9ad60d0285087a11ef8b479e45a6bb25d38dbddf
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19
20 #include "ntp_internal.h"
21
22 /*
23 * NTP timekeeping variables:
24 *
25 * Note: All of the NTP state is protected by the timekeeping locks.
26 */
27
28
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
31
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
34
35 static u64 tick_length;
36 static u64 tick_length_base;
37
38 #define MAX_TICKADJ 500LL /* usecs */
39 #define MAX_TICKADJ_SCALED \
40 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41
42 /*
43 * phase-lock loop variables
44 */
45
46 /*
47 * clock synchronization status
48 *
49 * (TIME_ERROR prevents overwriting the CMOS clock)
50 */
51 static int time_state = TIME_OK;
52
53 /* clock status bits: */
54 static int time_status = STA_UNSYNC;
55
56 /* time adjustment (nsecs): */
57 static s64 time_offset;
58
59 /* pll time constant: */
60 static long time_constant = 2;
61
62 /* maximum error (usecs): */
63 static long time_maxerror = NTP_PHASE_LIMIT;
64
65 /* estimated error (usecs): */
66 static long time_esterror = NTP_PHASE_LIMIT;
67
68 /* frequency offset (scaled nsecs/secs): */
69 static s64 time_freq;
70
71 /* time at last adjustment (secs): */
72 static long time_reftime;
73
74 static long time_adjust;
75
76 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
77 static s64 ntp_tick_adj;
78
79 #ifdef CONFIG_NTP_PPS
80
81 /*
82 * The following variables are used when a pulse-per-second (PPS) signal
83 * is available. They establish the engineering parameters of the clock
84 * discipline loop when controlled by the PPS signal.
85 */
86 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
87 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
88 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
89 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
90 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
91 increase pps_shift or consecutive bad
92 intervals to decrease it */
93 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
94
95 static int pps_valid; /* signal watchdog counter */
96 static long pps_tf[3]; /* phase median filter */
97 static long pps_jitter; /* current jitter (ns) */
98 static struct timespec pps_fbase; /* beginning of the last freq interval */
99 static int pps_shift; /* current interval duration (s) (shift) */
100 static int pps_intcnt; /* interval counter */
101 static s64 pps_freq; /* frequency offset (scaled ns/s) */
102 static long pps_stabil; /* current stability (scaled ns/s) */
103
104 /*
105 * PPS signal quality monitors
106 */
107 static long pps_calcnt; /* calibration intervals */
108 static long pps_jitcnt; /* jitter limit exceeded */
109 static long pps_stbcnt; /* stability limit exceeded */
110 static long pps_errcnt; /* calibration errors */
111
112
113 /* PPS kernel consumer compensates the whole phase error immediately.
114 * Otherwise, reduce the offset by a fixed factor times the time constant.
115 */
116 static inline s64 ntp_offset_chunk(s64 offset)
117 {
118 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
119 return offset;
120 else
121 return shift_right(offset, SHIFT_PLL + time_constant);
122 }
123
124 static inline void pps_reset_freq_interval(void)
125 {
126 /* the PPS calibration interval may end
127 surprisingly early */
128 pps_shift = PPS_INTMIN;
129 pps_intcnt = 0;
130 }
131
132 /**
133 * pps_clear - Clears the PPS state variables
134 */
135 static inline void pps_clear(void)
136 {
137 pps_reset_freq_interval();
138 pps_tf[0] = 0;
139 pps_tf[1] = 0;
140 pps_tf[2] = 0;
141 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
142 pps_freq = 0;
143 }
144
145 /* Decrease pps_valid to indicate that another second has passed since
146 * the last PPS signal. When it reaches 0, indicate that PPS signal is
147 * missing.
148 */
149 static inline void pps_dec_valid(void)
150 {
151 if (pps_valid > 0)
152 pps_valid--;
153 else {
154 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
155 STA_PPSWANDER | STA_PPSERROR);
156 pps_clear();
157 }
158 }
159
160 static inline void pps_set_freq(s64 freq)
161 {
162 pps_freq = freq;
163 }
164
165 static inline int is_error_status(int status)
166 {
167 return (status & (STA_UNSYNC|STA_CLOCKERR))
168 /* PPS signal lost when either PPS time or
169 * PPS frequency synchronization requested
170 */
171 || ((status & (STA_PPSFREQ|STA_PPSTIME))
172 && !(status & STA_PPSSIGNAL))
173 /* PPS jitter exceeded when
174 * PPS time synchronization requested */
175 || ((status & (STA_PPSTIME|STA_PPSJITTER))
176 == (STA_PPSTIME|STA_PPSJITTER))
177 /* PPS wander exceeded or calibration error when
178 * PPS frequency synchronization requested
179 */
180 || ((status & STA_PPSFREQ)
181 && (status & (STA_PPSWANDER|STA_PPSERROR)));
182 }
183
184 static inline void pps_fill_timex(struct timex *txc)
185 {
186 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
187 PPM_SCALE_INV, NTP_SCALE_SHIFT);
188 txc->jitter = pps_jitter;
189 if (!(time_status & STA_NANO))
190 txc->jitter /= NSEC_PER_USEC;
191 txc->shift = pps_shift;
192 txc->stabil = pps_stabil;
193 txc->jitcnt = pps_jitcnt;
194 txc->calcnt = pps_calcnt;
195 txc->errcnt = pps_errcnt;
196 txc->stbcnt = pps_stbcnt;
197 }
198
199 #else /* !CONFIG_NTP_PPS */
200
201 static inline s64 ntp_offset_chunk(s64 offset)
202 {
203 return shift_right(offset, SHIFT_PLL + time_constant);
204 }
205
206 static inline void pps_reset_freq_interval(void) {}
207 static inline void pps_clear(void) {}
208 static inline void pps_dec_valid(void) {}
209 static inline void pps_set_freq(s64 freq) {}
210
211 static inline int is_error_status(int status)
212 {
213 return status & (STA_UNSYNC|STA_CLOCKERR);
214 }
215
216 static inline void pps_fill_timex(struct timex *txc)
217 {
218 /* PPS is not implemented, so these are zero */
219 txc->ppsfreq = 0;
220 txc->jitter = 0;
221 txc->shift = 0;
222 txc->stabil = 0;
223 txc->jitcnt = 0;
224 txc->calcnt = 0;
225 txc->errcnt = 0;
226 txc->stbcnt = 0;
227 }
228
229 #endif /* CONFIG_NTP_PPS */
230
231
232 /**
233 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
234 *
235 */
236 static inline int ntp_synced(void)
237 {
238 return !(time_status & STA_UNSYNC);
239 }
240
241
242 /*
243 * NTP methods:
244 */
245
246 /*
247 * Update (tick_length, tick_length_base, tick_nsec), based
248 * on (tick_usec, ntp_tick_adj, time_freq):
249 */
250 static void ntp_update_frequency(void)
251 {
252 u64 second_length;
253 u64 new_base;
254
255 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
256 << NTP_SCALE_SHIFT;
257
258 second_length += ntp_tick_adj;
259 second_length += time_freq;
260
261 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
262 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
263
264 /*
265 * Don't wait for the next second_overflow, apply
266 * the change to the tick length immediately:
267 */
268 tick_length += new_base - tick_length_base;
269 tick_length_base = new_base;
270 }
271
272 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
273 {
274 time_status &= ~STA_MODE;
275
276 if (secs < MINSEC)
277 return 0;
278
279 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
280 return 0;
281
282 time_status |= STA_MODE;
283
284 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
285 }
286
287 static void ntp_update_offset(long offset)
288 {
289 s64 freq_adj;
290 s64 offset64;
291 long secs;
292
293 if (!(time_status & STA_PLL))
294 return;
295
296 if (!(time_status & STA_NANO))
297 offset *= NSEC_PER_USEC;
298
299 /*
300 * Scale the phase adjustment and
301 * clamp to the operating range.
302 */
303 offset = min(offset, MAXPHASE);
304 offset = max(offset, -MAXPHASE);
305
306 /*
307 * Select how the frequency is to be controlled
308 * and in which mode (PLL or FLL).
309 */
310 secs = get_seconds() - time_reftime;
311 if (unlikely(time_status & STA_FREQHOLD))
312 secs = 0;
313
314 time_reftime = get_seconds();
315
316 offset64 = offset;
317 freq_adj = ntp_update_offset_fll(offset64, secs);
318
319 /*
320 * Clamp update interval to reduce PLL gain with low
321 * sampling rate (e.g. intermittent network connection)
322 * to avoid instability.
323 */
324 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
325 secs = 1 << (SHIFT_PLL + 1 + time_constant);
326
327 freq_adj += (offset64 * secs) <<
328 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
329
330 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
331
332 time_freq = max(freq_adj, -MAXFREQ_SCALED);
333
334 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
335 }
336
337 /**
338 * ntp_clear - Clears the NTP state variables
339 */
340 void ntp_clear(void)
341 {
342 time_adjust = 0; /* stop active adjtime() */
343 time_status |= STA_UNSYNC;
344 time_maxerror = NTP_PHASE_LIMIT;
345 time_esterror = NTP_PHASE_LIMIT;
346
347 ntp_update_frequency();
348
349 tick_length = tick_length_base;
350 time_offset = 0;
351
352 /* Clear PPS state variables */
353 pps_clear();
354 }
355
356
357 u64 ntp_tick_length(void)
358 {
359 return tick_length;
360 }
361
362
363 /*
364 * this routine handles the overflow of the microsecond field
365 *
366 * The tricky bits of code to handle the accurate clock support
367 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
368 * They were originally developed for SUN and DEC kernels.
369 * All the kudos should go to Dave for this stuff.
370 *
371 * Also handles leap second processing, and returns leap offset
372 */
373 int second_overflow(unsigned long secs)
374 {
375 s64 delta;
376 int leap = 0;
377
378 /*
379 * Leap second processing. If in leap-insert state at the end of the
380 * day, the system clock is set back one second; if in leap-delete
381 * state, the system clock is set ahead one second.
382 */
383 switch (time_state) {
384 case TIME_OK:
385 if (time_status & STA_INS)
386 time_state = TIME_INS;
387 else if (time_status & STA_DEL)
388 time_state = TIME_DEL;
389 break;
390 case TIME_INS:
391 if (!(time_status & STA_INS))
392 time_state = TIME_OK;
393 else if (secs % 86400 == 0) {
394 leap = -1;
395 time_state = TIME_OOP;
396 printk(KERN_NOTICE
397 "Clock: inserting leap second 23:59:60 UTC\n");
398 }
399 break;
400 case TIME_DEL:
401 if (!(time_status & STA_DEL))
402 time_state = TIME_OK;
403 else if ((secs + 1) % 86400 == 0) {
404 leap = 1;
405 time_state = TIME_WAIT;
406 printk(KERN_NOTICE
407 "Clock: deleting leap second 23:59:59 UTC\n");
408 }
409 break;
410 case TIME_OOP:
411 time_state = TIME_WAIT;
412 break;
413
414 case TIME_WAIT:
415 if (!(time_status & (STA_INS | STA_DEL)))
416 time_state = TIME_OK;
417 break;
418 }
419
420
421 /* Bump the maxerror field */
422 time_maxerror += MAXFREQ / NSEC_PER_USEC;
423 if (time_maxerror > NTP_PHASE_LIMIT) {
424 time_maxerror = NTP_PHASE_LIMIT;
425 time_status |= STA_UNSYNC;
426 }
427
428 /* Compute the phase adjustment for the next second */
429 tick_length = tick_length_base;
430
431 delta = ntp_offset_chunk(time_offset);
432 time_offset -= delta;
433 tick_length += delta;
434
435 /* Check PPS signal */
436 pps_dec_valid();
437
438 if (!time_adjust)
439 goto out;
440
441 if (time_adjust > MAX_TICKADJ) {
442 time_adjust -= MAX_TICKADJ;
443 tick_length += MAX_TICKADJ_SCALED;
444 goto out;
445 }
446
447 if (time_adjust < -MAX_TICKADJ) {
448 time_adjust += MAX_TICKADJ;
449 tick_length -= MAX_TICKADJ_SCALED;
450 goto out;
451 }
452
453 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
454 << NTP_SCALE_SHIFT;
455 time_adjust = 0;
456
457 out:
458 return leap;
459 }
460
461 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
462 static void sync_cmos_clock(struct work_struct *work);
463
464 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
465
466 static void sync_cmos_clock(struct work_struct *work)
467 {
468 struct timespec64 now;
469 struct timespec next;
470 int fail = 1;
471
472 /*
473 * If we have an externally synchronized Linux clock, then update
474 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
475 * called as close as possible to 500 ms before the new second starts.
476 * This code is run on a timer. If the clock is set, that timer
477 * may not expire at the correct time. Thus, we adjust...
478 * We want the clock to be within a couple of ticks from the target.
479 */
480 if (!ntp_synced()) {
481 /*
482 * Not synced, exit, do not restart a timer (if one is
483 * running, let it run out).
484 */
485 return;
486 }
487
488 getnstimeofday64(&now);
489 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
490 struct timespec64 adjust = now;
491
492 fail = -ENODEV;
493 if (persistent_clock_is_local)
494 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
495 #ifdef CONFIG_GENERIC_CMOS_UPDATE
496 fail = update_persistent_clock(timespec64_to_timespec(adjust));
497 #endif
498 #ifdef CONFIG_RTC_SYSTOHC
499 if (fail == -ENODEV)
500 fail = rtc_set_ntp_time(adjust);
501 #endif
502 }
503
504 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
505 if (next.tv_nsec <= 0)
506 next.tv_nsec += NSEC_PER_SEC;
507
508 if (!fail || fail == -ENODEV)
509 next.tv_sec = 659;
510 else
511 next.tv_sec = 0;
512
513 if (next.tv_nsec >= NSEC_PER_SEC) {
514 next.tv_sec++;
515 next.tv_nsec -= NSEC_PER_SEC;
516 }
517 queue_delayed_work(system_power_efficient_wq,
518 &sync_cmos_work, timespec_to_jiffies(&next));
519 }
520
521 void ntp_notify_cmos_timer(void)
522 {
523 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
524 }
525
526 #else
527 void ntp_notify_cmos_timer(void) { }
528 #endif
529
530
531 /*
532 * Propagate a new txc->status value into the NTP state:
533 */
534 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
535 {
536 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
537 time_state = TIME_OK;
538 time_status = STA_UNSYNC;
539 /* restart PPS frequency calibration */
540 pps_reset_freq_interval();
541 }
542
543 /*
544 * If we turn on PLL adjustments then reset the
545 * reference time to current time.
546 */
547 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
548 time_reftime = get_seconds();
549
550 /* only set allowed bits */
551 time_status &= STA_RONLY;
552 time_status |= txc->status & ~STA_RONLY;
553 }
554
555
556 static inline void process_adjtimex_modes(struct timex *txc,
557 struct timespec64 *ts,
558 s32 *time_tai)
559 {
560 if (txc->modes & ADJ_STATUS)
561 process_adj_status(txc, ts);
562
563 if (txc->modes & ADJ_NANO)
564 time_status |= STA_NANO;
565
566 if (txc->modes & ADJ_MICRO)
567 time_status &= ~STA_NANO;
568
569 if (txc->modes & ADJ_FREQUENCY) {
570 time_freq = txc->freq * PPM_SCALE;
571 time_freq = min(time_freq, MAXFREQ_SCALED);
572 time_freq = max(time_freq, -MAXFREQ_SCALED);
573 /* update pps_freq */
574 pps_set_freq(time_freq);
575 }
576
577 if (txc->modes & ADJ_MAXERROR)
578 time_maxerror = txc->maxerror;
579
580 if (txc->modes & ADJ_ESTERROR)
581 time_esterror = txc->esterror;
582
583 if (txc->modes & ADJ_TIMECONST) {
584 time_constant = txc->constant;
585 if (!(time_status & STA_NANO))
586 time_constant += 4;
587 time_constant = min(time_constant, (long)MAXTC);
588 time_constant = max(time_constant, 0l);
589 }
590
591 if (txc->modes & ADJ_TAI && txc->constant > 0)
592 *time_tai = txc->constant;
593
594 if (txc->modes & ADJ_OFFSET)
595 ntp_update_offset(txc->offset);
596
597 if (txc->modes & ADJ_TICK)
598 tick_usec = txc->tick;
599
600 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
601 ntp_update_frequency();
602 }
603
604
605
606 /**
607 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
608 */
609 int ntp_validate_timex(struct timex *txc)
610 {
611 if (txc->modes & ADJ_ADJTIME) {
612 /* singleshot must not be used with any other mode bits */
613 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
614 return -EINVAL;
615 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
616 !capable(CAP_SYS_TIME))
617 return -EPERM;
618 } else {
619 /* In order to modify anything, you gotta be super-user! */
620 if (txc->modes && !capable(CAP_SYS_TIME))
621 return -EPERM;
622 /*
623 * if the quartz is off by more than 10% then
624 * something is VERY wrong!
625 */
626 if (txc->modes & ADJ_TICK &&
627 (txc->tick < 900000/USER_HZ ||
628 txc->tick > 1100000/USER_HZ))
629 return -EINVAL;
630 }
631
632 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
633 return -EPERM;
634
635 /*
636 * Check for potential multiplication overflows that can
637 * only happen on 64-bit systems:
638 */
639 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
640 if (LLONG_MIN / PPM_SCALE > txc->freq)
641 return -EINVAL;
642 if (LLONG_MAX / PPM_SCALE < txc->freq)
643 return -EINVAL;
644 }
645
646 return 0;
647 }
648
649
650 /*
651 * adjtimex mainly allows reading (and writing, if superuser) of
652 * kernel time-keeping variables. used by xntpd.
653 */
654 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
655 {
656 int result;
657
658 if (txc->modes & ADJ_ADJTIME) {
659 long save_adjust = time_adjust;
660
661 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
662 /* adjtime() is independent from ntp_adjtime() */
663 time_adjust = txc->offset;
664 ntp_update_frequency();
665 }
666 txc->offset = save_adjust;
667 } else {
668
669 /* If there are input parameters, then process them: */
670 if (txc->modes)
671 process_adjtimex_modes(txc, ts, time_tai);
672
673 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
674 NTP_SCALE_SHIFT);
675 if (!(time_status & STA_NANO))
676 txc->offset /= NSEC_PER_USEC;
677 }
678
679 result = time_state; /* mostly `TIME_OK' */
680 /* check for errors */
681 if (is_error_status(time_status))
682 result = TIME_ERROR;
683
684 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
685 PPM_SCALE_INV, NTP_SCALE_SHIFT);
686 txc->maxerror = time_maxerror;
687 txc->esterror = time_esterror;
688 txc->status = time_status;
689 txc->constant = time_constant;
690 txc->precision = 1;
691 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
692 txc->tick = tick_usec;
693 txc->tai = *time_tai;
694
695 /* fill PPS status fields */
696 pps_fill_timex(txc);
697
698 txc->time.tv_sec = (time_t)ts->tv_sec;
699 txc->time.tv_usec = ts->tv_nsec;
700 if (!(time_status & STA_NANO))
701 txc->time.tv_usec /= NSEC_PER_USEC;
702
703 return result;
704 }
705
706 #ifdef CONFIG_NTP_PPS
707
708 /* actually struct pps_normtime is good old struct timespec, but it is
709 * semantically different (and it is the reason why it was invented):
710 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
711 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
712 struct pps_normtime {
713 __kernel_time_t sec; /* seconds */
714 long nsec; /* nanoseconds */
715 };
716
717 /* normalize the timestamp so that nsec is in the
718 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
719 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
720 {
721 struct pps_normtime norm = {
722 .sec = ts.tv_sec,
723 .nsec = ts.tv_nsec
724 };
725
726 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
727 norm.nsec -= NSEC_PER_SEC;
728 norm.sec++;
729 }
730
731 return norm;
732 }
733
734 /* get current phase correction and jitter */
735 static inline long pps_phase_filter_get(long *jitter)
736 {
737 *jitter = pps_tf[0] - pps_tf[1];
738 if (*jitter < 0)
739 *jitter = -*jitter;
740
741 /* TODO: test various filters */
742 return pps_tf[0];
743 }
744
745 /* add the sample to the phase filter */
746 static inline void pps_phase_filter_add(long err)
747 {
748 pps_tf[2] = pps_tf[1];
749 pps_tf[1] = pps_tf[0];
750 pps_tf[0] = err;
751 }
752
753 /* decrease frequency calibration interval length.
754 * It is halved after four consecutive unstable intervals.
755 */
756 static inline void pps_dec_freq_interval(void)
757 {
758 if (--pps_intcnt <= -PPS_INTCOUNT) {
759 pps_intcnt = -PPS_INTCOUNT;
760 if (pps_shift > PPS_INTMIN) {
761 pps_shift--;
762 pps_intcnt = 0;
763 }
764 }
765 }
766
767 /* increase frequency calibration interval length.
768 * It is doubled after four consecutive stable intervals.
769 */
770 static inline void pps_inc_freq_interval(void)
771 {
772 if (++pps_intcnt >= PPS_INTCOUNT) {
773 pps_intcnt = PPS_INTCOUNT;
774 if (pps_shift < PPS_INTMAX) {
775 pps_shift++;
776 pps_intcnt = 0;
777 }
778 }
779 }
780
781 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
782 * timestamps
783 *
784 * At the end of the calibration interval the difference between the
785 * first and last MONOTONIC_RAW clock timestamps divided by the length
786 * of the interval becomes the frequency update. If the interval was
787 * too long, the data are discarded.
788 * Returns the difference between old and new frequency values.
789 */
790 static long hardpps_update_freq(struct pps_normtime freq_norm)
791 {
792 long delta, delta_mod;
793 s64 ftemp;
794
795 /* check if the frequency interval was too long */
796 if (freq_norm.sec > (2 << pps_shift)) {
797 time_status |= STA_PPSERROR;
798 pps_errcnt++;
799 pps_dec_freq_interval();
800 printk_deferred(KERN_ERR
801 "hardpps: PPSERROR: interval too long - %ld s\n",
802 freq_norm.sec);
803 return 0;
804 }
805
806 /* here the raw frequency offset and wander (stability) is
807 * calculated. If the wander is less than the wander threshold
808 * the interval is increased; otherwise it is decreased.
809 */
810 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
811 freq_norm.sec);
812 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
813 pps_freq = ftemp;
814 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
815 printk_deferred(KERN_WARNING
816 "hardpps: PPSWANDER: change=%ld\n", delta);
817 time_status |= STA_PPSWANDER;
818 pps_stbcnt++;
819 pps_dec_freq_interval();
820 } else { /* good sample */
821 pps_inc_freq_interval();
822 }
823
824 /* the stability metric is calculated as the average of recent
825 * frequency changes, but is used only for performance
826 * monitoring
827 */
828 delta_mod = delta;
829 if (delta_mod < 0)
830 delta_mod = -delta_mod;
831 pps_stabil += (div_s64(((s64)delta_mod) <<
832 (NTP_SCALE_SHIFT - SHIFT_USEC),
833 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
834
835 /* if enabled, the system clock frequency is updated */
836 if ((time_status & STA_PPSFREQ) != 0 &&
837 (time_status & STA_FREQHOLD) == 0) {
838 time_freq = pps_freq;
839 ntp_update_frequency();
840 }
841
842 return delta;
843 }
844
845 /* correct REALTIME clock phase error against PPS signal */
846 static void hardpps_update_phase(long error)
847 {
848 long correction = -error;
849 long jitter;
850
851 /* add the sample to the median filter */
852 pps_phase_filter_add(correction);
853 correction = pps_phase_filter_get(&jitter);
854
855 /* Nominal jitter is due to PPS signal noise. If it exceeds the
856 * threshold, the sample is discarded; otherwise, if so enabled,
857 * the time offset is updated.
858 */
859 if (jitter > (pps_jitter << PPS_POPCORN)) {
860 printk_deferred(KERN_WARNING
861 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
862 jitter, (pps_jitter << PPS_POPCORN));
863 time_status |= STA_PPSJITTER;
864 pps_jitcnt++;
865 } else if (time_status & STA_PPSTIME) {
866 /* correct the time using the phase offset */
867 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
868 NTP_INTERVAL_FREQ);
869 /* cancel running adjtime() */
870 time_adjust = 0;
871 }
872 /* update jitter */
873 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
874 }
875
876 /*
877 * __hardpps() - discipline CPU clock oscillator to external PPS signal
878 *
879 * This routine is called at each PPS signal arrival in order to
880 * discipline the CPU clock oscillator to the PPS signal. It takes two
881 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
882 * is used to correct clock phase error and the latter is used to
883 * correct the frequency.
884 *
885 * This code is based on David Mills's reference nanokernel
886 * implementation. It was mostly rewritten but keeps the same idea.
887 */
888 void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
889 {
890 struct pps_normtime pts_norm, freq_norm;
891
892 pts_norm = pps_normalize_ts(*phase_ts);
893
894 /* clear the error bits, they will be set again if needed */
895 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
896
897 /* indicate signal presence */
898 time_status |= STA_PPSSIGNAL;
899 pps_valid = PPS_VALID;
900
901 /* when called for the first time,
902 * just start the frequency interval */
903 if (unlikely(pps_fbase.tv_sec == 0)) {
904 pps_fbase = *raw_ts;
905 return;
906 }
907
908 /* ok, now we have a base for frequency calculation */
909 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
910
911 /* check that the signal is in the range
912 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
913 if ((freq_norm.sec == 0) ||
914 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
915 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
916 time_status |= STA_PPSJITTER;
917 /* restart the frequency calibration interval */
918 pps_fbase = *raw_ts;
919 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
920 return;
921 }
922
923 /* signal is ok */
924
925 /* check if the current frequency interval is finished */
926 if (freq_norm.sec >= (1 << pps_shift)) {
927 pps_calcnt++;
928 /* restart the frequency calibration interval */
929 pps_fbase = *raw_ts;
930 hardpps_update_freq(freq_norm);
931 }
932
933 hardpps_update_phase(pts_norm.nsec);
934
935 }
936 #endif /* CONFIG_NTP_PPS */
937
938 static int __init ntp_tick_adj_setup(char *str)
939 {
940 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
941
942 if (rc)
943 return rc;
944 ntp_tick_adj <<= NTP_SCALE_SHIFT;
945
946 return 1;
947 }
948
949 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
950
951 void __init ntp_init(void)
952 {
953 ntp_clear();
954 }
This page took 0.050067 seconds and 4 git commands to generate.