Detach sched.h from mm.h
[deliverable/linux.git] / kernel / time / ntp.c
1 /*
2 * linux/kernel/time/ntp.c
3 *
4 * NTP state machine interfaces and logic.
5 *
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
10
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timex.h>
14 #include <linux/jiffies.h>
15 #include <linux/hrtimer.h>
16
17 #include <asm/div64.h>
18 #include <asm/timex.h>
19
20 /*
21 * Timekeeping variables
22 */
23 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
24 unsigned long tick_nsec; /* ACTHZ period (nsec) */
25 static u64 tick_length, tick_length_base;
26
27 #define MAX_TICKADJ 500 /* microsecs */
28 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
29 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
30
31 /*
32 * phase-lock loop variables
33 */
34 /* TIME_ERROR prevents overwriting the CMOS clock */
35 static int time_state = TIME_OK; /* clock synchronization status */
36 int time_status = STA_UNSYNC; /* clock status bits */
37 static s64 time_offset; /* time adjustment (ns) */
38 static long time_constant = 2; /* pll time constant */
39 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
40 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
41 long time_freq; /* frequency offset (scaled ppm)*/
42 static long time_reftime; /* time at last adjustment (s) */
43 long time_adjust;
44
45 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
46 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
47 (s64)CLOCK_TICK_RATE)
48
49 static void ntp_update_frequency(void)
50 {
51 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
52 << TICK_LENGTH_SHIFT;
53 second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
54 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
55
56 tick_length_base = second_length;
57
58 do_div(second_length, HZ);
59 tick_nsec = second_length >> TICK_LENGTH_SHIFT;
60
61 do_div(tick_length_base, NTP_INTERVAL_FREQ);
62 }
63
64 /**
65 * ntp_clear - Clears the NTP state variables
66 *
67 * Must be called while holding a write on the xtime_lock
68 */
69 void ntp_clear(void)
70 {
71 time_adjust = 0; /* stop active adjtime() */
72 time_status |= STA_UNSYNC;
73 time_maxerror = NTP_PHASE_LIMIT;
74 time_esterror = NTP_PHASE_LIMIT;
75
76 ntp_update_frequency();
77
78 tick_length = tick_length_base;
79 time_offset = 0;
80 }
81
82 /*
83 * this routine handles the overflow of the microsecond field
84 *
85 * The tricky bits of code to handle the accurate clock support
86 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
87 * They were originally developed for SUN and DEC kernels.
88 * All the kudos should go to Dave for this stuff.
89 */
90 void second_overflow(void)
91 {
92 long time_adj;
93
94 /* Bump the maxerror field */
95 time_maxerror += MAXFREQ >> SHIFT_USEC;
96 if (time_maxerror > NTP_PHASE_LIMIT) {
97 time_maxerror = NTP_PHASE_LIMIT;
98 time_status |= STA_UNSYNC;
99 }
100
101 /*
102 * Leap second processing. If in leap-insert state at the end of the
103 * day, the system clock is set back one second; if in leap-delete
104 * state, the system clock is set ahead one second. The microtime()
105 * routine or external clock driver will insure that reported time is
106 * always monotonic. The ugly divides should be replaced.
107 */
108 switch (time_state) {
109 case TIME_OK:
110 if (time_status & STA_INS)
111 time_state = TIME_INS;
112 else if (time_status & STA_DEL)
113 time_state = TIME_DEL;
114 break;
115 case TIME_INS:
116 if (xtime.tv_sec % 86400 == 0) {
117 xtime.tv_sec--;
118 wall_to_monotonic.tv_sec++;
119 /*
120 * The timer interpolator will make time change
121 * gradually instead of an immediate jump by one second
122 */
123 time_interpolator_update(-NSEC_PER_SEC);
124 time_state = TIME_OOP;
125 clock_was_set();
126 printk(KERN_NOTICE "Clock: inserting leap second "
127 "23:59:60 UTC\n");
128 }
129 break;
130 case TIME_DEL:
131 if ((xtime.tv_sec + 1) % 86400 == 0) {
132 xtime.tv_sec++;
133 wall_to_monotonic.tv_sec--;
134 /*
135 * Use of time interpolator for a gradual change of
136 * time
137 */
138 time_interpolator_update(NSEC_PER_SEC);
139 time_state = TIME_WAIT;
140 clock_was_set();
141 printk(KERN_NOTICE "Clock: deleting leap second "
142 "23:59:59 UTC\n");
143 }
144 break;
145 case TIME_OOP:
146 time_state = TIME_WAIT;
147 break;
148 case TIME_WAIT:
149 if (!(time_status & (STA_INS | STA_DEL)))
150 time_state = TIME_OK;
151 }
152
153 /*
154 * Compute the phase adjustment for the next second. The offset is
155 * reduced by a fixed factor times the time constant.
156 */
157 tick_length = tick_length_base;
158 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
159 time_offset -= time_adj;
160 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
161
162 if (unlikely(time_adjust)) {
163 if (time_adjust > MAX_TICKADJ) {
164 time_adjust -= MAX_TICKADJ;
165 tick_length += MAX_TICKADJ_SCALED;
166 } else if (time_adjust < -MAX_TICKADJ) {
167 time_adjust += MAX_TICKADJ;
168 tick_length -= MAX_TICKADJ_SCALED;
169 } else {
170 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
171 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
172 time_adjust = 0;
173 }
174 }
175 }
176
177 /*
178 * Return how long ticks are at the moment, that is, how much time
179 * update_wall_time_one_tick will add to xtime next time we call it
180 * (assuming no calls to do_adjtimex in the meantime).
181 * The return value is in fixed-point nanoseconds shifted by the
182 * specified number of bits to the right of the binary point.
183 * This function has no side-effects.
184 */
185 u64 current_tick_length(void)
186 {
187 return tick_length;
188 }
189
190
191 void __attribute__ ((weak)) notify_arch_cmos_timer(void)
192 {
193 return;
194 }
195
196 /* adjtimex mainly allows reading (and writing, if superuser) of
197 * kernel time-keeping variables. used by xntpd.
198 */
199 int do_adjtimex(struct timex *txc)
200 {
201 long mtemp, save_adjust, rem;
202 s64 freq_adj, temp64;
203 int result;
204
205 /* In order to modify anything, you gotta be super-user! */
206 if (txc->modes && !capable(CAP_SYS_TIME))
207 return -EPERM;
208
209 /* Now we validate the data before disabling interrupts */
210
211 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
212 /* singleshot must not be used with any other mode bits */
213 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
214 return -EINVAL;
215
216 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
217 /* adjustment Offset limited to +- .512 seconds */
218 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
219 return -EINVAL;
220
221 /* if the quartz is off by more than 10% something is VERY wrong ! */
222 if (txc->modes & ADJ_TICK)
223 if (txc->tick < 900000/USER_HZ ||
224 txc->tick > 1100000/USER_HZ)
225 return -EINVAL;
226
227 write_seqlock_irq(&xtime_lock);
228 result = time_state; /* mostly `TIME_OK' */
229
230 /* Save for later - semantics of adjtime is to return old value */
231 save_adjust = time_adjust;
232
233 #if 0 /* STA_CLOCKERR is never set yet */
234 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
235 #endif
236 /* If there are input parameters, then process them */
237 if (txc->modes)
238 {
239 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
240 time_status = (txc->status & ~STA_RONLY) |
241 (time_status & STA_RONLY);
242
243 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
244 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
245 result = -EINVAL;
246 goto leave;
247 }
248 time_freq = ((s64)txc->freq * NSEC_PER_USEC)
249 >> (SHIFT_USEC - SHIFT_NSEC);
250 }
251
252 if (txc->modes & ADJ_MAXERROR) {
253 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
254 result = -EINVAL;
255 goto leave;
256 }
257 time_maxerror = txc->maxerror;
258 }
259
260 if (txc->modes & ADJ_ESTERROR) {
261 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
262 result = -EINVAL;
263 goto leave;
264 }
265 time_esterror = txc->esterror;
266 }
267
268 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
269 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
270 result = -EINVAL;
271 goto leave;
272 }
273 time_constant = min(txc->constant + 4, (long)MAXTC);
274 }
275
276 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
277 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
278 /* adjtime() is independent from ntp_adjtime() */
279 time_adjust = txc->offset;
280 }
281 else if (time_status & STA_PLL) {
282 time_offset = txc->offset * NSEC_PER_USEC;
283
284 /*
285 * Scale the phase adjustment and
286 * clamp to the operating range.
287 */
288 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
289 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
290
291 /*
292 * Select whether the frequency is to be controlled
293 * and in which mode (PLL or FLL). Clamp to the operating
294 * range. Ugly multiply/divide should be replaced someday.
295 */
296
297 if (time_status & STA_FREQHOLD || time_reftime == 0)
298 time_reftime = xtime.tv_sec;
299 mtemp = xtime.tv_sec - time_reftime;
300 time_reftime = xtime.tv_sec;
301
302 freq_adj = time_offset * mtemp;
303 freq_adj = shift_right(freq_adj, time_constant * 2 +
304 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
305 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
306 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
307 if (time_offset < 0) {
308 temp64 = -temp64;
309 do_div(temp64, mtemp);
310 freq_adj -= temp64;
311 } else {
312 do_div(temp64, mtemp);
313 freq_adj += temp64;
314 }
315 }
316 freq_adj += time_freq;
317 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
318 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
319 time_offset = div_long_long_rem_signed(time_offset,
320 NTP_INTERVAL_FREQ,
321 &rem);
322 time_offset <<= SHIFT_UPDATE;
323 } /* STA_PLL */
324 } /* txc->modes & ADJ_OFFSET */
325 if (txc->modes & ADJ_TICK)
326 tick_usec = txc->tick;
327
328 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
329 ntp_update_frequency();
330 } /* txc->modes */
331 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
332 result = TIME_ERROR;
333
334 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
335 txc->offset = save_adjust;
336 else
337 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
338 NTP_INTERVAL_FREQ / 1000;
339 txc->freq = (time_freq / NSEC_PER_USEC) <<
340 (SHIFT_USEC - SHIFT_NSEC);
341 txc->maxerror = time_maxerror;
342 txc->esterror = time_esterror;
343 txc->status = time_status;
344 txc->constant = time_constant;
345 txc->precision = 1;
346 txc->tolerance = MAXFREQ;
347 txc->tick = tick_usec;
348
349 /* PPS is not implemented, so these are zero */
350 txc->ppsfreq = 0;
351 txc->jitter = 0;
352 txc->shift = 0;
353 txc->stabil = 0;
354 txc->jitcnt = 0;
355 txc->calcnt = 0;
356 txc->errcnt = 0;
357 txc->stbcnt = 0;
358 write_sequnlock_irq(&xtime_lock);
359 do_gettimeofday(&txc->time);
360 notify_arch_cmos_timer();
361 return(result);
362 }
This page took 0.040127 seconds and 6 git commands to generate.