * You can set the task state as follows -
1763 *
1764 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1765 * pass before the routine returns.
1766 *
1767 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1768 * delivered to the current task.
1769 *
1770 * The current task state is guaranteed to be TASK_RUNNING when this
1771 * routine returns.
1772 *
1773 * Returns 0 when the timer has expired otherwise -EINTR
1774 */
1775 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1776 const enum hrtimer_mode mode)
1777 {
1778 return schedule_hrtimeout_range_clock(expires, delta, mode,
1779 CLOCK_MONOTONIC);
1780 }
1781 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1782
1783 /**
1784 * schedule_hrtimeout - sleep until timeout
1785 * @expires: timeout value (ktime_t)
1786 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1787 *
1788 * Make the current task sleep until the given expiry time has
1789 * elapsed. The routine will return immediately unless
1790 * the current task state has been set (see set_current_state()).
1791 *
1792 * You can set the task state as follows -
1793 *
1794 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1795 * pass before the routine returns.
1796 *
1797 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1798 * delivered to the current task.
1799 *
1800 * The current task state is guaranteed to be TASK_RUNNING when this
1801 * routine returns.
1802 *
1803 * Returns 0 when the timer has expired otherwise -EINTR
1804 */
1805 int __sched schedule_hrtimeout(ktime_t *expires,
1806 const enum hrtimer_mode mode)
1807 {
1808 return schedule_hrtimeout_range(expires, 0, mode);
1809 }
1810 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.093366 seconds and 6 git commands to generate.