2100aad6b5f28575d4f571686ce6d28bfb22c10e
[deliverable/linux.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
28 */
29
30 static struct tick_device tick_broadcast_device;
31 static cpumask_var_t tick_broadcast_mask;
32 static cpumask_var_t tmpmask;
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43 * Debugging: see timer_list.c
44 */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47 return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52 return tick_broadcast_mask;
53 }
54
55 /*
56 * Start the device in periodic mode
57 */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60 if (bc)
61 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65 * Check, if the device can be utilized as broadcast device:
66 */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69 if ((tick_broadcast_device.evtdev &&
70 tick_broadcast_device.evtdev->rating >= dev->rating) ||
71 (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 return 0;
73
74 clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75 tick_broadcast_device.evtdev = dev;
76 if (!cpumask_empty(tick_broadcast_mask))
77 tick_broadcast_start_periodic(dev);
78 return 1;
79 }
80
81 /*
82 * Check, if the device is the broadcast device
83 */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86 return (dev && tick_broadcast_device.evtdev == dev);
87 }
88
89 static void err_broadcast(const struct cpumask *mask)
90 {
91 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
92 }
93
94 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
95 {
96 if (!dev->broadcast)
97 dev->broadcast = tick_broadcast;
98 if (!dev->broadcast) {
99 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
100 dev->name);
101 dev->broadcast = err_broadcast;
102 }
103 }
104
105 /*
106 * Check, if the device is disfunctional and a place holder, which
107 * needs to be handled by the broadcast device.
108 */
109 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
110 {
111 unsigned long flags;
112 int ret = 0;
113
114 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
115
116 /*
117 * Devices might be registered with both periodic and oneshot
118 * mode disabled. This signals, that the device needs to be
119 * operated from the broadcast device and is a placeholder for
120 * the cpu local device.
121 */
122 if (!tick_device_is_functional(dev)) {
123 dev->event_handler = tick_handle_periodic;
124 tick_device_setup_broadcast_func(dev);
125 cpumask_set_cpu(cpu, tick_broadcast_mask);
126 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
127 ret = 1;
128 } else {
129 /*
130 * When the new device is not affected by the stop
131 * feature and the cpu is marked in the broadcast mask
132 * then clear the broadcast bit.
133 */
134 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
135 int cpu = smp_processor_id();
136 cpumask_clear_cpu(cpu, tick_broadcast_mask);
137 tick_broadcast_clear_oneshot(cpu);
138 } else {
139 tick_device_setup_broadcast_func(dev);
140 }
141 }
142 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
143 return ret;
144 }
145
146 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
147 int tick_receive_broadcast(void)
148 {
149 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
150 struct clock_event_device *evt = td->evtdev;
151
152 if (!evt)
153 return -ENODEV;
154
155 if (!evt->event_handler)
156 return -EINVAL;
157
158 evt->event_handler(evt);
159 return 0;
160 }
161 #endif
162
163 /*
164 * Broadcast the event to the cpus, which are set in the mask (mangled).
165 */
166 static void tick_do_broadcast(struct cpumask *mask)
167 {
168 int cpu = smp_processor_id();
169 struct tick_device *td;
170
171 /*
172 * Check, if the current cpu is in the mask
173 */
174 if (cpumask_test_cpu(cpu, mask)) {
175 cpumask_clear_cpu(cpu, mask);
176 td = &per_cpu(tick_cpu_device, cpu);
177 td->evtdev->event_handler(td->evtdev);
178 }
179
180 if (!cpumask_empty(mask)) {
181 /*
182 * It might be necessary to actually check whether the devices
183 * have different broadcast functions. For now, just use the
184 * one of the first device. This works as long as we have this
185 * misfeature only on x86 (lapic)
186 */
187 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
188 td->evtdev->broadcast(mask);
189 }
190 }
191
192 /*
193 * Periodic broadcast:
194 * - invoke the broadcast handlers
195 */
196 static void tick_do_periodic_broadcast(void)
197 {
198 raw_spin_lock(&tick_broadcast_lock);
199
200 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
201 tick_do_broadcast(tmpmask);
202
203 raw_spin_unlock(&tick_broadcast_lock);
204 }
205
206 /*
207 * Event handler for periodic broadcast ticks
208 */
209 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
210 {
211 ktime_t next;
212
213 tick_do_periodic_broadcast();
214
215 /*
216 * The device is in periodic mode. No reprogramming necessary:
217 */
218 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
219 return;
220
221 /*
222 * Setup the next period for devices, which do not have
223 * periodic mode. We read dev->next_event first and add to it
224 * when the event already expired. clockevents_program_event()
225 * sets dev->next_event only when the event is really
226 * programmed to the device.
227 */
228 for (next = dev->next_event; ;) {
229 next = ktime_add(next, tick_period);
230
231 if (!clockevents_program_event(dev, next, false))
232 return;
233 tick_do_periodic_broadcast();
234 }
235 }
236
237 /*
238 * Powerstate information: The system enters/leaves a state, where
239 * affected devices might stop
240 */
241 static void tick_do_broadcast_on_off(unsigned long *reason)
242 {
243 struct clock_event_device *bc, *dev;
244 struct tick_device *td;
245 unsigned long flags;
246 int cpu, bc_stopped;
247
248 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
249
250 cpu = smp_processor_id();
251 td = &per_cpu(tick_cpu_device, cpu);
252 dev = td->evtdev;
253 bc = tick_broadcast_device.evtdev;
254
255 /*
256 * Is the device not affected by the powerstate ?
257 */
258 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
259 goto out;
260
261 if (!tick_device_is_functional(dev))
262 goto out;
263
264 bc_stopped = cpumask_empty(tick_broadcast_mask);
265
266 switch (*reason) {
267 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
268 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
269 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
270 if (tick_broadcast_device.mode ==
271 TICKDEV_MODE_PERIODIC)
272 clockevents_shutdown(dev);
273 }
274 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
275 tick_broadcast_force = 1;
276 break;
277 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
278 if (!tick_broadcast_force &&
279 cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
280 if (tick_broadcast_device.mode ==
281 TICKDEV_MODE_PERIODIC)
282 tick_setup_periodic(dev, 0);
283 }
284 break;
285 }
286
287 if (cpumask_empty(tick_broadcast_mask)) {
288 if (!bc_stopped)
289 clockevents_shutdown(bc);
290 } else if (bc_stopped) {
291 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
292 tick_broadcast_start_periodic(bc);
293 else
294 tick_broadcast_setup_oneshot(bc);
295 }
296 out:
297 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
298 }
299
300 /*
301 * Powerstate information: The system enters/leaves a state, where
302 * affected devices might stop.
303 */
304 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
305 {
306 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
307 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
308 "offline CPU #%d\n", *oncpu);
309 else
310 tick_do_broadcast_on_off(&reason);
311 }
312
313 /*
314 * Set the periodic handler depending on broadcast on/off
315 */
316 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
317 {
318 if (!broadcast)
319 dev->event_handler = tick_handle_periodic;
320 else
321 dev->event_handler = tick_handle_periodic_broadcast;
322 }
323
324 /*
325 * Remove a CPU from broadcasting
326 */
327 void tick_shutdown_broadcast(unsigned int *cpup)
328 {
329 struct clock_event_device *bc;
330 unsigned long flags;
331 unsigned int cpu = *cpup;
332
333 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
334
335 bc = tick_broadcast_device.evtdev;
336 cpumask_clear_cpu(cpu, tick_broadcast_mask);
337
338 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
339 if (bc && cpumask_empty(tick_broadcast_mask))
340 clockevents_shutdown(bc);
341 }
342
343 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
344 }
345
346 void tick_suspend_broadcast(void)
347 {
348 struct clock_event_device *bc;
349 unsigned long flags;
350
351 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
352
353 bc = tick_broadcast_device.evtdev;
354 if (bc)
355 clockevents_shutdown(bc);
356
357 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
358 }
359
360 int tick_resume_broadcast(void)
361 {
362 struct clock_event_device *bc;
363 unsigned long flags;
364 int broadcast = 0;
365
366 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
367
368 bc = tick_broadcast_device.evtdev;
369
370 if (bc) {
371 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
372
373 switch (tick_broadcast_device.mode) {
374 case TICKDEV_MODE_PERIODIC:
375 if (!cpumask_empty(tick_broadcast_mask))
376 tick_broadcast_start_periodic(bc);
377 broadcast = cpumask_test_cpu(smp_processor_id(),
378 tick_broadcast_mask);
379 break;
380 case TICKDEV_MODE_ONESHOT:
381 if (!cpumask_empty(tick_broadcast_mask))
382 broadcast = tick_resume_broadcast_oneshot(bc);
383 break;
384 }
385 }
386 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
387
388 return broadcast;
389 }
390
391
392 #ifdef CONFIG_TICK_ONESHOT
393
394 static cpumask_var_t tick_broadcast_oneshot_mask;
395 static cpumask_var_t tick_broadcast_pending_mask;
396 static cpumask_var_t tick_broadcast_force_mask;
397
398 /*
399 * Exposed for debugging: see timer_list.c
400 */
401 struct cpumask *tick_get_broadcast_oneshot_mask(void)
402 {
403 return tick_broadcast_oneshot_mask;
404 }
405
406 /*
407 * Set broadcast interrupt affinity
408 */
409 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
410 const struct cpumask *cpumask)
411 {
412 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
413 return;
414
415 if (cpumask_equal(bc->cpumask, cpumask))
416 return;
417
418 bc->cpumask = cpumask;
419 irq_set_affinity(bc->irq, bc->cpumask);
420 }
421
422 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
423 ktime_t expires, int force)
424 {
425 int ret;
426
427 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
428 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
429
430 ret = clockevents_program_event(bc, expires, force);
431 if (!ret)
432 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
433 return ret;
434 }
435
436 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
437 {
438 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
439 return 0;
440 }
441
442 /*
443 * Called from irq_enter() when idle was interrupted to reenable the
444 * per cpu device.
445 */
446 void tick_check_oneshot_broadcast(int cpu)
447 {
448 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
449 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
450
451 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
452 }
453 }
454
455 /*
456 * Handle oneshot mode broadcasting
457 */
458 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
459 {
460 struct tick_device *td;
461 ktime_t now, next_event;
462 int cpu, next_cpu = 0;
463
464 raw_spin_lock(&tick_broadcast_lock);
465 again:
466 dev->next_event.tv64 = KTIME_MAX;
467 next_event.tv64 = KTIME_MAX;
468 cpumask_clear(tmpmask);
469 now = ktime_get();
470 /* Find all expired events */
471 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
472 td = &per_cpu(tick_cpu_device, cpu);
473 if (td->evtdev->next_event.tv64 <= now.tv64) {
474 cpumask_set_cpu(cpu, tmpmask);
475 /*
476 * Mark the remote cpu in the pending mask, so
477 * it can avoid reprogramming the cpu local
478 * timer in tick_broadcast_oneshot_control().
479 */
480 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
481 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
482 next_event.tv64 = td->evtdev->next_event.tv64;
483 next_cpu = cpu;
484 }
485 }
486
487 /* Take care of enforced broadcast requests */
488 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
489 cpumask_clear(tick_broadcast_force_mask);
490
491 /*
492 * Wakeup the cpus which have an expired event.
493 */
494 tick_do_broadcast(tmpmask);
495
496 /*
497 * Two reasons for reprogram:
498 *
499 * - The global event did not expire any CPU local
500 * events. This happens in dyntick mode, as the maximum PIT
501 * delta is quite small.
502 *
503 * - There are pending events on sleeping CPUs which were not
504 * in the event mask
505 */
506 if (next_event.tv64 != KTIME_MAX) {
507 /*
508 * Rearm the broadcast device. If event expired,
509 * repeat the above
510 */
511 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
512 goto again;
513 }
514 raw_spin_unlock(&tick_broadcast_lock);
515 }
516
517 /*
518 * Powerstate information: The system enters/leaves a state, where
519 * affected devices might stop
520 */
521 void tick_broadcast_oneshot_control(unsigned long reason)
522 {
523 struct clock_event_device *bc, *dev;
524 struct tick_device *td;
525 unsigned long flags;
526 ktime_t now;
527 int cpu;
528
529 /*
530 * Periodic mode does not care about the enter/exit of power
531 * states
532 */
533 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
534 return;
535
536 /*
537 * We are called with preemtion disabled from the depth of the
538 * idle code, so we can't be moved away.
539 */
540 cpu = smp_processor_id();
541 td = &per_cpu(tick_cpu_device, cpu);
542 dev = td->evtdev;
543
544 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
545 return;
546
547 bc = tick_broadcast_device.evtdev;
548
549 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
550 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
551 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
552 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
553 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
554 /*
555 * We only reprogram the broadcast timer if we
556 * did not mark ourself in the force mask and
557 * if the cpu local event is earlier than the
558 * broadcast event. If the current CPU is in
559 * the force mask, then we are going to be
560 * woken by the IPI right away.
561 */
562 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
563 dev->next_event.tv64 < bc->next_event.tv64)
564 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
565 }
566 } else {
567 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
568 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
569 if (dev->next_event.tv64 == KTIME_MAX)
570 goto out;
571 /*
572 * The cpu which was handling the broadcast
573 * timer marked this cpu in the broadcast
574 * pending mask and fired the broadcast
575 * IPI. So we are going to handle the expired
576 * event anyway via the broadcast IPI
577 * handler. No need to reprogram the timer
578 * with an already expired event.
579 */
580 if (cpumask_test_and_clear_cpu(cpu,
581 tick_broadcast_pending_mask))
582 goto out;
583
584 /*
585 * If the pending bit is not set, then we are
586 * either the CPU handling the broadcast
587 * interrupt or we got woken by something else.
588 *
589 * We are not longer in the broadcast mask, so
590 * if the cpu local expiry time is already
591 * reached, we would reprogram the cpu local
592 * timer with an already expired event.
593 *
594 * This can lead to a ping-pong when we return
595 * to idle and therefor rearm the broadcast
596 * timer before the cpu local timer was able
597 * to fire. This happens because the forced
598 * reprogramming makes sure that the event
599 * will happen in the future and depending on
600 * the min_delta setting this might be far
601 * enough out that the ping-pong starts.
602 *
603 * If the cpu local next_event has expired
604 * then we know that the broadcast timer
605 * next_event has expired as well and
606 * broadcast is about to be handled. So we
607 * avoid reprogramming and enforce that the
608 * broadcast handler, which did not run yet,
609 * will invoke the cpu local handler.
610 *
611 * We cannot call the handler directly from
612 * here, because we might be in a NOHZ phase
613 * and we did not go through the irq_enter()
614 * nohz fixups.
615 */
616 now = ktime_get();
617 if (dev->next_event.tv64 <= now.tv64) {
618 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
619 goto out;
620 }
621 /*
622 * We got woken by something else. Reprogram
623 * the cpu local timer device.
624 */
625 tick_program_event(dev->next_event, 1);
626 }
627 }
628 out:
629 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
630 }
631
632 /*
633 * Reset the one shot broadcast for a cpu
634 *
635 * Called with tick_broadcast_lock held
636 */
637 static void tick_broadcast_clear_oneshot(int cpu)
638 {
639 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
640 }
641
642 static void tick_broadcast_init_next_event(struct cpumask *mask,
643 ktime_t expires)
644 {
645 struct tick_device *td;
646 int cpu;
647
648 for_each_cpu(cpu, mask) {
649 td = &per_cpu(tick_cpu_device, cpu);
650 if (td->evtdev)
651 td->evtdev->next_event = expires;
652 }
653 }
654
655 /**
656 * tick_broadcast_setup_oneshot - setup the broadcast device
657 */
658 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
659 {
660 int cpu = smp_processor_id();
661
662 /* Set it up only once ! */
663 if (bc->event_handler != tick_handle_oneshot_broadcast) {
664 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
665
666 bc->event_handler = tick_handle_oneshot_broadcast;
667
668 /* Take the do_timer update */
669 tick_do_timer_cpu = cpu;
670
671 /*
672 * We must be careful here. There might be other CPUs
673 * waiting for periodic broadcast. We need to set the
674 * oneshot_mask bits for those and program the
675 * broadcast device to fire.
676 */
677 cpumask_copy(tmpmask, tick_broadcast_mask);
678 cpumask_clear_cpu(cpu, tmpmask);
679 cpumask_or(tick_broadcast_oneshot_mask,
680 tick_broadcast_oneshot_mask, tmpmask);
681
682 if (was_periodic && !cpumask_empty(tmpmask)) {
683 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
684 tick_broadcast_init_next_event(tmpmask,
685 tick_next_period);
686 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
687 } else
688 bc->next_event.tv64 = KTIME_MAX;
689 } else {
690 /*
691 * The first cpu which switches to oneshot mode sets
692 * the bit for all other cpus which are in the general
693 * (periodic) broadcast mask. So the bit is set and
694 * would prevent the first broadcast enter after this
695 * to program the bc device.
696 */
697 tick_broadcast_clear_oneshot(cpu);
698 }
699 }
700
701 /*
702 * Select oneshot operating mode for the broadcast device
703 */
704 void tick_broadcast_switch_to_oneshot(void)
705 {
706 struct clock_event_device *bc;
707 unsigned long flags;
708
709 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
710
711 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
712 bc = tick_broadcast_device.evtdev;
713 if (bc)
714 tick_broadcast_setup_oneshot(bc);
715
716 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
717 }
718
719
720 /*
721 * Remove a dead CPU from broadcasting
722 */
723 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
724 {
725 unsigned long flags;
726 unsigned int cpu = *cpup;
727
728 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
729
730 /*
731 * Clear the broadcast mask flag for the dead cpu, but do not
732 * stop the broadcast device!
733 */
734 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
735
736 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
737 }
738
739 /*
740 * Check, whether the broadcast device is in one shot mode
741 */
742 int tick_broadcast_oneshot_active(void)
743 {
744 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
745 }
746
747 /*
748 * Check whether the broadcast device supports oneshot.
749 */
750 bool tick_broadcast_oneshot_available(void)
751 {
752 struct clock_event_device *bc = tick_broadcast_device.evtdev;
753
754 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
755 }
756
757 #endif
758
759 void __init tick_broadcast_init(void)
760 {
761 alloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
762 alloc_cpumask_var(&tmpmask, GFP_NOWAIT);
763 #ifdef CONFIG_TICK_ONESHOT
764 alloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
765 alloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
766 alloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
767 #endif
768 }
This page took 0.044121 seconds and 4 git commands to generate.