Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[deliverable/linux.git] / kernel / time / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
199 /*
200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201 * to avoid race conditions with concurrent updates to cputime.
202 */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205 u64 curr_cputime;
206 retry:
207 curr_cputime = atomic64_read(cputime);
208 if (sum_cputime > curr_cputime) {
209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 goto retry;
211 }
212 }
213
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223 struct task_cputime_atomic *atomic_times)
224 {
225 times->utime = atomic64_read(&atomic_times->utime);
226 times->stime = atomic64_read(&atomic_times->stime);
227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 struct task_cputime sum;
234
235 /* Check if cputimer isn't running. This is accessed without locking. */
236 if (!READ_ONCE(cputimer->running)) {
237 /*
238 * The POSIX timer interface allows for absolute time expiry
239 * values through the TIMER_ABSTIME flag, therefore we have
240 * to synchronize the timer to the clock every time we start it.
241 */
242 thread_group_cputime(tsk, &sum);
243 update_gt_cputime(&cputimer->cputime_atomic, &sum);
244
245 /*
246 * We're setting cputimer->running without a lock. Ensure
247 * this only gets written to in one operation. We set
248 * running after update_gt_cputime() as a small optimization,
249 * but barriers are not required because update_gt_cputime()
250 * can handle concurrent updates.
251 */
252 WRITE_ONCE(cputimer->running, 1);
253 }
254 sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256
257 /*
258 * Sample a process (thread group) clock for the given group_leader task.
259 * Must be called with task sighand lock held for safe while_each_thread()
260 * traversal.
261 */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263 struct task_struct *p,
264 unsigned long long *sample)
265 {
266 struct task_cputime cputime;
267
268 switch (CPUCLOCK_WHICH(which_clock)) {
269 default:
270 return -EINVAL;
271 case CPUCLOCK_PROF:
272 thread_group_cputime(p, &cputime);
273 *sample = cputime_to_expires(cputime.utime + cputime.stime);
274 break;
275 case CPUCLOCK_VIRT:
276 thread_group_cputime(p, &cputime);
277 *sample = cputime_to_expires(cputime.utime);
278 break;
279 case CPUCLOCK_SCHED:
280 thread_group_cputime(p, &cputime);
281 *sample = cputime.sum_exec_runtime;
282 break;
283 }
284 return 0;
285 }
286
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 const clockid_t which_clock,
289 struct timespec *tp)
290 {
291 int err = -EINVAL;
292 unsigned long long rtn;
293
294 if (CPUCLOCK_PERTHREAD(which_clock)) {
295 if (same_thread_group(tsk, current))
296 err = cpu_clock_sample(which_clock, tsk, &rtn);
297 } else {
298 if (tsk == current || thread_group_leader(tsk))
299 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 }
301
302 if (!err)
303 sample_to_timespec(which_clock, rtn, tp);
304
305 return err;
306 }
307
308
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 const pid_t pid = CPUCLOCK_PID(which_clock);
312 int err = -EINVAL;
313
314 if (pid == 0) {
315 /*
316 * Special case constant value for our own clocks.
317 * We don't have to do any lookup to find ourselves.
318 */
319 err = posix_cpu_clock_get_task(current, which_clock, tp);
320 } else {
321 /*
322 * Find the given PID, and validate that the caller
323 * should be able to see it.
324 */
325 struct task_struct *p;
326 rcu_read_lock();
327 p = find_task_by_vpid(pid);
328 if (p)
329 err = posix_cpu_clock_get_task(p, which_clock, tp);
330 rcu_read_unlock();
331 }
332
333 return err;
334 }
335
336
337 /*
338 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340 * new timer already all-zeros initialized.
341 */
342 static int posix_cpu_timer_create(struct k_itimer *new_timer)
343 {
344 int ret = 0;
345 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
346 struct task_struct *p;
347
348 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
349 return -EINVAL;
350
351 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
352
353 rcu_read_lock();
354 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
355 if (pid == 0) {
356 p = current;
357 } else {
358 p = find_task_by_vpid(pid);
359 if (p && !same_thread_group(p, current))
360 p = NULL;
361 }
362 } else {
363 if (pid == 0) {
364 p = current->group_leader;
365 } else {
366 p = find_task_by_vpid(pid);
367 if (p && !has_group_leader_pid(p))
368 p = NULL;
369 }
370 }
371 new_timer->it.cpu.task = p;
372 if (p) {
373 get_task_struct(p);
374 } else {
375 ret = -EINVAL;
376 }
377 rcu_read_unlock();
378
379 return ret;
380 }
381
382 /*
383 * Clean up a CPU-clock timer that is about to be destroyed.
384 * This is called from timer deletion with the timer already locked.
385 * If we return TIMER_RETRY, it's necessary to release the timer's lock
386 * and try again. (This happens when the timer is in the middle of firing.)
387 */
388 static int posix_cpu_timer_del(struct k_itimer *timer)
389 {
390 int ret = 0;
391 unsigned long flags;
392 struct sighand_struct *sighand;
393 struct task_struct *p = timer->it.cpu.task;
394
395 WARN_ON_ONCE(p == NULL);
396
397 /*
398 * Protect against sighand release/switch in exit/exec and process/
399 * thread timer list entry concurrent read/writes.
400 */
401 sighand = lock_task_sighand(p, &flags);
402 if (unlikely(sighand == NULL)) {
403 /*
404 * We raced with the reaping of the task.
405 * The deletion should have cleared us off the list.
406 */
407 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
408 } else {
409 if (timer->it.cpu.firing)
410 ret = TIMER_RETRY;
411 else
412 list_del(&timer->it.cpu.entry);
413
414 unlock_task_sighand(p, &flags);
415 }
416
417 if (!ret)
418 put_task_struct(p);
419
420 return ret;
421 }
422
423 static void cleanup_timers_list(struct list_head *head)
424 {
425 struct cpu_timer_list *timer, *next;
426
427 list_for_each_entry_safe(timer, next, head, entry)
428 list_del_init(&timer->entry);
429 }
430
431 /*
432 * Clean out CPU timers still ticking when a thread exited. The task
433 * pointer is cleared, and the expiry time is replaced with the residual
434 * time for later timer_gettime calls to return.
435 * This must be called with the siglock held.
436 */
437 static void cleanup_timers(struct list_head *head)
438 {
439 cleanup_timers_list(head);
440 cleanup_timers_list(++head);
441 cleanup_timers_list(++head);
442 }
443
444 /*
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448 */
449 void posix_cpu_timers_exit(struct task_struct *tsk)
450 {
451 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
452 sizeof(unsigned long long));
453 cleanup_timers(tsk->cpu_timers);
454
455 }
456 void posix_cpu_timers_exit_group(struct task_struct *tsk)
457 {
458 cleanup_timers(tsk->signal->cpu_timers);
459 }
460
461 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
462 {
463 return expires == 0 || expires > new_exp;
464 }
465
466 /*
467 * Insert the timer on the appropriate list before any timers that
468 * expire later. This must be called with the sighand lock held.
469 */
470 static void arm_timer(struct k_itimer *timer)
471 {
472 struct task_struct *p = timer->it.cpu.task;
473 struct list_head *head, *listpos;
474 struct task_cputime *cputime_expires;
475 struct cpu_timer_list *const nt = &timer->it.cpu;
476 struct cpu_timer_list *next;
477
478 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
479 head = p->cpu_timers;
480 cputime_expires = &p->cputime_expires;
481 } else {
482 head = p->signal->cpu_timers;
483 cputime_expires = &p->signal->cputime_expires;
484 }
485 head += CPUCLOCK_WHICH(timer->it_clock);
486
487 listpos = head;
488 list_for_each_entry(next, head, entry) {
489 if (nt->expires < next->expires)
490 break;
491 listpos = &next->entry;
492 }
493 list_add(&nt->entry, listpos);
494
495 if (listpos == head) {
496 unsigned long long exp = nt->expires;
497
498 /*
499 * We are the new earliest-expiring POSIX 1.b timer, hence
500 * need to update expiration cache. Take into account that
501 * for process timers we share expiration cache with itimers
502 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
503 */
504
505 switch (CPUCLOCK_WHICH(timer->it_clock)) {
506 case CPUCLOCK_PROF:
507 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
508 cputime_expires->prof_exp = expires_to_cputime(exp);
509 break;
510 case CPUCLOCK_VIRT:
511 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
512 cputime_expires->virt_exp = expires_to_cputime(exp);
513 break;
514 case CPUCLOCK_SCHED:
515 if (cputime_expires->sched_exp == 0 ||
516 cputime_expires->sched_exp > exp)
517 cputime_expires->sched_exp = exp;
518 break;
519 }
520 }
521 }
522
523 /*
524 * The timer is locked, fire it and arrange for its reload.
525 */
526 static void cpu_timer_fire(struct k_itimer *timer)
527 {
528 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
529 /*
530 * User don't want any signal.
531 */
532 timer->it.cpu.expires = 0;
533 } else if (unlikely(timer->sigq == NULL)) {
534 /*
535 * This a special case for clock_nanosleep,
536 * not a normal timer from sys_timer_create.
537 */
538 wake_up_process(timer->it_process);
539 timer->it.cpu.expires = 0;
540 } else if (timer->it.cpu.incr == 0) {
541 /*
542 * One-shot timer. Clear it as soon as it's fired.
543 */
544 posix_timer_event(timer, 0);
545 timer->it.cpu.expires = 0;
546 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
547 /*
548 * The signal did not get queued because the signal
549 * was ignored, so we won't get any callback to
550 * reload the timer. But we need to keep it
551 * ticking in case the signal is deliverable next time.
552 */
553 posix_cpu_timer_schedule(timer);
554 }
555 }
556
557 /*
558 * Sample a process (thread group) timer for the given group_leader task.
559 * Must be called with task sighand lock held for safe while_each_thread()
560 * traversal.
561 */
562 static int cpu_timer_sample_group(const clockid_t which_clock,
563 struct task_struct *p,
564 unsigned long long *sample)
565 {
566 struct task_cputime cputime;
567
568 thread_group_cputimer(p, &cputime);
569 switch (CPUCLOCK_WHICH(which_clock)) {
570 default:
571 return -EINVAL;
572 case CPUCLOCK_PROF:
573 *sample = cputime_to_expires(cputime.utime + cputime.stime);
574 break;
575 case CPUCLOCK_VIRT:
576 *sample = cputime_to_expires(cputime.utime);
577 break;
578 case CPUCLOCK_SCHED:
579 *sample = cputime.sum_exec_runtime;
580 break;
581 }
582 return 0;
583 }
584
585 #ifdef CONFIG_NO_HZ_FULL
586 static void nohz_kick_work_fn(struct work_struct *work)
587 {
588 tick_nohz_full_kick_all();
589 }
590
591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
592
593 /*
594 * We need the IPIs to be sent from sane process context.
595 * The posix cpu timers are always set with irqs disabled.
596 */
597 static void posix_cpu_timer_kick_nohz(void)
598 {
599 if (context_tracking_is_enabled())
600 schedule_work(&nohz_kick_work);
601 }
602
603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
604 {
605 if (!task_cputime_zero(&tsk->cputime_expires))
606 return false;
607
608 /* Check if cputimer is running. This is accessed without locking. */
609 if (READ_ONCE(tsk->signal->cputimer.running))
610 return false;
611
612 return true;
613 }
614 #else
615 static inline void posix_cpu_timer_kick_nohz(void) { }
616 #endif
617
618 /*
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
623 */
624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625 struct itimerspec *new, struct itimerspec *old)
626 {
627 unsigned long flags;
628 struct sighand_struct *sighand;
629 struct task_struct *p = timer->it.cpu.task;
630 unsigned long long old_expires, new_expires, old_incr, val;
631 int ret;
632
633 WARN_ON_ONCE(p == NULL);
634
635 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
636
637 /*
638 * Protect against sighand release/switch in exit/exec and p->cpu_timers
639 * and p->signal->cpu_timers read/write in arm_timer()
640 */
641 sighand = lock_task_sighand(p, &flags);
642 /*
643 * If p has just been reaped, we can no
644 * longer get any information about it at all.
645 */
646 if (unlikely(sighand == NULL)) {
647 return -ESRCH;
648 }
649
650 /*
651 * Disarm any old timer after extracting its expiry time.
652 */
653 WARN_ON_ONCE(!irqs_disabled());
654
655 ret = 0;
656 old_incr = timer->it.cpu.incr;
657 old_expires = timer->it.cpu.expires;
658 if (unlikely(timer->it.cpu.firing)) {
659 timer->it.cpu.firing = -1;
660 ret = TIMER_RETRY;
661 } else
662 list_del_init(&timer->it.cpu.entry);
663
664 /*
665 * We need to sample the current value to convert the new
666 * value from to relative and absolute, and to convert the
667 * old value from absolute to relative. To set a process
668 * timer, we need a sample to balance the thread expiry
669 * times (in arm_timer). With an absolute time, we must
670 * check if it's already passed. In short, we need a sample.
671 */
672 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
673 cpu_clock_sample(timer->it_clock, p, &val);
674 } else {
675 cpu_timer_sample_group(timer->it_clock, p, &val);
676 }
677
678 if (old) {
679 if (old_expires == 0) {
680 old->it_value.tv_sec = 0;
681 old->it_value.tv_nsec = 0;
682 } else {
683 /*
684 * Update the timer in case it has
685 * overrun already. If it has,
686 * we'll report it as having overrun
687 * and with the next reloaded timer
688 * already ticking, though we are
689 * swallowing that pending
690 * notification here to install the
691 * new setting.
692 */
693 bump_cpu_timer(timer, val);
694 if (val < timer->it.cpu.expires) {
695 old_expires = timer->it.cpu.expires - val;
696 sample_to_timespec(timer->it_clock,
697 old_expires,
698 &old->it_value);
699 } else {
700 old->it_value.tv_nsec = 1;
701 old->it_value.tv_sec = 0;
702 }
703 }
704 }
705
706 if (unlikely(ret)) {
707 /*
708 * We are colliding with the timer actually firing.
709 * Punt after filling in the timer's old value, and
710 * disable this firing since we are already reporting
711 * it as an overrun (thanks to bump_cpu_timer above).
712 */
713 unlock_task_sighand(p, &flags);
714 goto out;
715 }
716
717 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
718 new_expires += val;
719 }
720
721 /*
722 * Install the new expiry time (or zero).
723 * For a timer with no notification action, we don't actually
724 * arm the timer (we'll just fake it for timer_gettime).
725 */
726 timer->it.cpu.expires = new_expires;
727 if (new_expires != 0 && val < new_expires) {
728 arm_timer(timer);
729 }
730
731 unlock_task_sighand(p, &flags);
732 /*
733 * Install the new reload setting, and
734 * set up the signal and overrun bookkeeping.
735 */
736 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
737 &new->it_interval);
738
739 /*
740 * This acts as a modification timestamp for the timer,
741 * so any automatic reload attempt will punt on seeing
742 * that we have reset the timer manually.
743 */
744 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
745 ~REQUEUE_PENDING;
746 timer->it_overrun_last = 0;
747 timer->it_overrun = -1;
748
749 if (new_expires != 0 && !(val < new_expires)) {
750 /*
751 * The designated time already passed, so we notify
752 * immediately, even if the thread never runs to
753 * accumulate more time on this clock.
754 */
755 cpu_timer_fire(timer);
756 }
757
758 ret = 0;
759 out:
760 if (old) {
761 sample_to_timespec(timer->it_clock,
762 old_incr, &old->it_interval);
763 }
764 if (!ret)
765 posix_cpu_timer_kick_nohz();
766 return ret;
767 }
768
769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
770 {
771 unsigned long long now;
772 struct task_struct *p = timer->it.cpu.task;
773
774 WARN_ON_ONCE(p == NULL);
775
776 /*
777 * Easy part: convert the reload time.
778 */
779 sample_to_timespec(timer->it_clock,
780 timer->it.cpu.incr, &itp->it_interval);
781
782 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
783 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
784 return;
785 }
786
787 /*
788 * Sample the clock to take the difference with the expiry time.
789 */
790 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
791 cpu_clock_sample(timer->it_clock, p, &now);
792 } else {
793 struct sighand_struct *sighand;
794 unsigned long flags;
795
796 /*
797 * Protect against sighand release/switch in exit/exec and
798 * also make timer sampling safe if it ends up calling
799 * thread_group_cputime().
800 */
801 sighand = lock_task_sighand(p, &flags);
802 if (unlikely(sighand == NULL)) {
803 /*
804 * The process has been reaped.
805 * We can't even collect a sample any more.
806 * Call the timer disarmed, nothing else to do.
807 */
808 timer->it.cpu.expires = 0;
809 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810 &itp->it_value);
811 } else {
812 cpu_timer_sample_group(timer->it_clock, p, &now);
813 unlock_task_sighand(p, &flags);
814 }
815 }
816
817 if (now < timer->it.cpu.expires) {
818 sample_to_timespec(timer->it_clock,
819 timer->it.cpu.expires - now,
820 &itp->it_value);
821 } else {
822 /*
823 * The timer should have expired already, but the firing
824 * hasn't taken place yet. Say it's just about to expire.
825 */
826 itp->it_value.tv_nsec = 1;
827 itp->it_value.tv_sec = 0;
828 }
829 }
830
831 static unsigned long long
832 check_timers_list(struct list_head *timers,
833 struct list_head *firing,
834 unsigned long long curr)
835 {
836 int maxfire = 20;
837
838 while (!list_empty(timers)) {
839 struct cpu_timer_list *t;
840
841 t = list_first_entry(timers, struct cpu_timer_list, entry);
842
843 if (!--maxfire || curr < t->expires)
844 return t->expires;
845
846 t->firing = 1;
847 list_move_tail(&t->entry, firing);
848 }
849
850 return 0;
851 }
852
853 /*
854 * Check for any per-thread CPU timers that have fired and move them off
855 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
856 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
857 */
858 static void check_thread_timers(struct task_struct *tsk,
859 struct list_head *firing)
860 {
861 struct list_head *timers = tsk->cpu_timers;
862 struct signal_struct *const sig = tsk->signal;
863 struct task_cputime *tsk_expires = &tsk->cputime_expires;
864 unsigned long long expires;
865 unsigned long soft;
866
867 expires = check_timers_list(timers, firing, prof_ticks(tsk));
868 tsk_expires->prof_exp = expires_to_cputime(expires);
869
870 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
871 tsk_expires->virt_exp = expires_to_cputime(expires);
872
873 tsk_expires->sched_exp = check_timers_list(++timers, firing,
874 tsk->se.sum_exec_runtime);
875
876 /*
877 * Check for the special case thread timers.
878 */
879 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
880 if (soft != RLIM_INFINITY) {
881 unsigned long hard =
882 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
883
884 if (hard != RLIM_INFINITY &&
885 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
886 /*
887 * At the hard limit, we just die.
888 * No need to calculate anything else now.
889 */
890 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
891 return;
892 }
893 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
894 /*
895 * At the soft limit, send a SIGXCPU every second.
896 */
897 if (soft < hard) {
898 soft += USEC_PER_SEC;
899 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
900 }
901 printk(KERN_INFO
902 "RT Watchdog Timeout: %s[%d]\n",
903 tsk->comm, task_pid_nr(tsk));
904 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
905 }
906 }
907 }
908
909 static inline void stop_process_timers(struct signal_struct *sig)
910 {
911 struct thread_group_cputimer *cputimer = &sig->cputimer;
912
913 /* Turn off cputimer->running. This is done without locking. */
914 WRITE_ONCE(cputimer->running, 0);
915 }
916
917 static u32 onecputick;
918
919 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
920 unsigned long long *expires,
921 unsigned long long cur_time, int signo)
922 {
923 if (!it->expires)
924 return;
925
926 if (cur_time >= it->expires) {
927 if (it->incr) {
928 it->expires += it->incr;
929 it->error += it->incr_error;
930 if (it->error >= onecputick) {
931 it->expires -= cputime_one_jiffy;
932 it->error -= onecputick;
933 }
934 } else {
935 it->expires = 0;
936 }
937
938 trace_itimer_expire(signo == SIGPROF ?
939 ITIMER_PROF : ITIMER_VIRTUAL,
940 tsk->signal->leader_pid, cur_time);
941 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
942 }
943
944 if (it->expires && (!*expires || it->expires < *expires)) {
945 *expires = it->expires;
946 }
947 }
948
949 /*
950 * Check for any per-thread CPU timers that have fired and move them
951 * off the tsk->*_timers list onto the firing list. Per-thread timers
952 * have already been taken off.
953 */
954 static void check_process_timers(struct task_struct *tsk,
955 struct list_head *firing)
956 {
957 struct signal_struct *const sig = tsk->signal;
958 unsigned long long utime, ptime, virt_expires, prof_expires;
959 unsigned long long sum_sched_runtime, sched_expires;
960 struct list_head *timers = sig->cpu_timers;
961 struct task_cputime cputime;
962 unsigned long soft;
963
964 /*
965 * Collect the current process totals.
966 */
967 thread_group_cputimer(tsk, &cputime);
968 utime = cputime_to_expires(cputime.utime);
969 ptime = utime + cputime_to_expires(cputime.stime);
970 sum_sched_runtime = cputime.sum_exec_runtime;
971
972 prof_expires = check_timers_list(timers, firing, ptime);
973 virt_expires = check_timers_list(++timers, firing, utime);
974 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
975
976 /*
977 * Check for the special case process timers.
978 */
979 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
980 SIGPROF);
981 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
982 SIGVTALRM);
983 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
984 if (soft != RLIM_INFINITY) {
985 unsigned long psecs = cputime_to_secs(ptime);
986 unsigned long hard =
987 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
988 cputime_t x;
989 if (psecs >= hard) {
990 /*
991 * At the hard limit, we just die.
992 * No need to calculate anything else now.
993 */
994 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
995 return;
996 }
997 if (psecs >= soft) {
998 /*
999 * At the soft limit, send a SIGXCPU every second.
1000 */
1001 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1002 if (soft < hard) {
1003 soft++;
1004 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1005 }
1006 }
1007 x = secs_to_cputime(soft);
1008 if (!prof_expires || x < prof_expires) {
1009 prof_expires = x;
1010 }
1011 }
1012
1013 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1014 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1015 sig->cputime_expires.sched_exp = sched_expires;
1016 if (task_cputime_zero(&sig->cputime_expires))
1017 stop_process_timers(sig);
1018 }
1019
1020 /*
1021 * This is called from the signal code (via do_schedule_next_timer)
1022 * when the last timer signal was delivered and we have to reload the timer.
1023 */
1024 void posix_cpu_timer_schedule(struct k_itimer *timer)
1025 {
1026 struct sighand_struct *sighand;
1027 unsigned long flags;
1028 struct task_struct *p = timer->it.cpu.task;
1029 unsigned long long now;
1030
1031 WARN_ON_ONCE(p == NULL);
1032
1033 /*
1034 * Fetch the current sample and update the timer's expiry time.
1035 */
1036 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1037 cpu_clock_sample(timer->it_clock, p, &now);
1038 bump_cpu_timer(timer, now);
1039 if (unlikely(p->exit_state))
1040 goto out;
1041
1042 /* Protect timer list r/w in arm_timer() */
1043 sighand = lock_task_sighand(p, &flags);
1044 if (!sighand)
1045 goto out;
1046 } else {
1047 /*
1048 * Protect arm_timer() and timer sampling in case of call to
1049 * thread_group_cputime().
1050 */
1051 sighand = lock_task_sighand(p, &flags);
1052 if (unlikely(sighand == NULL)) {
1053 /*
1054 * The process has been reaped.
1055 * We can't even collect a sample any more.
1056 */
1057 timer->it.cpu.expires = 0;
1058 goto out;
1059 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1060 unlock_task_sighand(p, &flags);
1061 /* Optimizations: if the process is dying, no need to rearm */
1062 goto out;
1063 }
1064 cpu_timer_sample_group(timer->it_clock, p, &now);
1065 bump_cpu_timer(timer, now);
1066 /* Leave the sighand locked for the call below. */
1067 }
1068
1069 /*
1070 * Now re-arm for the new expiry time.
1071 */
1072 WARN_ON_ONCE(!irqs_disabled());
1073 arm_timer(timer);
1074 unlock_task_sighand(p, &flags);
1075
1076 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1077 posix_cpu_timer_kick_nohz();
1078 out:
1079 timer->it_overrun_last = timer->it_overrun;
1080 timer->it_overrun = -1;
1081 ++timer->it_requeue_pending;
1082 }
1083
1084 /**
1085 * task_cputime_expired - Compare two task_cputime entities.
1086 *
1087 * @sample: The task_cputime structure to be checked for expiration.
1088 * @expires: Expiration times, against which @sample will be checked.
1089 *
1090 * Checks @sample against @expires to see if any field of @sample has expired.
1091 * Returns true if any field of the former is greater than the corresponding
1092 * field of the latter if the latter field is set. Otherwise returns false.
1093 */
1094 static inline int task_cputime_expired(const struct task_cputime *sample,
1095 const struct task_cputime *expires)
1096 {
1097 if (expires->utime && sample->utime >= expires->utime)
1098 return 1;
1099 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1100 return 1;
1101 if (expires->sum_exec_runtime != 0 &&
1102 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1103 return 1;
1104 return 0;
1105 }
1106
1107 /**
1108 * fastpath_timer_check - POSIX CPU timers fast path.
1109 *
1110 * @tsk: The task (thread) being checked.
1111 *
1112 * Check the task and thread group timers. If both are zero (there are no
1113 * timers set) return false. Otherwise snapshot the task and thread group
1114 * timers and compare them with the corresponding expiration times. Return
1115 * true if a timer has expired, else return false.
1116 */
1117 static inline int fastpath_timer_check(struct task_struct *tsk)
1118 {
1119 struct signal_struct *sig;
1120 cputime_t utime, stime;
1121
1122 task_cputime(tsk, &utime, &stime);
1123
1124 if (!task_cputime_zero(&tsk->cputime_expires)) {
1125 struct task_cputime task_sample = {
1126 .utime = utime,
1127 .stime = stime,
1128 .sum_exec_runtime = tsk->se.sum_exec_runtime
1129 };
1130
1131 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1132 return 1;
1133 }
1134
1135 sig = tsk->signal;
1136 /* Check if cputimer is running. This is accessed without locking. */
1137 if (READ_ONCE(sig->cputimer.running)) {
1138 struct task_cputime group_sample;
1139
1140 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1141
1142 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1143 return 1;
1144 }
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * This is called from the timer interrupt handler. The irq handler has
1151 * already updated our counts. We need to check if any timers fire now.
1152 * Interrupts are disabled.
1153 */
1154 void run_posix_cpu_timers(struct task_struct *tsk)
1155 {
1156 LIST_HEAD(firing);
1157 struct k_itimer *timer, *next;
1158 unsigned long flags;
1159
1160 WARN_ON_ONCE(!irqs_disabled());
1161
1162 /*
1163 * The fast path checks that there are no expired thread or thread
1164 * group timers. If that's so, just return.
1165 */
1166 if (!fastpath_timer_check(tsk))
1167 return;
1168
1169 if (!lock_task_sighand(tsk, &flags))
1170 return;
1171 /*
1172 * Here we take off tsk->signal->cpu_timers[N] and
1173 * tsk->cpu_timers[N] all the timers that are firing, and
1174 * put them on the firing list.
1175 */
1176 check_thread_timers(tsk, &firing);
1177 /*
1178 * If there are any active process wide timers (POSIX 1.b, itimers,
1179 * RLIMIT_CPU) cputimer must be running.
1180 */
1181 if (READ_ONCE(tsk->signal->cputimer.running))
1182 check_process_timers(tsk, &firing);
1183
1184 /*
1185 * We must release these locks before taking any timer's lock.
1186 * There is a potential race with timer deletion here, as the
1187 * siglock now protects our private firing list. We have set
1188 * the firing flag in each timer, so that a deletion attempt
1189 * that gets the timer lock before we do will give it up and
1190 * spin until we've taken care of that timer below.
1191 */
1192 unlock_task_sighand(tsk, &flags);
1193
1194 /*
1195 * Now that all the timers on our list have the firing flag,
1196 * no one will touch their list entries but us. We'll take
1197 * each timer's lock before clearing its firing flag, so no
1198 * timer call will interfere.
1199 */
1200 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1201 int cpu_firing;
1202
1203 spin_lock(&timer->it_lock);
1204 list_del_init(&timer->it.cpu.entry);
1205 cpu_firing = timer->it.cpu.firing;
1206 timer->it.cpu.firing = 0;
1207 /*
1208 * The firing flag is -1 if we collided with a reset
1209 * of the timer, which already reported this
1210 * almost-firing as an overrun. So don't generate an event.
1211 */
1212 if (likely(cpu_firing >= 0))
1213 cpu_timer_fire(timer);
1214 spin_unlock(&timer->it_lock);
1215 }
1216 }
1217
1218 /*
1219 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1220 * The tsk->sighand->siglock must be held by the caller.
1221 */
1222 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1223 cputime_t *newval, cputime_t *oldval)
1224 {
1225 unsigned long long now;
1226
1227 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1228 cpu_timer_sample_group(clock_idx, tsk, &now);
1229
1230 if (oldval) {
1231 /*
1232 * We are setting itimer. The *oldval is absolute and we update
1233 * it to be relative, *newval argument is relative and we update
1234 * it to be absolute.
1235 */
1236 if (*oldval) {
1237 if (*oldval <= now) {
1238 /* Just about to fire. */
1239 *oldval = cputime_one_jiffy;
1240 } else {
1241 *oldval -= now;
1242 }
1243 }
1244
1245 if (!*newval)
1246 goto out;
1247 *newval += now;
1248 }
1249
1250 /*
1251 * Update expiration cache if we are the earliest timer, or eventually
1252 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1253 */
1254 switch (clock_idx) {
1255 case CPUCLOCK_PROF:
1256 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1257 tsk->signal->cputime_expires.prof_exp = *newval;
1258 break;
1259 case CPUCLOCK_VIRT:
1260 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1261 tsk->signal->cputime_expires.virt_exp = *newval;
1262 break;
1263 }
1264 out:
1265 posix_cpu_timer_kick_nohz();
1266 }
1267
1268 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1269 struct timespec *rqtp, struct itimerspec *it)
1270 {
1271 struct k_itimer timer;
1272 int error;
1273
1274 /*
1275 * Set up a temporary timer and then wait for it to go off.
1276 */
1277 memset(&timer, 0, sizeof timer);
1278 spin_lock_init(&timer.it_lock);
1279 timer.it_clock = which_clock;
1280 timer.it_overrun = -1;
1281 error = posix_cpu_timer_create(&timer);
1282 timer.it_process = current;
1283 if (!error) {
1284 static struct itimerspec zero_it;
1285
1286 memset(it, 0, sizeof *it);
1287 it->it_value = *rqtp;
1288
1289 spin_lock_irq(&timer.it_lock);
1290 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1291 if (error) {
1292 spin_unlock_irq(&timer.it_lock);
1293 return error;
1294 }
1295
1296 while (!signal_pending(current)) {
1297 if (timer.it.cpu.expires == 0) {
1298 /*
1299 * Our timer fired and was reset, below
1300 * deletion can not fail.
1301 */
1302 posix_cpu_timer_del(&timer);
1303 spin_unlock_irq(&timer.it_lock);
1304 return 0;
1305 }
1306
1307 /*
1308 * Block until cpu_timer_fire (or a signal) wakes us.
1309 */
1310 __set_current_state(TASK_INTERRUPTIBLE);
1311 spin_unlock_irq(&timer.it_lock);
1312 schedule();
1313 spin_lock_irq(&timer.it_lock);
1314 }
1315
1316 /*
1317 * We were interrupted by a signal.
1318 */
1319 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1320 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1321 if (!error) {
1322 /*
1323 * Timer is now unarmed, deletion can not fail.
1324 */
1325 posix_cpu_timer_del(&timer);
1326 }
1327 spin_unlock_irq(&timer.it_lock);
1328
1329 while (error == TIMER_RETRY) {
1330 /*
1331 * We need to handle case when timer was or is in the
1332 * middle of firing. In other cases we already freed
1333 * resources.
1334 */
1335 spin_lock_irq(&timer.it_lock);
1336 error = posix_cpu_timer_del(&timer);
1337 spin_unlock_irq(&timer.it_lock);
1338 }
1339
1340 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1341 /*
1342 * It actually did fire already.
1343 */
1344 return 0;
1345 }
1346
1347 error = -ERESTART_RESTARTBLOCK;
1348 }
1349
1350 return error;
1351 }
1352
1353 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1354
1355 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1356 struct timespec *rqtp, struct timespec __user *rmtp)
1357 {
1358 struct restart_block *restart_block = &current->restart_block;
1359 struct itimerspec it;
1360 int error;
1361
1362 /*
1363 * Diagnose required errors first.
1364 */
1365 if (CPUCLOCK_PERTHREAD(which_clock) &&
1366 (CPUCLOCK_PID(which_clock) == 0 ||
1367 CPUCLOCK_PID(which_clock) == current->pid))
1368 return -EINVAL;
1369
1370 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1371
1372 if (error == -ERESTART_RESTARTBLOCK) {
1373
1374 if (flags & TIMER_ABSTIME)
1375 return -ERESTARTNOHAND;
1376 /*
1377 * Report back to the user the time still remaining.
1378 */
1379 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1380 return -EFAULT;
1381
1382 restart_block->fn = posix_cpu_nsleep_restart;
1383 restart_block->nanosleep.clockid = which_clock;
1384 restart_block->nanosleep.rmtp = rmtp;
1385 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1386 }
1387 return error;
1388 }
1389
1390 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1391 {
1392 clockid_t which_clock = restart_block->nanosleep.clockid;
1393 struct timespec t;
1394 struct itimerspec it;
1395 int error;
1396
1397 t = ns_to_timespec(restart_block->nanosleep.expires);
1398
1399 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1400
1401 if (error == -ERESTART_RESTARTBLOCK) {
1402 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1403 /*
1404 * Report back to the user the time still remaining.
1405 */
1406 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1407 return -EFAULT;
1408
1409 restart_block->nanosleep.expires = timespec_to_ns(&t);
1410 }
1411 return error;
1412
1413 }
1414
1415 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1416 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1417
1418 static int process_cpu_clock_getres(const clockid_t which_clock,
1419 struct timespec *tp)
1420 {
1421 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1422 }
1423 static int process_cpu_clock_get(const clockid_t which_clock,
1424 struct timespec *tp)
1425 {
1426 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1427 }
1428 static int process_cpu_timer_create(struct k_itimer *timer)
1429 {
1430 timer->it_clock = PROCESS_CLOCK;
1431 return posix_cpu_timer_create(timer);
1432 }
1433 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1434 struct timespec *rqtp,
1435 struct timespec __user *rmtp)
1436 {
1437 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1438 }
1439 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1440 {
1441 return -EINVAL;
1442 }
1443 static int thread_cpu_clock_getres(const clockid_t which_clock,
1444 struct timespec *tp)
1445 {
1446 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1447 }
1448 static int thread_cpu_clock_get(const clockid_t which_clock,
1449 struct timespec *tp)
1450 {
1451 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1452 }
1453 static int thread_cpu_timer_create(struct k_itimer *timer)
1454 {
1455 timer->it_clock = THREAD_CLOCK;
1456 return posix_cpu_timer_create(timer);
1457 }
1458
1459 struct k_clock clock_posix_cpu = {
1460 .clock_getres = posix_cpu_clock_getres,
1461 .clock_set = posix_cpu_clock_set,
1462 .clock_get = posix_cpu_clock_get,
1463 .timer_create = posix_cpu_timer_create,
1464 .nsleep = posix_cpu_nsleep,
1465 .nsleep_restart = posix_cpu_nsleep_restart,
1466 .timer_set = posix_cpu_timer_set,
1467 .timer_del = posix_cpu_timer_del,
1468 .timer_get = posix_cpu_timer_get,
1469 };
1470
1471 static __init int init_posix_cpu_timers(void)
1472 {
1473 struct k_clock process = {
1474 .clock_getres = process_cpu_clock_getres,
1475 .clock_get = process_cpu_clock_get,
1476 .timer_create = process_cpu_timer_create,
1477 .nsleep = process_cpu_nsleep,
1478 .nsleep_restart = process_cpu_nsleep_restart,
1479 };
1480 struct k_clock thread = {
1481 .clock_getres = thread_cpu_clock_getres,
1482 .clock_get = thread_cpu_clock_get,
1483 .timer_create = thread_cpu_timer_create,
1484 };
1485 struct timespec ts;
1486
1487 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1488 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1489
1490 cputime_to_timespec(cputime_one_jiffy, &ts);
1491 onecputick = ts.tv_nsec;
1492 WARN_ON(ts.tv_sec != 0);
1493
1494 return 0;
1495 }
1496 __initcall(init_posix_cpu_timers);
This page took 0.087872 seconds and 5 git commands to generate.