Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47 * Debugging: see timer_list.c
48 */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 return tick_broadcast_mask;
57 }
58
59 /*
60 * Start the device in periodic mode
61 */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 if (bc)
65 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69 * Check, if the device can be utilized as broadcast device:
70 */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 struct clock_event_device *newdev)
73 {
74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 return false;
78
79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 return false;
82
83 return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87 * Conditionally install/replace broadcast device
88 */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93 if (!tick_check_broadcast_device(cur, dev))
94 return;
95
96 if (!try_module_get(dev->owner))
97 return;
98
99 clockevents_exchange_device(cur, dev);
100 if (cur)
101 cur->event_handler = clockevents_handle_noop;
102 tick_broadcast_device.evtdev = dev;
103 if (!cpumask_empty(tick_broadcast_mask))
104 tick_broadcast_start_periodic(dev);
105 /*
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
111 * forever.
112 */
113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 tick_clock_notify();
115 }
116
117 /*
118 * Check, if the device is the broadcast device
119 */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 int ret = -ENODEV;
128
129 if (tick_is_broadcast_device(dev)) {
130 raw_spin_lock(&tick_broadcast_lock);
131 ret = __clockevents_update_freq(dev, freq);
132 raw_spin_unlock(&tick_broadcast_lock);
133 }
134 return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 if (!dev->broadcast)
146 dev->broadcast = tick_broadcast;
147 if (!dev->broadcast) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 dev->name);
150 dev->broadcast = err_broadcast;
151 }
152 }
153
154 /*
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
157 */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 unsigned long flags;
162 int ret;
163
164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166 /*
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
171 */
172 if (!tick_device_is_functional(dev)) {
173 dev->event_handler = tick_handle_periodic;
174 tick_device_setup_broadcast_func(dev);
175 cpumask_set_cpu(cpu, tick_broadcast_mask);
176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 tick_broadcast_start_periodic(bc);
178 else
179 tick_broadcast_setup_oneshot(bc);
180 ret = 1;
181 } else {
182 /*
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
185 */
186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 else
189 tick_device_setup_broadcast_func(dev);
190
191 /*
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
194 */
195 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198 switch (tick_broadcast_device.mode) {
199 case TICKDEV_MODE_ONESHOT:
200 /*
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
207 */
208 tick_broadcast_clear_oneshot(cpu);
209 ret = 0;
210 break;
211
212 case TICKDEV_MODE_PERIODIC:
213 /*
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
216 * switched off now.
217 */
218 if (cpumask_empty(tick_broadcast_mask) && bc)
219 clockevents_shutdown(bc);
220 /*
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device.
225 */
226 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227 break;
228 default:
229 /* Nothing to do */
230 ret = 0;
231 break;
232 }
233 }
234 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235 return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242 struct clock_event_device *evt = td->evtdev;
243
244 if (!evt)
245 return -ENODEV;
246
247 if (!evt->event_handler)
248 return -EINVAL;
249
250 evt->event_handler(evt);
251 return 0;
252 }
253 #endif
254
255 /*
256 * Broadcast the event to the cpus, which are set in the mask (mangled).
257 */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260 int cpu = smp_processor_id();
261 struct tick_device *td;
262 bool local = false;
263
264 /*
265 * Check, if the current cpu is in the mask
266 */
267 if (cpumask_test_cpu(cpu, mask)) {
268 cpumask_clear_cpu(cpu, mask);
269 local = true;
270 }
271
272 if (!cpumask_empty(mask)) {
273 /*
274 * It might be necessary to actually check whether the devices
275 * have different broadcast functions. For now, just use the
276 * one of the first device. This works as long as we have this
277 * misfeature only on x86 (lapic)
278 */
279 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280 td->evtdev->broadcast(mask);
281 }
282 return local;
283 }
284
285 /*
286 * Periodic broadcast:
287 * - invoke the broadcast handlers
288 */
289 static bool tick_do_periodic_broadcast(void)
290 {
291 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
292 return tick_do_broadcast(tmpmask);
293 }
294
295 /*
296 * Event handler for periodic broadcast ticks
297 */
298 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
299 {
300 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
301 bool bc_local;
302
303 raw_spin_lock(&tick_broadcast_lock);
304 bc_local = tick_do_periodic_broadcast();
305
306 if (clockevent_state_oneshot(dev)) {
307 ktime_t next = ktime_add(dev->next_event, tick_period);
308
309 clockevents_program_event(dev, next, true);
310 }
311 raw_spin_unlock(&tick_broadcast_lock);
312
313 /*
314 * We run the handler of the local cpu after dropping
315 * tick_broadcast_lock because the handler might deadlock when
316 * trying to switch to oneshot mode.
317 */
318 if (bc_local)
319 td->evtdev->event_handler(td->evtdev);
320 }
321
322 /**
323 * tick_broadcast_control - Enable/disable or force broadcast mode
324 * @mode: The selected broadcast mode
325 *
326 * Called when the system enters a state where affected tick devices
327 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
328 *
329 * Called with interrupts disabled, so clockevents_lock is not
330 * required here because the local clock event device cannot go away
331 * under us.
332 */
333 void tick_broadcast_control(enum tick_broadcast_mode mode)
334 {
335 struct clock_event_device *bc, *dev;
336 struct tick_device *td;
337 int cpu, bc_stopped;
338
339 td = this_cpu_ptr(&tick_cpu_device);
340 dev = td->evtdev;
341
342 /*
343 * Is the device not affected by the powerstate ?
344 */
345 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
346 return;
347
348 if (!tick_device_is_functional(dev))
349 return;
350
351 raw_spin_lock(&tick_broadcast_lock);
352 cpu = smp_processor_id();
353 bc = tick_broadcast_device.evtdev;
354 bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356 switch (mode) {
357 case TICK_BROADCAST_FORCE:
358 tick_broadcast_forced = 1;
359 case TICK_BROADCAST_ON:
360 cpumask_set_cpu(cpu, tick_broadcast_on);
361 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
362 if (tick_broadcast_device.mode ==
363 TICKDEV_MODE_PERIODIC)
364 clockevents_shutdown(dev);
365 }
366 break;
367
368 case TICK_BROADCAST_OFF:
369 if (tick_broadcast_forced)
370 break;
371 cpumask_clear_cpu(cpu, tick_broadcast_on);
372 if (!tick_device_is_functional(dev))
373 break;
374 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375 if (tick_broadcast_device.mode ==
376 TICKDEV_MODE_PERIODIC)
377 tick_setup_periodic(dev, 0);
378 }
379 break;
380 }
381
382 if (cpumask_empty(tick_broadcast_mask)) {
383 if (!bc_stopped)
384 clockevents_shutdown(bc);
385 } else if (bc_stopped) {
386 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387 tick_broadcast_start_periodic(bc);
388 else
389 tick_broadcast_setup_oneshot(bc);
390 }
391 raw_spin_unlock(&tick_broadcast_lock);
392 }
393 EXPORT_SYMBOL_GPL(tick_broadcast_control);
394
395 /*
396 * Set the periodic handler depending on broadcast on/off
397 */
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
399 {
400 if (!broadcast)
401 dev->event_handler = tick_handle_periodic;
402 else
403 dev->event_handler = tick_handle_periodic_broadcast;
404 }
405
406 #ifdef CONFIG_HOTPLUG_CPU
407 /*
408 * Remove a CPU from broadcasting
409 */
410 void tick_shutdown_broadcast(unsigned int cpu)
411 {
412 struct clock_event_device *bc;
413 unsigned long flags;
414
415 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416
417 bc = tick_broadcast_device.evtdev;
418 cpumask_clear_cpu(cpu, tick_broadcast_mask);
419 cpumask_clear_cpu(cpu, tick_broadcast_on);
420
421 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422 if (bc && cpumask_empty(tick_broadcast_mask))
423 clockevents_shutdown(bc);
424 }
425
426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 #endif
429
430 void tick_suspend_broadcast(void)
431 {
432 struct clock_event_device *bc;
433 unsigned long flags;
434
435 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436
437 bc = tick_broadcast_device.evtdev;
438 if (bc)
439 clockevents_shutdown(bc);
440
441 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
442 }
443
444 /*
445 * This is called from tick_resume_local() on a resuming CPU. That's
446 * called from the core resume function, tick_unfreeze() and the magic XEN
447 * resume hackery.
448 *
449 * In none of these cases the broadcast device mode can change and the
450 * bit of the resuming CPU in the broadcast mask is safe as well.
451 */
452 bool tick_resume_check_broadcast(void)
453 {
454 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
455 return false;
456 else
457 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
458 }
459
460 void tick_resume_broadcast(void)
461 {
462 struct clock_event_device *bc;
463 unsigned long flags;
464
465 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
466
467 bc = tick_broadcast_device.evtdev;
468
469 if (bc) {
470 clockevents_tick_resume(bc);
471
472 switch (tick_broadcast_device.mode) {
473 case TICKDEV_MODE_PERIODIC:
474 if (!cpumask_empty(tick_broadcast_mask))
475 tick_broadcast_start_periodic(bc);
476 break;
477 case TICKDEV_MODE_ONESHOT:
478 if (!cpumask_empty(tick_broadcast_mask))
479 tick_resume_broadcast_oneshot(bc);
480 break;
481 }
482 }
483 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 }
485
486 #ifdef CONFIG_TICK_ONESHOT
487
488 static cpumask_var_t tick_broadcast_oneshot_mask;
489 static cpumask_var_t tick_broadcast_pending_mask;
490 static cpumask_var_t tick_broadcast_force_mask;
491
492 /*
493 * Exposed for debugging: see timer_list.c
494 */
495 struct cpumask *tick_get_broadcast_oneshot_mask(void)
496 {
497 return tick_broadcast_oneshot_mask;
498 }
499
500 /*
501 * Called before going idle with interrupts disabled. Checks whether a
502 * broadcast event from the other core is about to happen. We detected
503 * that in tick_broadcast_oneshot_control(). The callsite can use this
504 * to avoid a deep idle transition as we are about to get the
505 * broadcast IPI right away.
506 */
507 int tick_check_broadcast_expired(void)
508 {
509 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
510 }
511
512 /*
513 * Set broadcast interrupt affinity
514 */
515 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
516 const struct cpumask *cpumask)
517 {
518 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
519 return;
520
521 if (cpumask_equal(bc->cpumask, cpumask))
522 return;
523
524 bc->cpumask = cpumask;
525 irq_set_affinity(bc->irq, bc->cpumask);
526 }
527
528 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
529 ktime_t expires)
530 {
531 if (!clockevent_state_oneshot(bc))
532 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
533
534 clockevents_program_event(bc, expires, 1);
535 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
536 }
537
538 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
539 {
540 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
541 }
542
543 /*
544 * Called from irq_enter() when idle was interrupted to reenable the
545 * per cpu device.
546 */
547 void tick_check_oneshot_broadcast_this_cpu(void)
548 {
549 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
550 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
551
552 /*
553 * We might be in the middle of switching over from
554 * periodic to oneshot. If the CPU has not yet
555 * switched over, leave the device alone.
556 */
557 if (td->mode == TICKDEV_MODE_ONESHOT) {
558 clockevents_switch_state(td->evtdev,
559 CLOCK_EVT_STATE_ONESHOT);
560 }
561 }
562 }
563
564 /*
565 * Handle oneshot mode broadcasting
566 */
567 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
568 {
569 struct tick_device *td;
570 ktime_t now, next_event;
571 int cpu, next_cpu = 0;
572 bool bc_local;
573
574 raw_spin_lock(&tick_broadcast_lock);
575 dev->next_event.tv64 = KTIME_MAX;
576 next_event.tv64 = KTIME_MAX;
577 cpumask_clear(tmpmask);
578 now = ktime_get();
579 /* Find all expired events */
580 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
581 td = &per_cpu(tick_cpu_device, cpu);
582 if (td->evtdev->next_event.tv64 <= now.tv64) {
583 cpumask_set_cpu(cpu, tmpmask);
584 /*
585 * Mark the remote cpu in the pending mask, so
586 * it can avoid reprogramming the cpu local
587 * timer in tick_broadcast_oneshot_control().
588 */
589 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
590 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
591 next_event.tv64 = td->evtdev->next_event.tv64;
592 next_cpu = cpu;
593 }
594 }
595
596 /*
597 * Remove the current cpu from the pending mask. The event is
598 * delivered immediately in tick_do_broadcast() !
599 */
600 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
601
602 /* Take care of enforced broadcast requests */
603 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
604 cpumask_clear(tick_broadcast_force_mask);
605
606 /*
607 * Sanity check. Catch the case where we try to broadcast to
608 * offline cpus.
609 */
610 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
611 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
612
613 /*
614 * Wakeup the cpus which have an expired event.
615 */
616 bc_local = tick_do_broadcast(tmpmask);
617
618 /*
619 * Two reasons for reprogram:
620 *
621 * - The global event did not expire any CPU local
622 * events. This happens in dyntick mode, as the maximum PIT
623 * delta is quite small.
624 *
625 * - There are pending events on sleeping CPUs which were not
626 * in the event mask
627 */
628 if (next_event.tv64 != KTIME_MAX)
629 tick_broadcast_set_event(dev, next_cpu, next_event);
630
631 raw_spin_unlock(&tick_broadcast_lock);
632
633 if (bc_local) {
634 td = this_cpu_ptr(&tick_cpu_device);
635 td->evtdev->event_handler(td->evtdev);
636 }
637 }
638
639 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
640 {
641 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
642 return 0;
643 if (bc->next_event.tv64 == KTIME_MAX)
644 return 0;
645 return bc->bound_on == cpu ? -EBUSY : 0;
646 }
647
648 static void broadcast_shutdown_local(struct clock_event_device *bc,
649 struct clock_event_device *dev)
650 {
651 /*
652 * For hrtimer based broadcasting we cannot shutdown the cpu
653 * local device if our own event is the first one to expire or
654 * if we own the broadcast timer.
655 */
656 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
657 if (broadcast_needs_cpu(bc, smp_processor_id()))
658 return;
659 if (dev->next_event.tv64 < bc->next_event.tv64)
660 return;
661 }
662 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
663 }
664
665 /**
666 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
667 * @state: The target state (enter/exit)
668 *
669 * The system enters/leaves a state, where affected devices might stop
670 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
671 *
672 * Called with interrupts disabled, so clockevents_lock is not
673 * required here because the local clock event device cannot go away
674 * under us.
675 */
676 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
677 {
678 struct clock_event_device *bc, *dev;
679 struct tick_device *td;
680 int cpu, ret = 0;
681 ktime_t now;
682
683 /*
684 * Periodic mode does not care about the enter/exit of power
685 * states
686 */
687 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
688 return 0;
689
690 /*
691 * We are called with preemtion disabled from the depth of the
692 * idle code, so we can't be moved away.
693 */
694 td = this_cpu_ptr(&tick_cpu_device);
695 dev = td->evtdev;
696
697 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
698 return 0;
699
700 raw_spin_lock(&tick_broadcast_lock);
701 bc = tick_broadcast_device.evtdev;
702 cpu = smp_processor_id();
703
704 if (state == TICK_BROADCAST_ENTER) {
705 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
706 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
707 broadcast_shutdown_local(bc, dev);
708 /*
709 * We only reprogram the broadcast timer if we
710 * did not mark ourself in the force mask and
711 * if the cpu local event is earlier than the
712 * broadcast event. If the current CPU is in
713 * the force mask, then we are going to be
714 * woken by the IPI right away.
715 */
716 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
717 dev->next_event.tv64 < bc->next_event.tv64)
718 tick_broadcast_set_event(bc, cpu, dev->next_event);
719 }
720 /*
721 * If the current CPU owns the hrtimer broadcast
722 * mechanism, it cannot go deep idle and we remove the
723 * CPU from the broadcast mask. We don't have to go
724 * through the EXIT path as the local timer is not
725 * shutdown.
726 */
727 ret = broadcast_needs_cpu(bc, cpu);
728 if (ret)
729 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
730 } else {
731 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
732 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
733 /*
734 * The cpu which was handling the broadcast
735 * timer marked this cpu in the broadcast
736 * pending mask and fired the broadcast
737 * IPI. So we are going to handle the expired
738 * event anyway via the broadcast IPI
739 * handler. No need to reprogram the timer
740 * with an already expired event.
741 */
742 if (cpumask_test_and_clear_cpu(cpu,
743 tick_broadcast_pending_mask))
744 goto out;
745
746 /*
747 * Bail out if there is no next event.
748 */
749 if (dev->next_event.tv64 == KTIME_MAX)
750 goto out;
751 /*
752 * If the pending bit is not set, then we are
753 * either the CPU handling the broadcast
754 * interrupt or we got woken by something else.
755 *
756 * We are not longer in the broadcast mask, so
757 * if the cpu local expiry time is already
758 * reached, we would reprogram the cpu local
759 * timer with an already expired event.
760 *
761 * This can lead to a ping-pong when we return
762 * to idle and therefor rearm the broadcast
763 * timer before the cpu local timer was able
764 * to fire. This happens because the forced
765 * reprogramming makes sure that the event
766 * will happen in the future and depending on
767 * the min_delta setting this might be far
768 * enough out that the ping-pong starts.
769 *
770 * If the cpu local next_event has expired
771 * then we know that the broadcast timer
772 * next_event has expired as well and
773 * broadcast is about to be handled. So we
774 * avoid reprogramming and enforce that the
775 * broadcast handler, which did not run yet,
776 * will invoke the cpu local handler.
777 *
778 * We cannot call the handler directly from
779 * here, because we might be in a NOHZ phase
780 * and we did not go through the irq_enter()
781 * nohz fixups.
782 */
783 now = ktime_get();
784 if (dev->next_event.tv64 <= now.tv64) {
785 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
786 goto out;
787 }
788 /*
789 * We got woken by something else. Reprogram
790 * the cpu local timer device.
791 */
792 tick_program_event(dev->next_event, 1);
793 }
794 }
795 out:
796 raw_spin_unlock(&tick_broadcast_lock);
797 return ret;
798 }
799 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
800
801 /*
802 * Reset the one shot broadcast for a cpu
803 *
804 * Called with tick_broadcast_lock held
805 */
806 static void tick_broadcast_clear_oneshot(int cpu)
807 {
808 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
809 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
810 }
811
812 static void tick_broadcast_init_next_event(struct cpumask *mask,
813 ktime_t expires)
814 {
815 struct tick_device *td;
816 int cpu;
817
818 for_each_cpu(cpu, mask) {
819 td = &per_cpu(tick_cpu_device, cpu);
820 if (td->evtdev)
821 td->evtdev->next_event = expires;
822 }
823 }
824
825 /**
826 * tick_broadcast_setup_oneshot - setup the broadcast device
827 */
828 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
829 {
830 int cpu = smp_processor_id();
831
832 /* Set it up only once ! */
833 if (bc->event_handler != tick_handle_oneshot_broadcast) {
834 int was_periodic = clockevent_state_periodic(bc);
835
836 bc->event_handler = tick_handle_oneshot_broadcast;
837
838 /*
839 * We must be careful here. There might be other CPUs
840 * waiting for periodic broadcast. We need to set the
841 * oneshot_mask bits for those and program the
842 * broadcast device to fire.
843 */
844 cpumask_copy(tmpmask, tick_broadcast_mask);
845 cpumask_clear_cpu(cpu, tmpmask);
846 cpumask_or(tick_broadcast_oneshot_mask,
847 tick_broadcast_oneshot_mask, tmpmask);
848
849 if (was_periodic && !cpumask_empty(tmpmask)) {
850 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
851 tick_broadcast_init_next_event(tmpmask,
852 tick_next_period);
853 tick_broadcast_set_event(bc, cpu, tick_next_period);
854 } else
855 bc->next_event.tv64 = KTIME_MAX;
856 } else {
857 /*
858 * The first cpu which switches to oneshot mode sets
859 * the bit for all other cpus which are in the general
860 * (periodic) broadcast mask. So the bit is set and
861 * would prevent the first broadcast enter after this
862 * to program the bc device.
863 */
864 tick_broadcast_clear_oneshot(cpu);
865 }
866 }
867
868 /*
869 * Select oneshot operating mode for the broadcast device
870 */
871 void tick_broadcast_switch_to_oneshot(void)
872 {
873 struct clock_event_device *bc;
874 unsigned long flags;
875
876 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
877
878 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
879 bc = tick_broadcast_device.evtdev;
880 if (bc)
881 tick_broadcast_setup_oneshot(bc);
882
883 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
884 }
885
886 #ifdef CONFIG_HOTPLUG_CPU
887 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
888 {
889 struct clock_event_device *bc;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
893 bc = tick_broadcast_device.evtdev;
894
895 if (bc && broadcast_needs_cpu(bc, deadcpu)) {
896 /* This moves the broadcast assignment to this CPU: */
897 clockevents_program_event(bc, bc->next_event, 1);
898 }
899 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
900 }
901
902 /*
903 * Remove a dead CPU from broadcasting
904 */
905 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
906 {
907 unsigned long flags;
908
909 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
910
911 /*
912 * Clear the broadcast masks for the dead cpu, but do not stop
913 * the broadcast device!
914 */
915 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
916 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
917 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
918
919 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
920 }
921 #endif
922
923 /*
924 * Check, whether the broadcast device is in one shot mode
925 */
926 int tick_broadcast_oneshot_active(void)
927 {
928 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
929 }
930
931 /*
932 * Check whether the broadcast device supports oneshot.
933 */
934 bool tick_broadcast_oneshot_available(void)
935 {
936 struct clock_event_device *bc = tick_broadcast_device.evtdev;
937
938 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
939 }
940
941 #endif
942
943 void __init tick_broadcast_init(void)
944 {
945 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
946 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
947 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
948 #ifdef CONFIG_TICK_ONESHOT
949 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
950 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
951 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
952 #endif
953 }
This page took 0.049434 seconds and 5 git commands to generate.