ntp: Access tick_length variable via ntp_tick_length()
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18
19 #include "tick-internal.h"
20
21 /*
22 * NTP timekeeping variables:
23 */
24
25 /* USER_HZ period (usecs): */
26 unsigned long tick_usec = TICK_USEC;
27
28 /* ACTHZ period (nsecs): */
29 unsigned long tick_nsec;
30
31 static u64 tick_length;
32 static u64 tick_length_base;
33
34 static struct hrtimer leap_timer;
35
36 #define MAX_TICKADJ 500LL /* usecs */
37 #define MAX_TICKADJ_SCALED \
38 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39
40 /*
41 * phase-lock loop variables
42 */
43
44 /*
45 * clock synchronization status
46 *
47 * (TIME_ERROR prevents overwriting the CMOS clock)
48 */
49 static int time_state = TIME_OK;
50
51 /* clock status bits: */
52 static int time_status = STA_UNSYNC;
53
54 /* TAI offset (secs): */
55 static long time_tai;
56
57 /* time adjustment (nsecs): */
58 static s64 time_offset;
59
60 /* pll time constant: */
61 static long time_constant = 2;
62
63 /* maximum error (usecs): */
64 static long time_maxerror = NTP_PHASE_LIMIT;
65
66 /* estimated error (usecs): */
67 static long time_esterror = NTP_PHASE_LIMIT;
68
69 /* frequency offset (scaled nsecs/secs): */
70 static s64 time_freq;
71
72 /* time at last adjustment (secs): */
73 static long time_reftime;
74
75 static long time_adjust;
76
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
78 static s64 ntp_tick_adj;
79
80 #ifdef CONFIG_NTP_PPS
81
82 /*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
88 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
89 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
90 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
91 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
92 increase pps_shift or consecutive bad
93 intervals to decrease it */
94 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
95
96 static int pps_valid; /* signal watchdog counter */
97 static long pps_tf[3]; /* phase median filter */
98 static long pps_jitter; /* current jitter (ns) */
99 static struct timespec pps_fbase; /* beginning of the last freq interval */
100 static int pps_shift; /* current interval duration (s) (shift) */
101 static int pps_intcnt; /* interval counter */
102 static s64 pps_freq; /* frequency offset (scaled ns/s) */
103 static long pps_stabil; /* current stability (scaled ns/s) */
104
105 /*
106 * PPS signal quality monitors
107 */
108 static long pps_calcnt; /* calibration intervals */
109 static long pps_jitcnt; /* jitter limit exceeded */
110 static long pps_stbcnt; /* stability limit exceeded */
111 static long pps_errcnt; /* calibration errors */
112
113
114 /* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117 static inline s64 ntp_offset_chunk(s64 offset)
118 {
119 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 return offset;
121 else
122 return shift_right(offset, SHIFT_PLL + time_constant);
123 }
124
125 static inline void pps_reset_freq_interval(void)
126 {
127 /* the PPS calibration interval may end
128 surprisingly early */
129 pps_shift = PPS_INTMIN;
130 pps_intcnt = 0;
131 }
132
133 /**
134 * pps_clear - Clears the PPS state variables
135 *
136 * Must be called while holding a write on the xtime_lock
137 */
138 static inline void pps_clear(void)
139 {
140 pps_reset_freq_interval();
141 pps_tf[0] = 0;
142 pps_tf[1] = 0;
143 pps_tf[2] = 0;
144 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145 pps_freq = 0;
146 }
147
148 /* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
152 * Must be called while holding a write on the xtime_lock
153 */
154 static inline void pps_dec_valid(void)
155 {
156 if (pps_valid > 0)
157 pps_valid--;
158 else {
159 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 STA_PPSWANDER | STA_PPSERROR);
161 pps_clear();
162 }
163 }
164
165 static inline void pps_set_freq(s64 freq)
166 {
167 pps_freq = freq;
168 }
169
170 static inline int is_error_status(int status)
171 {
172 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173 /* PPS signal lost when either PPS time or
174 * PPS frequency synchronization requested
175 */
176 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177 && !(time_status & STA_PPSSIGNAL))
178 /* PPS jitter exceeded when
179 * PPS time synchronization requested */
180 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181 == (STA_PPSTIME|STA_PPSJITTER))
182 /* PPS wander exceeded or calibration error when
183 * PPS frequency synchronization requested
184 */
185 || ((time_status & STA_PPSFREQ)
186 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187 }
188
189 static inline void pps_fill_timex(struct timex *txc)
190 {
191 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 txc->jitter = pps_jitter;
194 if (!(time_status & STA_NANO))
195 txc->jitter /= NSEC_PER_USEC;
196 txc->shift = pps_shift;
197 txc->stabil = pps_stabil;
198 txc->jitcnt = pps_jitcnt;
199 txc->calcnt = pps_calcnt;
200 txc->errcnt = pps_errcnt;
201 txc->stbcnt = pps_stbcnt;
202 }
203
204 #else /* !CONFIG_NTP_PPS */
205
206 static inline s64 ntp_offset_chunk(s64 offset)
207 {
208 return shift_right(offset, SHIFT_PLL + time_constant);
209 }
210
211 static inline void pps_reset_freq_interval(void) {}
212 static inline void pps_clear(void) {}
213 static inline void pps_dec_valid(void) {}
214 static inline void pps_set_freq(s64 freq) {}
215
216 static inline int is_error_status(int status)
217 {
218 return status & (STA_UNSYNC|STA_CLOCKERR);
219 }
220
221 static inline void pps_fill_timex(struct timex *txc)
222 {
223 /* PPS is not implemented, so these are zero */
224 txc->ppsfreq = 0;
225 txc->jitter = 0;
226 txc->shift = 0;
227 txc->stabil = 0;
228 txc->jitcnt = 0;
229 txc->calcnt = 0;
230 txc->errcnt = 0;
231 txc->stbcnt = 0;
232 }
233
234 #endif /* CONFIG_NTP_PPS */
235
236
237 /**
238 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
239 *
240 */
241 static inline int ntp_synced(void)
242 {
243 return !(time_status & STA_UNSYNC);
244 }
245
246
247 /*
248 * NTP methods:
249 */
250
251 /*
252 * Update (tick_length, tick_length_base, tick_nsec), based
253 * on (tick_usec, ntp_tick_adj, time_freq):
254 */
255 static void ntp_update_frequency(void)
256 {
257 u64 second_length;
258 u64 new_base;
259
260 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
261 << NTP_SCALE_SHIFT;
262
263 second_length += ntp_tick_adj;
264 second_length += time_freq;
265
266 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
267 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
268
269 /*
270 * Don't wait for the next second_overflow, apply
271 * the change to the tick length immediately:
272 */
273 tick_length += new_base - tick_length_base;
274 tick_length_base = new_base;
275 }
276
277 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 {
279 time_status &= ~STA_MODE;
280
281 if (secs < MINSEC)
282 return 0;
283
284 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
285 return 0;
286
287 time_status |= STA_MODE;
288
289 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
290 }
291
292 static void ntp_update_offset(long offset)
293 {
294 s64 freq_adj;
295 s64 offset64;
296 long secs;
297
298 if (!(time_status & STA_PLL))
299 return;
300
301 if (!(time_status & STA_NANO))
302 offset *= NSEC_PER_USEC;
303
304 /*
305 * Scale the phase adjustment and
306 * clamp to the operating range.
307 */
308 offset = min(offset, MAXPHASE);
309 offset = max(offset, -MAXPHASE);
310
311 /*
312 * Select how the frequency is to be controlled
313 * and in which mode (PLL or FLL).
314 */
315 secs = get_seconds() - time_reftime;
316 if (unlikely(time_status & STA_FREQHOLD))
317 secs = 0;
318
319 time_reftime = get_seconds();
320
321 offset64 = offset;
322 freq_adj = ntp_update_offset_fll(offset64, secs);
323
324 /*
325 * Clamp update interval to reduce PLL gain with low
326 * sampling rate (e.g. intermittent network connection)
327 * to avoid instability.
328 */
329 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
330 secs = 1 << (SHIFT_PLL + 1 + time_constant);
331
332 freq_adj += (offset64 * secs) <<
333 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334
335 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
336
337 time_freq = max(freq_adj, -MAXFREQ_SCALED);
338
339 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
340 }
341
342 /**
343 * ntp_clear - Clears the NTP state variables
344 *
345 * Must be called while holding a write on the xtime_lock
346 */
347 void ntp_clear(void)
348 {
349 time_adjust = 0; /* stop active adjtime() */
350 time_status |= STA_UNSYNC;
351 time_maxerror = NTP_PHASE_LIMIT;
352 time_esterror = NTP_PHASE_LIMIT;
353
354 ntp_update_frequency();
355
356 tick_length = tick_length_base;
357 time_offset = 0;
358
359 /* Clear PPS state variables */
360 pps_clear();
361 }
362
363
364 u64 ntp_tick_length(void)
365 {
366 return tick_length;
367 }
368
369
370 /*
371 * Leap second processing. If in leap-insert state at the end of the
372 * day, the system clock is set back one second; if in leap-delete
373 * state, the system clock is set ahead one second.
374 */
375 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
376 {
377 enum hrtimer_restart res = HRTIMER_NORESTART;
378
379 write_seqlock(&xtime_lock);
380
381 switch (time_state) {
382 case TIME_OK:
383 break;
384 case TIME_INS:
385 timekeeping_leap_insert(-1);
386 time_state = TIME_OOP;
387 printk(KERN_NOTICE
388 "Clock: inserting leap second 23:59:60 UTC\n");
389 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
390 res = HRTIMER_RESTART;
391 break;
392 case TIME_DEL:
393 timekeeping_leap_insert(1);
394 time_tai--;
395 time_state = TIME_WAIT;
396 printk(KERN_NOTICE
397 "Clock: deleting leap second 23:59:59 UTC\n");
398 break;
399 case TIME_OOP:
400 time_tai++;
401 time_state = TIME_WAIT;
402 /* fall through */
403 case TIME_WAIT:
404 if (!(time_status & (STA_INS | STA_DEL)))
405 time_state = TIME_OK;
406 break;
407 }
408
409 write_sequnlock(&xtime_lock);
410
411 return res;
412 }
413
414 /*
415 * this routine handles the overflow of the microsecond field
416 *
417 * The tricky bits of code to handle the accurate clock support
418 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
419 * They were originally developed for SUN and DEC kernels.
420 * All the kudos should go to Dave for this stuff.
421 */
422 void second_overflow(void)
423 {
424 s64 delta;
425
426 /* Bump the maxerror field */
427 time_maxerror += MAXFREQ / NSEC_PER_USEC;
428 if (time_maxerror > NTP_PHASE_LIMIT) {
429 time_maxerror = NTP_PHASE_LIMIT;
430 time_status |= STA_UNSYNC;
431 }
432
433 /* Compute the phase adjustment for the next second */
434 tick_length = tick_length_base;
435
436 delta = ntp_offset_chunk(time_offset);
437 time_offset -= delta;
438 tick_length += delta;
439
440 /* Check PPS signal */
441 pps_dec_valid();
442
443 if (!time_adjust)
444 return;
445
446 if (time_adjust > MAX_TICKADJ) {
447 time_adjust -= MAX_TICKADJ;
448 tick_length += MAX_TICKADJ_SCALED;
449 return;
450 }
451
452 if (time_adjust < -MAX_TICKADJ) {
453 time_adjust += MAX_TICKADJ;
454 tick_length -= MAX_TICKADJ_SCALED;
455 return;
456 }
457
458 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
459 << NTP_SCALE_SHIFT;
460 time_adjust = 0;
461 }
462
463 #ifdef CONFIG_GENERIC_CMOS_UPDATE
464
465 /* Disable the cmos update - used by virtualization and embedded */
466 int no_sync_cmos_clock __read_mostly;
467
468 static void sync_cmos_clock(struct work_struct *work);
469
470 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
471
472 static void sync_cmos_clock(struct work_struct *work)
473 {
474 struct timespec now, next;
475 int fail = 1;
476
477 /*
478 * If we have an externally synchronized Linux clock, then update
479 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
480 * called as close as possible to 500 ms before the new second starts.
481 * This code is run on a timer. If the clock is set, that timer
482 * may not expire at the correct time. Thus, we adjust...
483 */
484 if (!ntp_synced()) {
485 /*
486 * Not synced, exit, do not restart a timer (if one is
487 * running, let it run out).
488 */
489 return;
490 }
491
492 getnstimeofday(&now);
493 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
494 fail = update_persistent_clock(now);
495
496 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
497 if (next.tv_nsec <= 0)
498 next.tv_nsec += NSEC_PER_SEC;
499
500 if (!fail)
501 next.tv_sec = 659;
502 else
503 next.tv_sec = 0;
504
505 if (next.tv_nsec >= NSEC_PER_SEC) {
506 next.tv_sec++;
507 next.tv_nsec -= NSEC_PER_SEC;
508 }
509 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
510 }
511
512 static void notify_cmos_timer(void)
513 {
514 if (!no_sync_cmos_clock)
515 schedule_delayed_work(&sync_cmos_work, 0);
516 }
517
518 #else
519 static inline void notify_cmos_timer(void) { }
520 #endif
521
522 /*
523 * Start the leap seconds timer:
524 */
525 static inline void ntp_start_leap_timer(struct timespec *ts)
526 {
527 long now = ts->tv_sec;
528
529 if (time_status & STA_INS) {
530 time_state = TIME_INS;
531 now += 86400 - now % 86400;
532 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
533
534 return;
535 }
536
537 if (time_status & STA_DEL) {
538 time_state = TIME_DEL;
539 now += 86400 - (now + 1) % 86400;
540 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
541 }
542 }
543
544 /*
545 * Propagate a new txc->status value into the NTP state:
546 */
547 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
548 {
549 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
550 time_state = TIME_OK;
551 time_status = STA_UNSYNC;
552 /* restart PPS frequency calibration */
553 pps_reset_freq_interval();
554 }
555
556 /*
557 * If we turn on PLL adjustments then reset the
558 * reference time to current time.
559 */
560 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
561 time_reftime = get_seconds();
562
563 /* only set allowed bits */
564 time_status &= STA_RONLY;
565 time_status |= txc->status & ~STA_RONLY;
566
567 switch (time_state) {
568 case TIME_OK:
569 ntp_start_leap_timer(ts);
570 break;
571 case TIME_INS:
572 case TIME_DEL:
573 time_state = TIME_OK;
574 ntp_start_leap_timer(ts);
575 case TIME_WAIT:
576 if (!(time_status & (STA_INS | STA_DEL)))
577 time_state = TIME_OK;
578 break;
579 case TIME_OOP:
580 hrtimer_restart(&leap_timer);
581 break;
582 }
583 }
584 /*
585 * Called with the xtime lock held, so we can access and modify
586 * all the global NTP state:
587 */
588 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
589 {
590 if (txc->modes & ADJ_STATUS)
591 process_adj_status(txc, ts);
592
593 if (txc->modes & ADJ_NANO)
594 time_status |= STA_NANO;
595
596 if (txc->modes & ADJ_MICRO)
597 time_status &= ~STA_NANO;
598
599 if (txc->modes & ADJ_FREQUENCY) {
600 time_freq = txc->freq * PPM_SCALE;
601 time_freq = min(time_freq, MAXFREQ_SCALED);
602 time_freq = max(time_freq, -MAXFREQ_SCALED);
603 /* update pps_freq */
604 pps_set_freq(time_freq);
605 }
606
607 if (txc->modes & ADJ_MAXERROR)
608 time_maxerror = txc->maxerror;
609
610 if (txc->modes & ADJ_ESTERROR)
611 time_esterror = txc->esterror;
612
613 if (txc->modes & ADJ_TIMECONST) {
614 time_constant = txc->constant;
615 if (!(time_status & STA_NANO))
616 time_constant += 4;
617 time_constant = min(time_constant, (long)MAXTC);
618 time_constant = max(time_constant, 0l);
619 }
620
621 if (txc->modes & ADJ_TAI && txc->constant > 0)
622 time_tai = txc->constant;
623
624 if (txc->modes & ADJ_OFFSET)
625 ntp_update_offset(txc->offset);
626
627 if (txc->modes & ADJ_TICK)
628 tick_usec = txc->tick;
629
630 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
631 ntp_update_frequency();
632 }
633
634 /*
635 * adjtimex mainly allows reading (and writing, if superuser) of
636 * kernel time-keeping variables. used by xntpd.
637 */
638 int do_adjtimex(struct timex *txc)
639 {
640 struct timespec ts;
641 int result;
642
643 /* Validate the data before disabling interrupts */
644 if (txc->modes & ADJ_ADJTIME) {
645 /* singleshot must not be used with any other mode bits */
646 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
647 return -EINVAL;
648 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
649 !capable(CAP_SYS_TIME))
650 return -EPERM;
651 } else {
652 /* In order to modify anything, you gotta be super-user! */
653 if (txc->modes && !capable(CAP_SYS_TIME))
654 return -EPERM;
655
656 /*
657 * if the quartz is off by more than 10% then
658 * something is VERY wrong!
659 */
660 if (txc->modes & ADJ_TICK &&
661 (txc->tick < 900000/USER_HZ ||
662 txc->tick > 1100000/USER_HZ))
663 return -EINVAL;
664
665 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
666 hrtimer_cancel(&leap_timer);
667 }
668
669 if (txc->modes & ADJ_SETOFFSET) {
670 struct timespec delta;
671 delta.tv_sec = txc->time.tv_sec;
672 delta.tv_nsec = txc->time.tv_usec;
673 if (!capable(CAP_SYS_TIME))
674 return -EPERM;
675 if (!(txc->modes & ADJ_NANO))
676 delta.tv_nsec *= 1000;
677 result = timekeeping_inject_offset(&delta);
678 if (result)
679 return result;
680 }
681
682 getnstimeofday(&ts);
683
684 write_seqlock_irq(&xtime_lock);
685
686 if (txc->modes & ADJ_ADJTIME) {
687 long save_adjust = time_adjust;
688
689 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
690 /* adjtime() is independent from ntp_adjtime() */
691 time_adjust = txc->offset;
692 ntp_update_frequency();
693 }
694 txc->offset = save_adjust;
695 } else {
696
697 /* If there are input parameters, then process them: */
698 if (txc->modes)
699 process_adjtimex_modes(txc, &ts);
700
701 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
702 NTP_SCALE_SHIFT);
703 if (!(time_status & STA_NANO))
704 txc->offset /= NSEC_PER_USEC;
705 }
706
707 result = time_state; /* mostly `TIME_OK' */
708 /* check for errors */
709 if (is_error_status(time_status))
710 result = TIME_ERROR;
711
712 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
713 PPM_SCALE_INV, NTP_SCALE_SHIFT);
714 txc->maxerror = time_maxerror;
715 txc->esterror = time_esterror;
716 txc->status = time_status;
717 txc->constant = time_constant;
718 txc->precision = 1;
719 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
720 txc->tick = tick_usec;
721 txc->tai = time_tai;
722
723 /* fill PPS status fields */
724 pps_fill_timex(txc);
725
726 write_sequnlock_irq(&xtime_lock);
727
728 txc->time.tv_sec = ts.tv_sec;
729 txc->time.tv_usec = ts.tv_nsec;
730 if (!(time_status & STA_NANO))
731 txc->time.tv_usec /= NSEC_PER_USEC;
732
733 notify_cmos_timer();
734
735 return result;
736 }
737
738 #ifdef CONFIG_NTP_PPS
739
740 /* actually struct pps_normtime is good old struct timespec, but it is
741 * semantically different (and it is the reason why it was invented):
742 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
743 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
744 struct pps_normtime {
745 __kernel_time_t sec; /* seconds */
746 long nsec; /* nanoseconds */
747 };
748
749 /* normalize the timestamp so that nsec is in the
750 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
751 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
752 {
753 struct pps_normtime norm = {
754 .sec = ts.tv_sec,
755 .nsec = ts.tv_nsec
756 };
757
758 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
759 norm.nsec -= NSEC_PER_SEC;
760 norm.sec++;
761 }
762
763 return norm;
764 }
765
766 /* get current phase correction and jitter */
767 static inline long pps_phase_filter_get(long *jitter)
768 {
769 *jitter = pps_tf[0] - pps_tf[1];
770 if (*jitter < 0)
771 *jitter = -*jitter;
772
773 /* TODO: test various filters */
774 return pps_tf[0];
775 }
776
777 /* add the sample to the phase filter */
778 static inline void pps_phase_filter_add(long err)
779 {
780 pps_tf[2] = pps_tf[1];
781 pps_tf[1] = pps_tf[0];
782 pps_tf[0] = err;
783 }
784
785 /* decrease frequency calibration interval length.
786 * It is halved after four consecutive unstable intervals.
787 */
788 static inline void pps_dec_freq_interval(void)
789 {
790 if (--pps_intcnt <= -PPS_INTCOUNT) {
791 pps_intcnt = -PPS_INTCOUNT;
792 if (pps_shift > PPS_INTMIN) {
793 pps_shift--;
794 pps_intcnt = 0;
795 }
796 }
797 }
798
799 /* increase frequency calibration interval length.
800 * It is doubled after four consecutive stable intervals.
801 */
802 static inline void pps_inc_freq_interval(void)
803 {
804 if (++pps_intcnt >= PPS_INTCOUNT) {
805 pps_intcnt = PPS_INTCOUNT;
806 if (pps_shift < PPS_INTMAX) {
807 pps_shift++;
808 pps_intcnt = 0;
809 }
810 }
811 }
812
813 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
814 * timestamps
815 *
816 * At the end of the calibration interval the difference between the
817 * first and last MONOTONIC_RAW clock timestamps divided by the length
818 * of the interval becomes the frequency update. If the interval was
819 * too long, the data are discarded.
820 * Returns the difference between old and new frequency values.
821 */
822 static long hardpps_update_freq(struct pps_normtime freq_norm)
823 {
824 long delta, delta_mod;
825 s64 ftemp;
826
827 /* check if the frequency interval was too long */
828 if (freq_norm.sec > (2 << pps_shift)) {
829 time_status |= STA_PPSERROR;
830 pps_errcnt++;
831 pps_dec_freq_interval();
832 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
833 freq_norm.sec);
834 return 0;
835 }
836
837 /* here the raw frequency offset and wander (stability) is
838 * calculated. If the wander is less than the wander threshold
839 * the interval is increased; otherwise it is decreased.
840 */
841 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
842 freq_norm.sec);
843 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
844 pps_freq = ftemp;
845 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
846 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
847 time_status |= STA_PPSWANDER;
848 pps_stbcnt++;
849 pps_dec_freq_interval();
850 } else { /* good sample */
851 pps_inc_freq_interval();
852 }
853
854 /* the stability metric is calculated as the average of recent
855 * frequency changes, but is used only for performance
856 * monitoring
857 */
858 delta_mod = delta;
859 if (delta_mod < 0)
860 delta_mod = -delta_mod;
861 pps_stabil += (div_s64(((s64)delta_mod) <<
862 (NTP_SCALE_SHIFT - SHIFT_USEC),
863 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
864
865 /* if enabled, the system clock frequency is updated */
866 if ((time_status & STA_PPSFREQ) != 0 &&
867 (time_status & STA_FREQHOLD) == 0) {
868 time_freq = pps_freq;
869 ntp_update_frequency();
870 }
871
872 return delta;
873 }
874
875 /* correct REALTIME clock phase error against PPS signal */
876 static void hardpps_update_phase(long error)
877 {
878 long correction = -error;
879 long jitter;
880
881 /* add the sample to the median filter */
882 pps_phase_filter_add(correction);
883 correction = pps_phase_filter_get(&jitter);
884
885 /* Nominal jitter is due to PPS signal noise. If it exceeds the
886 * threshold, the sample is discarded; otherwise, if so enabled,
887 * the time offset is updated.
888 */
889 if (jitter > (pps_jitter << PPS_POPCORN)) {
890 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
891 jitter, (pps_jitter << PPS_POPCORN));
892 time_status |= STA_PPSJITTER;
893 pps_jitcnt++;
894 } else if (time_status & STA_PPSTIME) {
895 /* correct the time using the phase offset */
896 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
897 NTP_INTERVAL_FREQ);
898 /* cancel running adjtime() */
899 time_adjust = 0;
900 }
901 /* update jitter */
902 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
903 }
904
905 /*
906 * hardpps() - discipline CPU clock oscillator to external PPS signal
907 *
908 * This routine is called at each PPS signal arrival in order to
909 * discipline the CPU clock oscillator to the PPS signal. It takes two
910 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
911 * is used to correct clock phase error and the latter is used to
912 * correct the frequency.
913 *
914 * This code is based on David Mills's reference nanokernel
915 * implementation. It was mostly rewritten but keeps the same idea.
916 */
917 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
918 {
919 struct pps_normtime pts_norm, freq_norm;
920 unsigned long flags;
921
922 pts_norm = pps_normalize_ts(*phase_ts);
923
924 write_seqlock_irqsave(&xtime_lock, flags);
925
926 /* clear the error bits, they will be set again if needed */
927 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
928
929 /* indicate signal presence */
930 time_status |= STA_PPSSIGNAL;
931 pps_valid = PPS_VALID;
932
933 /* when called for the first time,
934 * just start the frequency interval */
935 if (unlikely(pps_fbase.tv_sec == 0)) {
936 pps_fbase = *raw_ts;
937 write_sequnlock_irqrestore(&xtime_lock, flags);
938 return;
939 }
940
941 /* ok, now we have a base for frequency calculation */
942 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
943
944 /* check that the signal is in the range
945 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
946 if ((freq_norm.sec == 0) ||
947 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
948 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
949 time_status |= STA_PPSJITTER;
950 /* restart the frequency calibration interval */
951 pps_fbase = *raw_ts;
952 write_sequnlock_irqrestore(&xtime_lock, flags);
953 pr_err("hardpps: PPSJITTER: bad pulse\n");
954 return;
955 }
956
957 /* signal is ok */
958
959 /* check if the current frequency interval is finished */
960 if (freq_norm.sec >= (1 << pps_shift)) {
961 pps_calcnt++;
962 /* restart the frequency calibration interval */
963 pps_fbase = *raw_ts;
964 hardpps_update_freq(freq_norm);
965 }
966
967 hardpps_update_phase(pts_norm.nsec);
968
969 write_sequnlock_irqrestore(&xtime_lock, flags);
970 }
971 EXPORT_SYMBOL(hardpps);
972
973 #endif /* CONFIG_NTP_PPS */
974
975 static int __init ntp_tick_adj_setup(char *str)
976 {
977 ntp_tick_adj = simple_strtol(str, NULL, 0);
978 ntp_tick_adj <<= NTP_SCALE_SHIFT;
979
980 return 1;
981 }
982
983 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
984
985 void __init ntp_init(void)
986 {
987 ntp_clear();
988 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
989 leap_timer.function = ntp_leap_second;
990 }
This page took 0.063077 seconds and 5 git commands to generate.