Merge branch 'for-linus' of git://git.samba.org/sfrench/cifs-2.6
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19
20 #include "tick-internal.h"
21 #include "ntp_internal.h"
22
23 /*
24 * NTP timekeeping variables:
25 *
26 * Note: All of the NTP state is protected by the timekeeping locks.
27 */
28
29
30 /* USER_HZ period (usecs): */
31 unsigned long tick_usec = TICK_USEC;
32
33 /* SHIFTED_HZ period (nsecs): */
34 unsigned long tick_nsec;
35
36 static u64 tick_length;
37 static u64 tick_length_base;
38
39 #define MAX_TICKADJ 500LL /* usecs */
40 #define MAX_TICKADJ_SCALED \
41 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42
43 /*
44 * phase-lock loop variables
45 */
46
47 /*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52 static int time_state = TIME_OK;
53
54 /* clock status bits: */
55 static int time_status = STA_UNSYNC;
56
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
59
60 /* pll time constant: */
61 static long time_constant = 2;
62
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
65
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
68
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
71
72 /* time at last adjustment (secs): */
73 static long time_reftime;
74
75 static long time_adjust;
76
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
79
80 #ifdef CONFIG_NTP_PPS
81
82 /*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
88 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96 static int pps_valid; /* signal watchdog counter */
97 static long pps_tf[3]; /* phase median filter */
98 static long pps_jitter; /* current jitter (ns) */
99 static struct timespec pps_fbase; /* beginning of the last freq interval */
100 static int pps_shift; /* current interval duration (s) (shift) */
101 static int pps_intcnt; /* interval counter */
102 static s64 pps_freq; /* frequency offset (scaled ns/s) */
103 static long pps_stabil; /* current stability (scaled ns/s) */
104
105 /*
106 * PPS signal quality monitors
107 */
108 static long pps_calcnt; /* calibration intervals */
109 static long pps_jitcnt; /* jitter limit exceeded */
110 static long pps_stbcnt; /* stability limit exceeded */
111 static long pps_errcnt; /* calibration errors */
112
113
114 /* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117 static inline s64 ntp_offset_chunk(s64 offset)
118 {
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123 }
124
125 static inline void pps_reset_freq_interval(void)
126 {
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131 }
132
133 /**
134 * pps_clear - Clears the PPS state variables
135 */
136 static inline void pps_clear(void)
137 {
138 pps_reset_freq_interval();
139 pps_tf[0] = 0;
140 pps_tf[1] = 0;
141 pps_tf[2] = 0;
142 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143 pps_freq = 0;
144 }
145
146 /* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
149 */
150 static inline void pps_dec_valid(void)
151 {
152 if (pps_valid > 0)
153 pps_valid--;
154 else {
155 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
156 STA_PPSWANDER | STA_PPSERROR);
157 pps_clear();
158 }
159 }
160
161 static inline void pps_set_freq(s64 freq)
162 {
163 pps_freq = freq;
164 }
165
166 static inline int is_error_status(int status)
167 {
168 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
169 /* PPS signal lost when either PPS time or
170 * PPS frequency synchronization requested
171 */
172 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
173 && !(time_status & STA_PPSSIGNAL))
174 /* PPS jitter exceeded when
175 * PPS time synchronization requested */
176 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
177 == (STA_PPSTIME|STA_PPSJITTER))
178 /* PPS wander exceeded or calibration error when
179 * PPS frequency synchronization requested
180 */
181 || ((time_status & STA_PPSFREQ)
182 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
183 }
184
185 static inline void pps_fill_timex(struct timex *txc)
186 {
187 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
188 PPM_SCALE_INV, NTP_SCALE_SHIFT);
189 txc->jitter = pps_jitter;
190 if (!(time_status & STA_NANO))
191 txc->jitter /= NSEC_PER_USEC;
192 txc->shift = pps_shift;
193 txc->stabil = pps_stabil;
194 txc->jitcnt = pps_jitcnt;
195 txc->calcnt = pps_calcnt;
196 txc->errcnt = pps_errcnt;
197 txc->stbcnt = pps_stbcnt;
198 }
199
200 #else /* !CONFIG_NTP_PPS */
201
202 static inline s64 ntp_offset_chunk(s64 offset)
203 {
204 return shift_right(offset, SHIFT_PLL + time_constant);
205 }
206
207 static inline void pps_reset_freq_interval(void) {}
208 static inline void pps_clear(void) {}
209 static inline void pps_dec_valid(void) {}
210 static inline void pps_set_freq(s64 freq) {}
211
212 static inline int is_error_status(int status)
213 {
214 return status & (STA_UNSYNC|STA_CLOCKERR);
215 }
216
217 static inline void pps_fill_timex(struct timex *txc)
218 {
219 /* PPS is not implemented, so these are zero */
220 txc->ppsfreq = 0;
221 txc->jitter = 0;
222 txc->shift = 0;
223 txc->stabil = 0;
224 txc->jitcnt = 0;
225 txc->calcnt = 0;
226 txc->errcnt = 0;
227 txc->stbcnt = 0;
228 }
229
230 #endif /* CONFIG_NTP_PPS */
231
232
233 /**
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
235 *
236 */
237 static inline int ntp_synced(void)
238 {
239 return !(time_status & STA_UNSYNC);
240 }
241
242
243 /*
244 * NTP methods:
245 */
246
247 /*
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
250 */
251 static void ntp_update_frequency(void)
252 {
253 u64 second_length;
254 u64 new_base;
255
256 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
257 << NTP_SCALE_SHIFT;
258
259 second_length += ntp_tick_adj;
260 second_length += time_freq;
261
262 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
263 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
264
265 /*
266 * Don't wait for the next second_overflow, apply
267 * the change to the tick length immediately:
268 */
269 tick_length += new_base - tick_length_base;
270 tick_length_base = new_base;
271 }
272
273 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
274 {
275 time_status &= ~STA_MODE;
276
277 if (secs < MINSEC)
278 return 0;
279
280 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
281 return 0;
282
283 time_status |= STA_MODE;
284
285 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
286 }
287
288 static void ntp_update_offset(long offset)
289 {
290 s64 freq_adj;
291 s64 offset64;
292 long secs;
293
294 if (!(time_status & STA_PLL))
295 return;
296
297 if (!(time_status & STA_NANO))
298 offset *= NSEC_PER_USEC;
299
300 /*
301 * Scale the phase adjustment and
302 * clamp to the operating range.
303 */
304 offset = min(offset, MAXPHASE);
305 offset = max(offset, -MAXPHASE);
306
307 /*
308 * Select how the frequency is to be controlled
309 * and in which mode (PLL or FLL).
310 */
311 secs = get_seconds() - time_reftime;
312 if (unlikely(time_status & STA_FREQHOLD))
313 secs = 0;
314
315 time_reftime = get_seconds();
316
317 offset64 = offset;
318 freq_adj = ntp_update_offset_fll(offset64, secs);
319
320 /*
321 * Clamp update interval to reduce PLL gain with low
322 * sampling rate (e.g. intermittent network connection)
323 * to avoid instability.
324 */
325 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
326 secs = 1 << (SHIFT_PLL + 1 + time_constant);
327
328 freq_adj += (offset64 * secs) <<
329 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
330
331 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
332
333 time_freq = max(freq_adj, -MAXFREQ_SCALED);
334
335 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
336 }
337
338 /**
339 * ntp_clear - Clears the NTP state variables
340 */
341 void ntp_clear(void)
342 {
343 time_adjust = 0; /* stop active adjtime() */
344 time_status |= STA_UNSYNC;
345 time_maxerror = NTP_PHASE_LIMIT;
346 time_esterror = NTP_PHASE_LIMIT;
347
348 ntp_update_frequency();
349
350 tick_length = tick_length_base;
351 time_offset = 0;
352
353 /* Clear PPS state variables */
354 pps_clear();
355 }
356
357
358 u64 ntp_tick_length(void)
359 {
360 return tick_length;
361 }
362
363
364 /*
365 * this routine handles the overflow of the microsecond field
366 *
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
371 *
372 * Also handles leap second processing, and returns leap offset
373 */
374 int second_overflow(unsigned long secs)
375 {
376 s64 delta;
377 int leap = 0;
378
379 /*
380 * Leap second processing. If in leap-insert state at the end of the
381 * day, the system clock is set back one second; if in leap-delete
382 * state, the system clock is set ahead one second.
383 */
384 switch (time_state) {
385 case TIME_OK:
386 if (time_status & STA_INS)
387 time_state = TIME_INS;
388 else if (time_status & STA_DEL)
389 time_state = TIME_DEL;
390 break;
391 case TIME_INS:
392 if (!(time_status & STA_INS))
393 time_state = TIME_OK;
394 else if (secs % 86400 == 0) {
395 leap = -1;
396 time_state = TIME_OOP;
397 printk(KERN_NOTICE
398 "Clock: inserting leap second 23:59:60 UTC\n");
399 }
400 break;
401 case TIME_DEL:
402 if (!(time_status & STA_DEL))
403 time_state = TIME_OK;
404 else if ((secs + 1) % 86400 == 0) {
405 leap = 1;
406 time_state = TIME_WAIT;
407 printk(KERN_NOTICE
408 "Clock: deleting leap second 23:59:59 UTC\n");
409 }
410 break;
411 case TIME_OOP:
412 time_state = TIME_WAIT;
413 break;
414
415 case TIME_WAIT:
416 if (!(time_status & (STA_INS | STA_DEL)))
417 time_state = TIME_OK;
418 break;
419 }
420
421
422 /* Bump the maxerror field */
423 time_maxerror += MAXFREQ / NSEC_PER_USEC;
424 if (time_maxerror > NTP_PHASE_LIMIT) {
425 time_maxerror = NTP_PHASE_LIMIT;
426 time_status |= STA_UNSYNC;
427 }
428
429 /* Compute the phase adjustment for the next second */
430 tick_length = tick_length_base;
431
432 delta = ntp_offset_chunk(time_offset);
433 time_offset -= delta;
434 tick_length += delta;
435
436 /* Check PPS signal */
437 pps_dec_valid();
438
439 if (!time_adjust)
440 goto out;
441
442 if (time_adjust > MAX_TICKADJ) {
443 time_adjust -= MAX_TICKADJ;
444 tick_length += MAX_TICKADJ_SCALED;
445 goto out;
446 }
447
448 if (time_adjust < -MAX_TICKADJ) {
449 time_adjust += MAX_TICKADJ;
450 tick_length -= MAX_TICKADJ_SCALED;
451 goto out;
452 }
453
454 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
455 << NTP_SCALE_SHIFT;
456 time_adjust = 0;
457
458 out:
459 return leap;
460 }
461
462 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
463 static void sync_cmos_clock(struct work_struct *work);
464
465 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
466
467 static void sync_cmos_clock(struct work_struct *work)
468 {
469 struct timespec now, next;
470 int fail = 1;
471
472 /*
473 * If we have an externally synchronized Linux clock, then update
474 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
475 * called as close as possible to 500 ms before the new second starts.
476 * This code is run on a timer. If the clock is set, that timer
477 * may not expire at the correct time. Thus, we adjust...
478 */
479 if (!ntp_synced()) {
480 /*
481 * Not synced, exit, do not restart a timer (if one is
482 * running, let it run out).
483 */
484 return;
485 }
486
487 getnstimeofday(&now);
488 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
489 struct timespec adjust = now;
490
491 fail = -ENODEV;
492 if (persistent_clock_is_local)
493 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
494 #ifdef CONFIG_GENERIC_CMOS_UPDATE
495 fail = update_persistent_clock(adjust);
496 #endif
497 #ifdef CONFIG_RTC_SYSTOHC
498 if (fail == -ENODEV)
499 fail = rtc_set_ntp_time(adjust);
500 #endif
501 }
502
503 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
504 if (next.tv_nsec <= 0)
505 next.tv_nsec += NSEC_PER_SEC;
506
507 if (!fail || fail == -ENODEV)
508 next.tv_sec = 659;
509 else
510 next.tv_sec = 0;
511
512 if (next.tv_nsec >= NSEC_PER_SEC) {
513 next.tv_sec++;
514 next.tv_nsec -= NSEC_PER_SEC;
515 }
516 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
517 }
518
519 void ntp_notify_cmos_timer(void)
520 {
521 schedule_delayed_work(&sync_cmos_work, 0);
522 }
523
524 #else
525 void ntp_notify_cmos_timer(void) { }
526 #endif
527
528
529 /*
530 * Propagate a new txc->status value into the NTP state:
531 */
532 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
533 {
534 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
535 time_state = TIME_OK;
536 time_status = STA_UNSYNC;
537 /* restart PPS frequency calibration */
538 pps_reset_freq_interval();
539 }
540
541 /*
542 * If we turn on PLL adjustments then reset the
543 * reference time to current time.
544 */
545 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
546 time_reftime = get_seconds();
547
548 /* only set allowed bits */
549 time_status &= STA_RONLY;
550 time_status |= txc->status & ~STA_RONLY;
551 }
552
553
554 static inline void process_adjtimex_modes(struct timex *txc,
555 struct timespec *ts,
556 s32 *time_tai)
557 {
558 if (txc->modes & ADJ_STATUS)
559 process_adj_status(txc, ts);
560
561 if (txc->modes & ADJ_NANO)
562 time_status |= STA_NANO;
563
564 if (txc->modes & ADJ_MICRO)
565 time_status &= ~STA_NANO;
566
567 if (txc->modes & ADJ_FREQUENCY) {
568 time_freq = txc->freq * PPM_SCALE;
569 time_freq = min(time_freq, MAXFREQ_SCALED);
570 time_freq = max(time_freq, -MAXFREQ_SCALED);
571 /* update pps_freq */
572 pps_set_freq(time_freq);
573 }
574
575 if (txc->modes & ADJ_MAXERROR)
576 time_maxerror = txc->maxerror;
577
578 if (txc->modes & ADJ_ESTERROR)
579 time_esterror = txc->esterror;
580
581 if (txc->modes & ADJ_TIMECONST) {
582 time_constant = txc->constant;
583 if (!(time_status & STA_NANO))
584 time_constant += 4;
585 time_constant = min(time_constant, (long)MAXTC);
586 time_constant = max(time_constant, 0l);
587 }
588
589 if (txc->modes & ADJ_TAI && txc->constant > 0)
590 *time_tai = txc->constant;
591
592 if (txc->modes & ADJ_OFFSET)
593 ntp_update_offset(txc->offset);
594
595 if (txc->modes & ADJ_TICK)
596 tick_usec = txc->tick;
597
598 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
599 ntp_update_frequency();
600 }
601
602
603
604 /**
605 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
606 */
607 int ntp_validate_timex(struct timex *txc)
608 {
609 if (txc->modes & ADJ_ADJTIME) {
610 /* singleshot must not be used with any other mode bits */
611 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
612 return -EINVAL;
613 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
614 !capable(CAP_SYS_TIME))
615 return -EPERM;
616 } else {
617 /* In order to modify anything, you gotta be super-user! */
618 if (txc->modes && !capable(CAP_SYS_TIME))
619 return -EPERM;
620 /*
621 * if the quartz is off by more than 10% then
622 * something is VERY wrong!
623 */
624 if (txc->modes & ADJ_TICK &&
625 (txc->tick < 900000/USER_HZ ||
626 txc->tick > 1100000/USER_HZ))
627 return -EINVAL;
628 }
629
630 if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
631 return -EPERM;
632
633 return 0;
634 }
635
636
637 /*
638 * adjtimex mainly allows reading (and writing, if superuser) of
639 * kernel time-keeping variables. used by xntpd.
640 */
641 int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai)
642 {
643 int result;
644
645 if (txc->modes & ADJ_ADJTIME) {
646 long save_adjust = time_adjust;
647
648 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
649 /* adjtime() is independent from ntp_adjtime() */
650 time_adjust = txc->offset;
651 ntp_update_frequency();
652 }
653 txc->offset = save_adjust;
654 } else {
655
656 /* If there are input parameters, then process them: */
657 if (txc->modes)
658 process_adjtimex_modes(txc, ts, time_tai);
659
660 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
661 NTP_SCALE_SHIFT);
662 if (!(time_status & STA_NANO))
663 txc->offset /= NSEC_PER_USEC;
664 }
665
666 result = time_state; /* mostly `TIME_OK' */
667 /* check for errors */
668 if (is_error_status(time_status))
669 result = TIME_ERROR;
670
671 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
672 PPM_SCALE_INV, NTP_SCALE_SHIFT);
673 txc->maxerror = time_maxerror;
674 txc->esterror = time_esterror;
675 txc->status = time_status;
676 txc->constant = time_constant;
677 txc->precision = 1;
678 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
679 txc->tick = tick_usec;
680 txc->tai = *time_tai;
681
682 /* fill PPS status fields */
683 pps_fill_timex(txc);
684
685 txc->time.tv_sec = ts->tv_sec;
686 txc->time.tv_usec = ts->tv_nsec;
687 if (!(time_status & STA_NANO))
688 txc->time.tv_usec /= NSEC_PER_USEC;
689
690 return result;
691 }
692
693 #ifdef CONFIG_NTP_PPS
694
695 /* actually struct pps_normtime is good old struct timespec, but it is
696 * semantically different (and it is the reason why it was invented):
697 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
698 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
699 struct pps_normtime {
700 __kernel_time_t sec; /* seconds */
701 long nsec; /* nanoseconds */
702 };
703
704 /* normalize the timestamp so that nsec is in the
705 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
706 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
707 {
708 struct pps_normtime norm = {
709 .sec = ts.tv_sec,
710 .nsec = ts.tv_nsec
711 };
712
713 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
714 norm.nsec -= NSEC_PER_SEC;
715 norm.sec++;
716 }
717
718 return norm;
719 }
720
721 /* get current phase correction and jitter */
722 static inline long pps_phase_filter_get(long *jitter)
723 {
724 *jitter = pps_tf[0] - pps_tf[1];
725 if (*jitter < 0)
726 *jitter = -*jitter;
727
728 /* TODO: test various filters */
729 return pps_tf[0];
730 }
731
732 /* add the sample to the phase filter */
733 static inline void pps_phase_filter_add(long err)
734 {
735 pps_tf[2] = pps_tf[1];
736 pps_tf[1] = pps_tf[0];
737 pps_tf[0] = err;
738 }
739
740 /* decrease frequency calibration interval length.
741 * It is halved after four consecutive unstable intervals.
742 */
743 static inline void pps_dec_freq_interval(void)
744 {
745 if (--pps_intcnt <= -PPS_INTCOUNT) {
746 pps_intcnt = -PPS_INTCOUNT;
747 if (pps_shift > PPS_INTMIN) {
748 pps_shift--;
749 pps_intcnt = 0;
750 }
751 }
752 }
753
754 /* increase frequency calibration interval length.
755 * It is doubled after four consecutive stable intervals.
756 */
757 static inline void pps_inc_freq_interval(void)
758 {
759 if (++pps_intcnt >= PPS_INTCOUNT) {
760 pps_intcnt = PPS_INTCOUNT;
761 if (pps_shift < PPS_INTMAX) {
762 pps_shift++;
763 pps_intcnt = 0;
764 }
765 }
766 }
767
768 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
769 * timestamps
770 *
771 * At the end of the calibration interval the difference between the
772 * first and last MONOTONIC_RAW clock timestamps divided by the length
773 * of the interval becomes the frequency update. If the interval was
774 * too long, the data are discarded.
775 * Returns the difference between old and new frequency values.
776 */
777 static long hardpps_update_freq(struct pps_normtime freq_norm)
778 {
779 long delta, delta_mod;
780 s64 ftemp;
781
782 /* check if the frequency interval was too long */
783 if (freq_norm.sec > (2 << pps_shift)) {
784 time_status |= STA_PPSERROR;
785 pps_errcnt++;
786 pps_dec_freq_interval();
787 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
788 freq_norm.sec);
789 return 0;
790 }
791
792 /* here the raw frequency offset and wander (stability) is
793 * calculated. If the wander is less than the wander threshold
794 * the interval is increased; otherwise it is decreased.
795 */
796 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
797 freq_norm.sec);
798 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
799 pps_freq = ftemp;
800 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
801 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
802 time_status |= STA_PPSWANDER;
803 pps_stbcnt++;
804 pps_dec_freq_interval();
805 } else { /* good sample */
806 pps_inc_freq_interval();
807 }
808
809 /* the stability metric is calculated as the average of recent
810 * frequency changes, but is used only for performance
811 * monitoring
812 */
813 delta_mod = delta;
814 if (delta_mod < 0)
815 delta_mod = -delta_mod;
816 pps_stabil += (div_s64(((s64)delta_mod) <<
817 (NTP_SCALE_SHIFT - SHIFT_USEC),
818 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
819
820 /* if enabled, the system clock frequency is updated */
821 if ((time_status & STA_PPSFREQ) != 0 &&
822 (time_status & STA_FREQHOLD) == 0) {
823 time_freq = pps_freq;
824 ntp_update_frequency();
825 }
826
827 return delta;
828 }
829
830 /* correct REALTIME clock phase error against PPS signal */
831 static void hardpps_update_phase(long error)
832 {
833 long correction = -error;
834 long jitter;
835
836 /* add the sample to the median filter */
837 pps_phase_filter_add(correction);
838 correction = pps_phase_filter_get(&jitter);
839
840 /* Nominal jitter is due to PPS signal noise. If it exceeds the
841 * threshold, the sample is discarded; otherwise, if so enabled,
842 * the time offset is updated.
843 */
844 if (jitter > (pps_jitter << PPS_POPCORN)) {
845 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
846 jitter, (pps_jitter << PPS_POPCORN));
847 time_status |= STA_PPSJITTER;
848 pps_jitcnt++;
849 } else if (time_status & STA_PPSTIME) {
850 /* correct the time using the phase offset */
851 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
852 NTP_INTERVAL_FREQ);
853 /* cancel running adjtime() */
854 time_adjust = 0;
855 }
856 /* update jitter */
857 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
858 }
859
860 /*
861 * __hardpps() - discipline CPU clock oscillator to external PPS signal
862 *
863 * This routine is called at each PPS signal arrival in order to
864 * discipline the CPU clock oscillator to the PPS signal. It takes two
865 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
866 * is used to correct clock phase error and the latter is used to
867 * correct the frequency.
868 *
869 * This code is based on David Mills's reference nanokernel
870 * implementation. It was mostly rewritten but keeps the same idea.
871 */
872 void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
873 {
874 struct pps_normtime pts_norm, freq_norm;
875
876 pts_norm = pps_normalize_ts(*phase_ts);
877
878 /* clear the error bits, they will be set again if needed */
879 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
880
881 /* indicate signal presence */
882 time_status |= STA_PPSSIGNAL;
883 pps_valid = PPS_VALID;
884
885 /* when called for the first time,
886 * just start the frequency interval */
887 if (unlikely(pps_fbase.tv_sec == 0)) {
888 pps_fbase = *raw_ts;
889 return;
890 }
891
892 /* ok, now we have a base for frequency calculation */
893 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
894
895 /* check that the signal is in the range
896 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
897 if ((freq_norm.sec == 0) ||
898 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
899 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
900 time_status |= STA_PPSJITTER;
901 /* restart the frequency calibration interval */
902 pps_fbase = *raw_ts;
903 pr_err("hardpps: PPSJITTER: bad pulse\n");
904 return;
905 }
906
907 /* signal is ok */
908
909 /* check if the current frequency interval is finished */
910 if (freq_norm.sec >= (1 << pps_shift)) {
911 pps_calcnt++;
912 /* restart the frequency calibration interval */
913 pps_fbase = *raw_ts;
914 hardpps_update_freq(freq_norm);
915 }
916
917 hardpps_update_phase(pts_norm.nsec);
918
919 }
920 #endif /* CONFIG_NTP_PPS */
921
922 static int __init ntp_tick_adj_setup(char *str)
923 {
924 ntp_tick_adj = simple_strtol(str, NULL, 0);
925 ntp_tick_adj <<= NTP_SCALE_SHIFT;
926
927 return 1;
928 }
929
930 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
931
932 void __init ntp_init(void)
933 {
934 ntp_clear();
935 }
This page took 0.769589 seconds and 5 git commands to generate.