ae7e13607d919079f2e139b9484544e3cc9ca680
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18
19 #include "tick-internal.h"
20
21 /*
22 * NTP timekeeping variables:
23 */
24
25 /* USER_HZ period (usecs): */
26 unsigned long tick_usec = TICK_USEC;
27
28 /* ACTHZ period (nsecs): */
29 unsigned long tick_nsec;
30
31 u64 tick_length;
32 static u64 tick_length_base;
33
34 static struct hrtimer leap_timer;
35
36 #define MAX_TICKADJ 500LL /* usecs */
37 #define MAX_TICKADJ_SCALED \
38 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39
40 /*
41 * phase-lock loop variables
42 */
43
44 /*
45 * clock synchronization status
46 *
47 * (TIME_ERROR prevents overwriting the CMOS clock)
48 */
49 static int time_state = TIME_OK;
50
51 /* clock status bits: */
52 static int time_status = STA_UNSYNC;
53
54 /* TAI offset (secs): */
55 static long time_tai;
56
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
59
60 /* pll time constant: */
61 static long time_constant = 2;
62
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
65
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
68
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
71
72 /* time at last adjustment (secs): */
73 static long time_reftime;
74
75 static long time_adjust;
76
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
79
80 #ifdef CONFIG_NTP_PPS
81
82 /*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
88 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96 static int pps_valid; /* signal watchdog counter */
97 static long pps_tf[3]; /* phase median filter */
98 static long pps_jitter; /* current jitter (ns) */
99 static struct timespec pps_fbase; /* beginning of the last freq interval */
100 static int pps_shift; /* current interval duration (s) (shift) */
101 static int pps_intcnt; /* interval counter */
102 static s64 pps_freq; /* frequency offset (scaled ns/s) */
103 static long pps_stabil; /* current stability (scaled ns/s) */
104
105 /*
106 * PPS signal quality monitors
107 */
108 static long pps_calcnt; /* calibration intervals */
109 static long pps_jitcnt; /* jitter limit exceeded */
110 static long pps_stbcnt; /* stability limit exceeded */
111 static long pps_errcnt; /* calibration errors */
112
113
114 /* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117 static inline s64 ntp_offset_chunk(s64 offset)
118 {
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123 }
124
125 static inline void pps_reset_freq_interval(void)
126 {
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131 }
132
133 /**
134 * pps_clear - Clears the PPS state variables
135 *
136 * Must be called while holding a write on the xtime_lock
137 */
138 static inline void pps_clear(void)
139 {
140 pps_reset_freq_interval();
141 pps_tf[0] = 0;
142 pps_tf[1] = 0;
143 pps_tf[2] = 0;
144 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145 pps_freq = 0;
146 }
147
148 /* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
152 * Must be called while holding a write on the xtime_lock
153 */
154 static inline void pps_dec_valid(void)
155 {
156 if (pps_valid > 0)
157 pps_valid--;
158 else {
159 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 STA_PPSWANDER | STA_PPSERROR);
161 pps_clear();
162 }
163 }
164
165 static inline void pps_set_freq(s64 freq)
166 {
167 pps_freq = freq;
168 }
169
170 static inline int is_error_status(int status)
171 {
172 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173 /* PPS signal lost when either PPS time or
174 * PPS frequency synchronization requested
175 */
176 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177 && !(time_status & STA_PPSSIGNAL))
178 /* PPS jitter exceeded when
179 * PPS time synchronization requested */
180 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181 == (STA_PPSTIME|STA_PPSJITTER))
182 /* PPS wander exceeded or calibration error when
183 * PPS frequency synchronization requested
184 */
185 || ((time_status & STA_PPSFREQ)
186 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187 }
188
189 static inline void pps_fill_timex(struct timex *txc)
190 {
191 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 txc->jitter = pps_jitter;
194 if (!(time_status & STA_NANO))
195 txc->jitter /= NSEC_PER_USEC;
196 txc->shift = pps_shift;
197 txc->stabil = pps_stabil;
198 txc->jitcnt = pps_jitcnt;
199 txc->calcnt = pps_calcnt;
200 txc->errcnt = pps_errcnt;
201 txc->stbcnt = pps_stbcnt;
202 }
203
204 #else /* !CONFIG_NTP_PPS */
205
206 static inline s64 ntp_offset_chunk(s64 offset)
207 {
208 return shift_right(offset, SHIFT_PLL + time_constant);
209 }
210
211 static inline void pps_reset_freq_interval(void) {}
212 static inline void pps_clear(void) {}
213 static inline void pps_dec_valid(void) {}
214 static inline void pps_set_freq(s64 freq) {}
215
216 static inline int is_error_status(int status)
217 {
218 return status & (STA_UNSYNC|STA_CLOCKERR);
219 }
220
221 static inline void pps_fill_timex(struct timex *txc)
222 {
223 /* PPS is not implemented, so these are zero */
224 txc->ppsfreq = 0;
225 txc->jitter = 0;
226 txc->shift = 0;
227 txc->stabil = 0;
228 txc->jitcnt = 0;
229 txc->calcnt = 0;
230 txc->errcnt = 0;
231 txc->stbcnt = 0;
232 }
233
234 #endif /* CONFIG_NTP_PPS */
235
236
237 /**
238 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
239 *
240 */
241 static inline int ntp_synced(void)
242 {
243 return !(time_status & STA_UNSYNC);
244 }
245
246
247 /*
248 * NTP methods:
249 */
250
251 /*
252 * Update (tick_length, tick_length_base, tick_nsec), based
253 * on (tick_usec, ntp_tick_adj, time_freq):
254 */
255 static void ntp_update_frequency(void)
256 {
257 u64 second_length;
258 u64 new_base;
259
260 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
261 << NTP_SCALE_SHIFT;
262
263 second_length += ntp_tick_adj;
264 second_length += time_freq;
265
266 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
267 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
268
269 /*
270 * Don't wait for the next second_overflow, apply
271 * the change to the tick length immediately:
272 */
273 tick_length += new_base - tick_length_base;
274 tick_length_base = new_base;
275 }
276
277 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 {
279 time_status &= ~STA_MODE;
280
281 if (secs < MINSEC)
282 return 0;
283
284 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
285 return 0;
286
287 time_status |= STA_MODE;
288
289 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
290 }
291
292 static void ntp_update_offset(long offset)
293 {
294 s64 freq_adj;
295 s64 offset64;
296 long secs;
297
298 if (!(time_status & STA_PLL))
299 return;
300
301 if (!(time_status & STA_NANO))
302 offset *= NSEC_PER_USEC;
303
304 /*
305 * Scale the phase adjustment and
306 * clamp to the operating range.
307 */
308 offset = min(offset, MAXPHASE);
309 offset = max(offset, -MAXPHASE);
310
311 /*
312 * Select how the frequency is to be controlled
313 * and in which mode (PLL or FLL).
314 */
315 secs = get_seconds() - time_reftime;
316 if (unlikely(time_status & STA_FREQHOLD))
317 secs = 0;
318
319 time_reftime = get_seconds();
320
321 offset64 = offset;
322 freq_adj = ntp_update_offset_fll(offset64, secs);
323
324 /*
325 * Clamp update interval to reduce PLL gain with low
326 * sampling rate (e.g. intermittent network connection)
327 * to avoid instability.
328 */
329 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
330 secs = 1 << (SHIFT_PLL + 1 + time_constant);
331
332 freq_adj += (offset64 * secs) <<
333 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334
335 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
336
337 time_freq = max(freq_adj, -MAXFREQ_SCALED);
338
339 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
340 }
341
342 /**
343 * ntp_clear - Clears the NTP state variables
344 *
345 * Must be called while holding a write on the xtime_lock
346 */
347 void ntp_clear(void)
348 {
349 time_adjust = 0; /* stop active adjtime() */
350 time_status |= STA_UNSYNC;
351 time_maxerror = NTP_PHASE_LIMIT;
352 time_esterror = NTP_PHASE_LIMIT;
353
354 ntp_update_frequency();
355
356 tick_length = tick_length_base;
357 time_offset = 0;
358
359 /* Clear PPS state variables */
360 pps_clear();
361 }
362
363 /*
364 * Leap second processing. If in leap-insert state at the end of the
365 * day, the system clock is set back one second; if in leap-delete
366 * state, the system clock is set ahead one second.
367 */
368 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
369 {
370 enum hrtimer_restart res = HRTIMER_NORESTART;
371
372 write_seqlock(&xtime_lock);
373
374 switch (time_state) {
375 case TIME_OK:
376 break;
377 case TIME_INS:
378 timekeeping_leap_insert(-1);
379 time_state = TIME_OOP;
380 printk(KERN_NOTICE
381 "Clock: inserting leap second 23:59:60 UTC\n");
382 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
383 res = HRTIMER_RESTART;
384 break;
385 case TIME_DEL:
386 timekeeping_leap_insert(1);
387 time_tai--;
388 time_state = TIME_WAIT;
389 printk(KERN_NOTICE
390 "Clock: deleting leap second 23:59:59 UTC\n");
391 break;
392 case TIME_OOP:
393 time_tai++;
394 time_state = TIME_WAIT;
395 /* fall through */
396 case TIME_WAIT:
397 if (!(time_status & (STA_INS | STA_DEL)))
398 time_state = TIME_OK;
399 break;
400 }
401
402 write_sequnlock(&xtime_lock);
403
404 return res;
405 }
406
407 /*
408 * this routine handles the overflow of the microsecond field
409 *
410 * The tricky bits of code to handle the accurate clock support
411 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
412 * They were originally developed for SUN and DEC kernels.
413 * All the kudos should go to Dave for this stuff.
414 */
415 void second_overflow(void)
416 {
417 s64 delta;
418
419 /* Bump the maxerror field */
420 time_maxerror += MAXFREQ / NSEC_PER_USEC;
421 if (time_maxerror > NTP_PHASE_LIMIT) {
422 time_maxerror = NTP_PHASE_LIMIT;
423 time_status |= STA_UNSYNC;
424 }
425
426 /* Compute the phase adjustment for the next second */
427 tick_length = tick_length_base;
428
429 delta = ntp_offset_chunk(time_offset);
430 time_offset -= delta;
431 tick_length += delta;
432
433 /* Check PPS signal */
434 pps_dec_valid();
435
436 if (!time_adjust)
437 return;
438
439 if (time_adjust > MAX_TICKADJ) {
440 time_adjust -= MAX_TICKADJ;
441 tick_length += MAX_TICKADJ_SCALED;
442 return;
443 }
444
445 if (time_adjust < -MAX_TICKADJ) {
446 time_adjust += MAX_TICKADJ;
447 tick_length -= MAX_TICKADJ_SCALED;
448 return;
449 }
450
451 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
452 << NTP_SCALE_SHIFT;
453 time_adjust = 0;
454 }
455
456 #ifdef CONFIG_GENERIC_CMOS_UPDATE
457
458 /* Disable the cmos update - used by virtualization and embedded */
459 int no_sync_cmos_clock __read_mostly;
460
461 static void sync_cmos_clock(struct work_struct *work);
462
463 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
464
465 static void sync_cmos_clock(struct work_struct *work)
466 {
467 struct timespec now, next;
468 int fail = 1;
469
470 /*
471 * If we have an externally synchronized Linux clock, then update
472 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
473 * called as close as possible to 500 ms before the new second starts.
474 * This code is run on a timer. If the clock is set, that timer
475 * may not expire at the correct time. Thus, we adjust...
476 */
477 if (!ntp_synced()) {
478 /*
479 * Not synced, exit, do not restart a timer (if one is
480 * running, let it run out).
481 */
482 return;
483 }
484
485 getnstimeofday(&now);
486 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
487 fail = update_persistent_clock(now);
488
489 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
490 if (next.tv_nsec <= 0)
491 next.tv_nsec += NSEC_PER_SEC;
492
493 if (!fail)
494 next.tv_sec = 659;
495 else
496 next.tv_sec = 0;
497
498 if (next.tv_nsec >= NSEC_PER_SEC) {
499 next.tv_sec++;
500 next.tv_nsec -= NSEC_PER_SEC;
501 }
502 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
503 }
504
505 static void notify_cmos_timer(void)
506 {
507 if (!no_sync_cmos_clock)
508 schedule_delayed_work(&sync_cmos_work, 0);
509 }
510
511 #else
512 static inline void notify_cmos_timer(void) { }
513 #endif
514
515 /*
516 * Start the leap seconds timer:
517 */
518 static inline void ntp_start_leap_timer(struct timespec *ts)
519 {
520 long now = ts->tv_sec;
521
522 if (time_status & STA_INS) {
523 time_state = TIME_INS;
524 now += 86400 - now % 86400;
525 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
526
527 return;
528 }
529
530 if (time_status & STA_DEL) {
531 time_state = TIME_DEL;
532 now += 86400 - (now + 1) % 86400;
533 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
534 }
535 }
536
537 /*
538 * Propagate a new txc->status value into the NTP state:
539 */
540 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
541 {
542 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
543 time_state = TIME_OK;
544 time_status = STA_UNSYNC;
545 /* restart PPS frequency calibration */
546 pps_reset_freq_interval();
547 }
548
549 /*
550 * If we turn on PLL adjustments then reset the
551 * reference time to current time.
552 */
553 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
554 time_reftime = get_seconds();
555
556 /* only set allowed bits */
557 time_status &= STA_RONLY;
558 time_status |= txc->status & ~STA_RONLY;
559
560 switch (time_state) {
561 case TIME_OK:
562 ntp_start_leap_timer(ts);
563 break;
564 case TIME_INS:
565 case TIME_DEL:
566 time_state = TIME_OK;
567 ntp_start_leap_timer(ts);
568 case TIME_WAIT:
569 if (!(time_status & (STA_INS | STA_DEL)))
570 time_state = TIME_OK;
571 break;
572 case TIME_OOP:
573 hrtimer_restart(&leap_timer);
574 break;
575 }
576 }
577 /*
578 * Called with the xtime lock held, so we can access and modify
579 * all the global NTP state:
580 */
581 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
582 {
583 if (txc->modes & ADJ_STATUS)
584 process_adj_status(txc, ts);
585
586 if (txc->modes & ADJ_NANO)
587 time_status |= STA_NANO;
588
589 if (txc->modes & ADJ_MICRO)
590 time_status &= ~STA_NANO;
591
592 if (txc->modes & ADJ_FREQUENCY) {
593 time_freq = txc->freq * PPM_SCALE;
594 time_freq = min(time_freq, MAXFREQ_SCALED);
595 time_freq = max(time_freq, -MAXFREQ_SCALED);
596 /* update pps_freq */
597 pps_set_freq(time_freq);
598 }
599
600 if (txc->modes & ADJ_MAXERROR)
601 time_maxerror = txc->maxerror;
602
603 if (txc->modes & ADJ_ESTERROR)
604 time_esterror = txc->esterror;
605
606 if (txc->modes & ADJ_TIMECONST) {
607 time_constant = txc->constant;
608 if (!(time_status & STA_NANO))
609 time_constant += 4;
610 time_constant = min(time_constant, (long)MAXTC);
611 time_constant = max(time_constant, 0l);
612 }
613
614 if (txc->modes & ADJ_TAI && txc->constant > 0)
615 time_tai = txc->constant;
616
617 if (txc->modes & ADJ_OFFSET)
618 ntp_update_offset(txc->offset);
619
620 if (txc->modes & ADJ_TICK)
621 tick_usec = txc->tick;
622
623 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
624 ntp_update_frequency();
625 }
626
627 /*
628 * adjtimex mainly allows reading (and writing, if superuser) of
629 * kernel time-keeping variables. used by xntpd.
630 */
631 int do_adjtimex(struct timex *txc)
632 {
633 struct timespec ts;
634 int result;
635
636 /* Validate the data before disabling interrupts */
637 if (txc->modes & ADJ_ADJTIME) {
638 /* singleshot must not be used with any other mode bits */
639 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
640 return -EINVAL;
641 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
642 !capable(CAP_SYS_TIME))
643 return -EPERM;
644 } else {
645 /* In order to modify anything, you gotta be super-user! */
646 if (txc->modes && !capable(CAP_SYS_TIME))
647 return -EPERM;
648
649 /*
650 * if the quartz is off by more than 10% then
651 * something is VERY wrong!
652 */
653 if (txc->modes & ADJ_TICK &&
654 (txc->tick < 900000/USER_HZ ||
655 txc->tick > 1100000/USER_HZ))
656 return -EINVAL;
657
658 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
659 hrtimer_cancel(&leap_timer);
660 }
661
662 if (txc->modes & ADJ_SETOFFSET) {
663 struct timespec delta;
664 delta.tv_sec = txc->time.tv_sec;
665 delta.tv_nsec = txc->time.tv_usec;
666 if (!capable(CAP_SYS_TIME))
667 return -EPERM;
668 if (!(txc->modes & ADJ_NANO))
669 delta.tv_nsec *= 1000;
670 result = timekeeping_inject_offset(&delta);
671 if (result)
672 return result;
673 }
674
675 getnstimeofday(&ts);
676
677 write_seqlock_irq(&xtime_lock);
678
679 if (txc->modes & ADJ_ADJTIME) {
680 long save_adjust = time_adjust;
681
682 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
683 /* adjtime() is independent from ntp_adjtime() */
684 time_adjust = txc->offset;
685 ntp_update_frequency();
686 }
687 txc->offset = save_adjust;
688 } else {
689
690 /* If there are input parameters, then process them: */
691 if (txc->modes)
692 process_adjtimex_modes(txc, &ts);
693
694 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
695 NTP_SCALE_SHIFT);
696 if (!(time_status & STA_NANO))
697 txc->offset /= NSEC_PER_USEC;
698 }
699
700 result = time_state; /* mostly `TIME_OK' */
701 /* check for errors */
702 if (is_error_status(time_status))
703 result = TIME_ERROR;
704
705 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
706 PPM_SCALE_INV, NTP_SCALE_SHIFT);
707 txc->maxerror = time_maxerror;
708 txc->esterror = time_esterror;
709 txc->status = time_status;
710 txc->constant = time_constant;
711 txc->precision = 1;
712 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
713 txc->tick = tick_usec;
714 txc->tai = time_tai;
715
716 /* fill PPS status fields */
717 pps_fill_timex(txc);
718
719 write_sequnlock_irq(&xtime_lock);
720
721 txc->time.tv_sec = ts.tv_sec;
722 txc->time.tv_usec = ts.tv_nsec;
723 if (!(time_status & STA_NANO))
724 txc->time.tv_usec /= NSEC_PER_USEC;
725
726 notify_cmos_timer();
727
728 return result;
729 }
730
731 #ifdef CONFIG_NTP_PPS
732
733 /* actually struct pps_normtime is good old struct timespec, but it is
734 * semantically different (and it is the reason why it was invented):
735 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
736 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
737 struct pps_normtime {
738 __kernel_time_t sec; /* seconds */
739 long nsec; /* nanoseconds */
740 };
741
742 /* normalize the timestamp so that nsec is in the
743 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
744 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
745 {
746 struct pps_normtime norm = {
747 .sec = ts.tv_sec,
748 .nsec = ts.tv_nsec
749 };
750
751 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
752 norm.nsec -= NSEC_PER_SEC;
753 norm.sec++;
754 }
755
756 return norm;
757 }
758
759 /* get current phase correction and jitter */
760 static inline long pps_phase_filter_get(long *jitter)
761 {
762 *jitter = pps_tf[0] - pps_tf[1];
763 if (*jitter < 0)
764 *jitter = -*jitter;
765
766 /* TODO: test various filters */
767 return pps_tf[0];
768 }
769
770 /* add the sample to the phase filter */
771 static inline void pps_phase_filter_add(long err)
772 {
773 pps_tf[2] = pps_tf[1];
774 pps_tf[1] = pps_tf[0];
775 pps_tf[0] = err;
776 }
777
778 /* decrease frequency calibration interval length.
779 * It is halved after four consecutive unstable intervals.
780 */
781 static inline void pps_dec_freq_interval(void)
782 {
783 if (--pps_intcnt <= -PPS_INTCOUNT) {
784 pps_intcnt = -PPS_INTCOUNT;
785 if (pps_shift > PPS_INTMIN) {
786 pps_shift--;
787 pps_intcnt = 0;
788 }
789 }
790 }
791
792 /* increase frequency calibration interval length.
793 * It is doubled after four consecutive stable intervals.
794 */
795 static inline void pps_inc_freq_interval(void)
796 {
797 if (++pps_intcnt >= PPS_INTCOUNT) {
798 pps_intcnt = PPS_INTCOUNT;
799 if (pps_shift < PPS_INTMAX) {
800 pps_shift++;
801 pps_intcnt = 0;
802 }
803 }
804 }
805
806 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
807 * timestamps
808 *
809 * At the end of the calibration interval the difference between the
810 * first and last MONOTONIC_RAW clock timestamps divided by the length
811 * of the interval becomes the frequency update. If the interval was
812 * too long, the data are discarded.
813 * Returns the difference between old and new frequency values.
814 */
815 static long hardpps_update_freq(struct pps_normtime freq_norm)
816 {
817 long delta, delta_mod;
818 s64 ftemp;
819
820 /* check if the frequency interval was too long */
821 if (freq_norm.sec > (2 << pps_shift)) {
822 time_status |= STA_PPSERROR;
823 pps_errcnt++;
824 pps_dec_freq_interval();
825 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
826 freq_norm.sec);
827 return 0;
828 }
829
830 /* here the raw frequency offset and wander (stability) is
831 * calculated. If the wander is less than the wander threshold
832 * the interval is increased; otherwise it is decreased.
833 */
834 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
835 freq_norm.sec);
836 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
837 pps_freq = ftemp;
838 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
839 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
840 time_status |= STA_PPSWANDER;
841 pps_stbcnt++;
842 pps_dec_freq_interval();
843 } else { /* good sample */
844 pps_inc_freq_interval();
845 }
846
847 /* the stability metric is calculated as the average of recent
848 * frequency changes, but is used only for performance
849 * monitoring
850 */
851 delta_mod = delta;
852 if (delta_mod < 0)
853 delta_mod = -delta_mod;
854 pps_stabil += (div_s64(((s64)delta_mod) <<
855 (NTP_SCALE_SHIFT - SHIFT_USEC),
856 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
857
858 /* if enabled, the system clock frequency is updated */
859 if ((time_status & STA_PPSFREQ) != 0 &&
860 (time_status & STA_FREQHOLD) == 0) {
861 time_freq = pps_freq;
862 ntp_update_frequency();
863 }
864
865 return delta;
866 }
867
868 /* correct REALTIME clock phase error against PPS signal */
869 static void hardpps_update_phase(long error)
870 {
871 long correction = -error;
872 long jitter;
873
874 /* add the sample to the median filter */
875 pps_phase_filter_add(correction);
876 correction = pps_phase_filter_get(&jitter);
877
878 /* Nominal jitter is due to PPS signal noise. If it exceeds the
879 * threshold, the sample is discarded; otherwise, if so enabled,
880 * the time offset is updated.
881 */
882 if (jitter > (pps_jitter << PPS_POPCORN)) {
883 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
884 jitter, (pps_jitter << PPS_POPCORN));
885 time_status |= STA_PPSJITTER;
886 pps_jitcnt++;
887 } else if (time_status & STA_PPSTIME) {
888 /* correct the time using the phase offset */
889 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
890 NTP_INTERVAL_FREQ);
891 /* cancel running adjtime() */
892 time_adjust = 0;
893 }
894 /* update jitter */
895 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
896 }
897
898 /*
899 * hardpps() - discipline CPU clock oscillator to external PPS signal
900 *
901 * This routine is called at each PPS signal arrival in order to
902 * discipline the CPU clock oscillator to the PPS signal. It takes two
903 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
904 * is used to correct clock phase error and the latter is used to
905 * correct the frequency.
906 *
907 * This code is based on David Mills's reference nanokernel
908 * implementation. It was mostly rewritten but keeps the same idea.
909 */
910 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
911 {
912 struct pps_normtime pts_norm, freq_norm;
913 unsigned long flags;
914
915 pts_norm = pps_normalize_ts(*phase_ts);
916
917 write_seqlock_irqsave(&xtime_lock, flags);
918
919 /* clear the error bits, they will be set again if needed */
920 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
921
922 /* indicate signal presence */
923 time_status |= STA_PPSSIGNAL;
924 pps_valid = PPS_VALID;
925
926 /* when called for the first time,
927 * just start the frequency interval */
928 if (unlikely(pps_fbase.tv_sec == 0)) {
929 pps_fbase = *raw_ts;
930 write_sequnlock_irqrestore(&xtime_lock, flags);
931 return;
932 }
933
934 /* ok, now we have a base for frequency calculation */
935 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
936
937 /* check that the signal is in the range
938 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
939 if ((freq_norm.sec == 0) ||
940 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
941 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
942 time_status |= STA_PPSJITTER;
943 /* restart the frequency calibration interval */
944 pps_fbase = *raw_ts;
945 write_sequnlock_irqrestore(&xtime_lock, flags);
946 pr_err("hardpps: PPSJITTER: bad pulse\n");
947 return;
948 }
949
950 /* signal is ok */
951
952 /* check if the current frequency interval is finished */
953 if (freq_norm.sec >= (1 << pps_shift)) {
954 pps_calcnt++;
955 /* restart the frequency calibration interval */
956 pps_fbase = *raw_ts;
957 hardpps_update_freq(freq_norm);
958 }
959
960 hardpps_update_phase(pts_norm.nsec);
961
962 write_sequnlock_irqrestore(&xtime_lock, flags);
963 }
964 EXPORT_SYMBOL(hardpps);
965
966 #endif /* CONFIG_NTP_PPS */
967
968 static int __init ntp_tick_adj_setup(char *str)
969 {
970 ntp_tick_adj = simple_strtol(str, NULL, 0);
971 ntp_tick_adj <<= NTP_SCALE_SHIFT;
972
973 return 1;
974 }
975
976 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
977
978 void __init ntp_init(void)
979 {
980 ntp_clear();
981 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
982 leap_timer.function = ntp_leap_second;
983 }
This page took 0.051497 seconds and 5 git commands to generate.